Supporting Information

Distinct Dibasic Cleavage Specificities of Neuropeptide-Producing Cathepsin L and Cathepsin V Cysteine Proteases Compared to PC1/3 and PC2 Serine Proteases

Michael Yoon¹, Janneca Ames¹, Charles Mosier¹, Zhenze Jiang¹, Sonia Podvin¹ Anthony J. O'Donoghue¹, and Vivian Hook^{1, 2}

¹Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States:
²Department of Neurosciences and Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States

Supplemental Information

Supplementary Figures:

Figure S1. Coupled protease assay with cathepsin H aminopeptidase activity to monitor peptide-AMC cleavages with N-terminal residue-extended AMC products.

a. C-terminal cleavage at dibasic residues of Z-K-R-AMC, as an example of the Z-K/R-K/R- ψ AMC and Z-X-K/R-K/R- ψ AMC substrates, generates fluorescent AMC monitored at excitation/emission of 360/460 nm, shown here for Z-K-R-AMC as example.

b. Cleavage between or at the N-terminal side of dibasic residues of Z-K-R-AMC, as an example for the Z-K/R-K/R- ψ AMC and Z-X-K/R-K/R- ψ AMC substrates, generates basic residue extended AMC products that are monitored by addition of the cathepsin H aminopeptidase to generate fluorescent AMC for detection and quantitation of cleaved products.

Figure S2. Cathepsin L cleavage of several pro-neuropeptides at dibasic residues, between and at the N-terminal side, reported in the literature.

a. <u>Cathepsin L cleavage of pro-NPY</u>. Cathepsin L cleavage of recombinant pro-NPY was determined by mass spectrometry analyses of cleavage products, as reported by our prior study of Funkelstein et al., 2008 (21). Results indicated cathepsin L cleavage at the N-terminal side of the KR (pink) processing site, with hydrophobic Tyr residue (green).

(b) Cathepsin L cleavage of enkephalin-containing intermediates BAM22P and Peptide F. Cathepsin L cleavage of BAM22P and Peptide F was determined by mass spectrometry analyses of cleavage products, as reported in our prior study of Yasothornsrikul et al., 2003 (20). Results demonstrated cathepsin L cleavage between the R \sqrt{R} dibasic site, and at the N-terminal side of \sqrt{RR} with hydrophobic Tyr as P2 residue.

Figure S3. PC1/3 and PC2 cleavage of proinsulin and proenkephalin at the N-terminal side of dibasic residues, reported in the literature.

(a) Proinsulin processing by PC1/3 and PC2. PC1/3 (human) has been demonstrated to cleave human proinsulin at the C-terminal side of $RR\Psi$ between the B and C chains, as reported by Davidson et al., 1988 (22). PC2 (human) has been shown to cleave at the COOH-terminal side of KR Ψ between the C and A chains of proinsulin (22).

(b) Proenkephalin processing by PC1/3 and PC2. Processing of proenkephalin (rat) by PC1/3 and PC2 (mouse) was conducted by analyses of peptide products by MALDI-TOF, as reported by Peinado et al., 2003 (26). Arrows indicate the cleavage sites within proenkephalin by PC1/3 and PC2.

Figure S4. Hypothesis for differential dibasic cleavage specificities of the cathepsin L and cathepsin V cysteine proteases, compared to the PC1/3 and PC2 serine proteases, for neuropeptide biosynthesis. Neuropeptides comprise peptide neurotransmitters and hormones. Neuropeptides are first synthesized as pro-neuropeptide precursors with dibasic residues (KR, RK, KK, and RR) flanking the active neuropeptides. The dibasic residue regions have been found to undergo proteolytic processing by cathepsin L and cathepsin V cysteine proteases (1, 2), combined with the pro-protein convertases 1 and 2 (PC1/3 and PC2) (1-3). It is hypothesized that different cleavage specificities exist for the cathepsin L and cathepsin V proteases which cleave between and at the N-terminal side of the dibasic residues, whereas the PC1/3 and PC2 serine proteases cleavage at the C-terminal side of dibasic residues. This hypothesis is supported by the findings of this study.

Supplemental Table:

	14-mers with dibasic
	sequence (n=19)
1	nLDKLnNWPQ <mark>RR</mark> Gn
2	GnYY <mark>KR</mark> FnAHWVGI
3	Qn <mark>KK</mark> TLVnYNEWNL
4	LGWHAnF <mark>RK</mark> YPInA
5	GSQVFSWLNHYH <mark>RK</mark>
6	HTNKRISQWnWEIR
7	RK WQSPQVDLYDKS
8	HRRVYLTSPKAPES
9	VDYIEHKDQV <mark>RR</mark> nN
10	nEFHWRInQG <mark>KK</mark> AP
11	TPHHVNWYKRAPNQ
12	EGADIWY <mark>RK</mark> HSHQL
13	L <mark>RK</mark> DWGDIQFATAN
14	IEPPWVDSHA <mark>KR</mark> Nn
15	YQLLTnNEIF <mark>RK</mark> WH
16	YWnSTHLAGK <mark>RR</mark> DW
17	DAWAPnVI <mark>KK</mark> ESSI
18	ADA <mark>RK</mark> YWNVHGTHQ
19	ANnQILDPDNFKRE

Table S1. Dibasic residue containing peptides in the library of 228 14-mer peptides used for MSP-MS analyses.

The sequences of 14-mer peptides of the library that contain dibasic residues are shown. The library also contained one tribasic peptide.

Supplemental Methods

LC-MS-MS Report: MSP-MS of Cathepsin L, Cathepsin V, PC1/3, and PC2 at pH 5.5 and pH 7.4

Samples were resuspended in 0.1% TFA to a total peptide concentration of 28.5 μ M Each sample were injected once, 4 ul total volume per injection

The C18 column consisted of 1.7 μ m bead size, 75 μ m x 20 cm, heated to 65C

Solvent A – water, 0.1% formic acid Solvent B – acetonitrile, 0.1% formic acid

Nano-LC gradient:

A	В	С	D
Time (min)	Flow (µl/min)	% solvent A	% solvent B
0	0.3	99	1
0.1	0.3	95	5
60	0.3	70	30
65	0.3	15	85
75	0.3	15	85
75.1	0.3	10	90
85	0.3	10	90
85.1	0.3	0	100

MS Sample List

MY_20180821_CatV74_60_4.raw	MY_20180821_PC1_60_4.raw
MY_20180821_CatV74_60_3.raw	MY_20180821_PC1_60_3.raw
MY_20180821_CatV74_60_2.raw	MY_20180821_PC1_60_2.raw
MY_20180821_CatV74_60_1.raw	MY_20180821_PC1_60_1.raw
MY_20180821_CatV74_30_4.raw	MY_20180821_PC1_30_4.raw
MY_20180821_CatV74_30_3.raw	MY_20180821_PC1_30_3.raw
MY_20180821_CatV74_30_2.raw	MY_20180821_PC1_30_2.raw
MY_20180821_CatV74_30_1.raw	MY_20180821_PC1_30_1.raw
MY_20180821_CatV55_60_4.raw	MY_20180821_PC1_0_4.raw
MY_20180821_CatV55_60_3.raw	MY_20180821_PC1_0_3.raw
MY_20180821_CatV55_60_2.raw	MY_20180821_PC1_0_2.raw
MY_20180821_CatV55_60_1.raw	MY_20180821_PC1_0_1.raw
MY_20180821_CatV55_30_4.raw	MY_20180821_PC2_60_4.raw
MY_20180821_CatV55_30_3.raw	MY_20180821_PC2_60_3.raw
MY_20180821_CatV55_30_2.raw	MY_20180821_PC2_60_2.raw
MY_20180821_CatV55_30_1.raw	MY_20180821_PC2_60_1.raw
MY_20180821_CatV55_0_4.raw	MY_20180821_PC2_30_4.raw
MY_20180821_CatV55_0_3.raw	MY_20180821_PC2_30_3.raw
MY_20180821_CatV55_0_2.raw	MY_20180821_PC2_30_2.raw
MY_20180821_CatV55_0_1.raw	MY_20180821_PC2_30_1.raw
MY_20180821_CatL55_60_4.raw	MY_20180821_PC2_0_4.raw
MY_20180821_CatL55_60_3.raw	MY_20180821_PC2_0_3.raw
MY_20180821_CatL55_60_2.raw	MY_20180821_PC2_0_2.raw
MY_20180821_CatL55_60_1.raw	MY_20180821_PC2_0_1.raw
MY_20180821_CatL55_30_4.raw	MY_20180821_CatL55_0_1.raw
MY_20180821_CatL55_30_3.raw	MY_20180821_CatL55_0_4.raw
MY_20180821_CatL55_30_2.raw	MY_20180821_CatL55_0_3.raw
MY_20180821_CatL55_30_1.raw	MY_20180821_CatL55_0_2.raw

Q-Exactive MS Report: Thermo Scientific SII for Xcalibur Method - Next Pages

Method of Q Exactive

Overall method settings

Global Settings Use lock masses Lock mass injection Chrom. peak width (FWHM)	off — 15 s
Method duration Customized Tolerances (+/-)	95.00 min
Inclusion Exclusion	
Neutral Loss Mass Tags Dynamic Exclusion	— — 10.0 ppm

Experiment

<u>Full MS / dd-MS² (TopN)</u>	
General	
Runtime	0 to 95 min
Polarity	Positive
In-source CID	0.0 eV
Default charge state	2
Inclusion	—
Exclusion	—
Tags	—
Full MS	
Microscans	1
Resolution	70,000
AGC target	3e6
Maximum IT	100 ms
Number of scan ranges	1
Scan range	250 to 1500 m/z
Spectrum data type	Profile
dd-MS ² / dd-SIM	
Microscans	1
Resolution	17,500
AGC target	1e5
Maximum IT	50 ms
Loop count	12
MSX count	1
TopN	12
Isolation window	1.5 m/z
Isolation offset	0.0 m/z
Scan range	200 to 2000 m/z
Fixed first mass	150.0 m/z
(N)CE / stepped (N)CE	nce: 28
Spectrum data type	Centroid
dd Settings	
Minimum AGC target	3.00e2
Intensity threshold	6.0e3
Apex trigger	—
Charge exclusion	unassigned, 1

Peptide match Exclude isotopes Dynamic exclusion If idle .. Preferred on 20.0 s do not pick others

Setup

fc

<u>Tunefiles</u>

General Switch Count 0 Base Tunefile C:\Xcalibur\methods\CL_nanoTune_20180409.mstune

Contact Closure

GeneralUsedFalseStart in ClosedTrueSwitch Count0

Syringe

General False Used Start in OFF True Stop at end of run False Switch Count 0 Pump setup Syringe type Hamilton Flow rate 3.000 µL/min Inner diameter 2.303 mm Volume 250 µL

Divert Valve A

General Used False Start in 1-2 True Switch Count 0

Divert Valve B

General Used False Start in 1-2 True Switch Count 0

Lock Masses

(no entries)

Inclusion List

(no entries)

Exclusion List

(no entries)

Neutral Losses

(no entries)

<u>Mass Tags</u>

(no entries)

1. Notes

2. Result Statistics

Figure 1. False discovery rate (FDR) curve. X axis is the number of peptide-spectrum matches (PSM) being kept. Y axis is the corresponding FDR. 2

Figure 2. PSM score distribution. (a) Distribution of PEAKS peptide score; (b) Scatterplot of PEAKS peptide score versus precursor mass error. 2

 Table 1. Statistics of data.

 # of MS scans
 183611

 # of MS/MS scans
 1009554

 Table 2. Result filtration parameters.

Peptide -10lgP	≥46.4
Peptide Ascore	≥ 0
Protein -10lgP	≥20
Proteins unique peptides	≥ 0
De novo ALC Score	≥50%

Table 3. Statistics of filtered result	
Peptide-Spectrum Matches	36207
Peptide sequences	1144
Protein groups	402
Proteins	402
Proteins (#Unique Peptides)	189 (>2); 12 (=2); 14 (=1);
FDR (Peptide-Spectrum Matches)	0.1%
FDR (Peptide Sequences)	0.9%
FDR (Protein)	85.3%
De Novo Only Spectra	59514

3. Experiment Control

Figure 4. Precursor mass error of peptide-spectrum matches (PSM) in filtered result. (a) Distribution of precursor mass error in ppm; (b) Scatterplot of precursor m/z versus precursor mass error in ppm. 2

Table 5. Number of identified peptides in each sample by the number of missed cleavages

Missed Cleavages	0	1	2	3	4+
L_0_55_1	0	0	0	0	23
L_0_55_2	0	0	0	0	29
L_0_55_3	0	0	0	0	92
L_0_55_4	0	0	0	0	21
L_30_55_1	0	0	0	0	19
L_30_55_2	0	0	0	0	9
L_30_55_3	0	0	0	0	26
L_30_55_4	0	0	0	0	118
L_60_55_1	0	0	0	0	166
L_60_55_2	0	0	0	0	65

...

4. Other Information

Table 6. Search parameters.Search Engine Name: PEAKSParent Mass Error Tolerance: 15.0 ppmFragment Mass Error Tolerance: 0.01 DaPrecursor Mass Search Type: monoisotopicEnzyme: NoneMax Missed Cleavages: 100Non-specific Cleavage: bothMax Variable PTM Per Peptide: 3Database: TDP_237library_07202017Taxon: AllSearched Entry: 228FDR Estimation: EnabledDifferent data refine parameters are used for this search:

 Table 7. Instrument parameters.

Fractions: MY 20180821 CatL55 0 1.raw, MY 20180821 CatL55 0 2.r aw, MY 20180821 CatL55 0 3.raw, MY 20180821 CatL55 0 4.raw, M Y_20180821_CatL55_30_1.raw, MY_20180821_CatL55_30_2.raw, MY_2 0180821_CatL55_30_3.raw, MY_20180821_CatL55_30_4.raw, MY_2018 0821_CatL55_60_1.raw, MY_20180821_CatL55_60_2.raw, MY_2018082 1 CatL55 60 3.raw, MY 20180821 CatL55 60 4.raw, MY 20180821 C atV55 0 1.raw, MY_20180821_CatV55_0_2.raw, MY_20180821_CatV55 0 3.raw, MY 20180821 CatV55 0 4.raw, MY 20180821 CatV55 30 1 .raw, MY 20180821 CatV55 30 2.raw, MY 20180821 CatV55 30 3.ra w, MY 20180821 CatV55 30 4.raw, MY 20180821 CatV55 60 1.raw, MY_20180821_CatV55_60_2.raw, MY_20180821_CatV55_60_3.raw, MY_ 20180821_CatV55_60_4.raw, MY_20180821_CatV74_30_1.raw, MY_201 80821 CatV74 30 2.raw, MY 20180821 CatV74 30 3.raw, MY 201808 21_CatV74_30_4.raw, MY_20180821_CatV74_60_1.raw, MY_20180821_ CatV74 60 2.raw, MY 20180821 CatV74 60 3.raw, MY 20180821 Cat V74 60 4.raw Ion Source: ESI(nano-spray)

Fragmentation Mode: high energy CID (y and b ions) MS Scan Mode: FT-ICR/Orbitrap MS/MS Scan Mode: FT-ICR/Orbitrap

1. Notes

2. Result Statistics

Figure 1. False discovery rate (FDR) curve. X axis is the number of peptide-spectrum matches (PSM) being kept. Y axis is the corresponding FDR. 2

Figure 2. PSM score distribution. (a) Distribution of PEAKS peptide score; (b) Scatterplot of PEAKS peptide score versus precursor mass error.

Figure 3. De novo result validation. Distribution of residue local confidence: (a) Residues in de novo sequences validated by confident database peptide assignment; (b) Residues in "de novo only" sequences.

Table 1. Statistics of data.# of MS scans133047# of MS/MS scans780106

 Table 2. Result filtration parameters.
 Peptide -10lgP ≥44.7 Peptide Ascore ≥ 0 Protein -10lgP ≥20 Proteins unique peptides ≥ 0 De novo ALC Score ≥50% Table 3. Statistics of filtered result. Peptide-Spectrum Matches 29960 Peptide sequences 887 Protein groups 393 Proteins 393

Proteins (#Unique Peptides)	152 (>2); 44 (=2); 20 (=1);
FDR (Peptide-Spectrum Matches)	0.1%
FDR (Peptide Sequences)	0.9%
FDR (Protein)	80.3%
De Novo Only Spectra	62036

3. Experiment Control

Figure 4. Precursor mass error of peptide-spectrum matches (PSM) in filtered result. (a) Distribution of precursor mass error in ppm; (b) Scatterplot of precursor m/z versus precursor mass error in ppm. 2

Table 5. Number of identified peptides in each sample by the number of missed cleavages

Missed Cleavages	0	1	2	3	4+
PC1_00_1	0	0	0	0	61
PC1_00_2	0	0	0	0	68
PC1_00_3	0	0	0	0	10
PC1_00_4	0	0	0	0	16
PC1_30_1	0	0	0	0	21
PC1_30_2	0	0	0	0	25
PC1_30_3	0	0	0	0	17
PC1_30_4	0	0	0	0	75
PC1_60_1	0	0	0	0	37
PC1_60_2	0	0	0	0	111

...

4. Other Information

Table 6. Search parameters.Search Engine Name: PEAKSParent Mass Error Tolerance: 15.0 ppmFragment Mass Error Tolerance: 0.01 DaPrecursor Mass Search Type: monoisotopicEnzyme: NoneMax Missed Cleavages: 100Non-specific Cleavage: bothMax Variable PTM Per Peptide: 3Database: TDP_237library_07202017Taxon: AllSearched Entry: 228FDR Estimation: EnabledDifferent data refine parameters are used for this search:

 Table 7. Instrument parameters.

Fractions: MY_20180821_PC1_0_1.raw, MY_20180821_PC1_0_2.raw, MY 20180821_PC1_0_3.raw, MY_20180821_PC1_0_4.raw, MY_20180821_P C1_30_1.raw, MY_20180821_PC1_30_2.raw, MY_20180821_PC1_30_3.r aw, MY_20180821_PC1_30_4.raw, MY_20180821_PC1_60_1.raw, MY_20 180821_PC1_60_2.raw, MY_20180821_PC1_60_3.raw, MY_20180821_PC 1_60_4.raw, MY_20180821_PC2_0_1.raw, MY_20180821_PC2_0_2.raw, MY_20180821_PC2_0_3.raw, MY_20180821_PC2_0_4.raw, MY_2018082 1_PC2_30_1.raw, MY_20180821_PC2_30_2.raw, MY_2018082 1_PC2_30_1.raw, MY_20180821_PC2_30_2.raw, MY_2018082 1_PC2_60_1.raw, MY_2018082 1_PC2_60_2.raw, MY_2018082 1_PC2_60_3.raw, MY_2018082 1_PC2_60_4.raw Ion Source: ESI(nano-spray) Fragmentation Mode: high energy CID (y and b ions) MS Scan Mode: FT-ICR/Orbitrap

MS/MS Scan Mode: FT-ICR/Orbitrap