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Supporting Information Text13

1. The MR-APSS approach14

1.1. Derivation of the background model of MR-APSS. Let (γ̂j , Γ̂j) be the GWAS estimates of SNP j for exposure X and15

outcome Y . Under the assumptions of LDSC, we will derive that the background model can be written as16

p
(
γ̂j , Γ̂j |Ω,C, Ŝj , `j

)
= N

((
γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj
)
, [1]17

where Ω is the variance component of polygenic effects (uj , vj), `j =
∑

k
r2
jk is the LD score of SNP j, rjk is the correlation18

between SNP j and SNP k, Ŝj =
(
ŝX,j 0

0 ŝY,j

)
, C =

(
c1 c12
c12 c2

)
, and ŜjCŜj is the variance component for the GWAS19

estimation errors (εj , ξj) in the presence of sample structure (e.g., population stratification, cryptic relatedness, and sample20

overlap).21

1.1.1. Statistical Model. Let N1 and N2 be the GWAS sample sizes of two studies for exposure X and outcome Y . Following22

LDSC, we consider the population structure by a mixture of two sub-populations (sub-population 1 and sub-population 2) of23

equal proportion with the following genetic drift model: (i) Let G1 = {G1,ij} ∈ RN1×M and G2 = {G2,ij} ∈ RN2×M be the24

standardized genotype matrices for exposure X and exposure Y , respectively, where M is the number of SNPs in the genome.25

For individual i in sub-population 1, we have E(G1,ij |i ∈ sub-pop 1) = E(G2,ij |i ∈ sub-pop 1) = fj . For individual i in26

sub-population 2, we have E(G1,ij |i ∈ sub-pop 2) = E(G2,ij |i ∈ sub-pop 2) = −fj . We also have Var(G1,ij) = Var(G2,ij) = 127

for all j because of standardization; (ii) The genetic drift term fj ∼ N(0, Fst) for all j, and Cov(fj , fk) = 0 for all j 6= k; (iii)28

Let `j,1 and `j,2 be the LD score of SNP j in sub-populations 1 and 2, respectively. We assume `j,1 ≈ `j,2 = `j for all j. This29

assumption may be questionable when sub-population 1 and sub-population 2 differ a lot (e.g., when they are from different30

continents). However, as discussed in the LDSC paper (1), this assumption is reasonable when we are interested in modeling31

population stratification after principal components adjustment in GWAS where samples are from non-admixed populations.32

With the above genetic drift model, we consider the following individual-level background model:33

x = G1u + s1 + e1, y = G2v + s2 + e2, [2]34

where x = {xi}i=1,...,N1 is anN1×1 phenotype vector for exposureX, y = {yi}i=1,...,N2 is anN2×1 phenotype vector for outcome
Y , u = {uj}j=1,...,M and v = {vj}j=1,...,M are M × 1 vectors of polygenic effects, e1 = {e1,i}i=1,...,N1 and e2 = {e2,i}i=1,...,N2

are the vectors of independent noises, and s1 = {s1,i}i=1,...,N1 and s2 = {s2,i}i=1,...,N2 are the environmental stratification
terms defined by

s1,i =
{
σs, i ∈ sub-population 1
−σs, i ∈ sub-population 2

, i = 1, . . . , N1,

and

s2,i =
{
σs, i ∈ sub-population 1
−σs, i ∈ sub-population 2

, i = 1, . . . , N2,

where σs is the mean phenotype difference between sub-population 1 and sub-population 2. Please note that the zero-mean
assumption on the environmental stratification terms s1 and s2 is not required in our model. The background model of
MR-APSS can be estimated by LDSC even though the environmental stratification terms have non-zero mean. This is because
the influence of population stratification enters our model through the variance term rather than the mean term. We assume
random effects to characterize the polygenic effects,(

uj
vj

)
∼ N (0,Ω) , where Ω =

(
σ2
u rgσuτv

rgσuτv τ2
v

)
, j = 1, . . . ,M.

The noise terms (e1, e2) are assumed to have expectations E[e1] = E[e2] = 0, and variances Var(e1) = σ2
e1I and Var(e2) = σ2

e2I.35

Here we set σ2
e1 = (1−Mσ2

u−σ2
s) and σ2

e2 = (1−Mτ2
v−σ2

s) to assure that phenotype variances equal one, i.e.,Mσ2
u+σ2

s+σ2
e1 = 136

and Mτ2
v + σ2

s + σ2
e2 = 1. We assume that the noise terms of different samples are independent. To account for correlation due37

to sample overlapping, the noise terms for Ns overlapped samples are assumed to be correlated, i.e., Cov(e1,i, e2,i) = ρe, where38

i is the index of overlapped samples.39

1.1.2. Summary statistics. Let G1,j and G2,j be the j-th column of the standardized genotype matrices G1 and G2. The GWAS40

estimates for the j-th variant γ̂j and Γ̂j can be obtained, respectively by41

γ̂j =
GT

1,jx
GT

1,jG1,j
=

GT
1,jx
N1

, Γ̂j =
GT

2,jy
GT

2,jG2,j
=

GT
2,jy
N2

. [3]42

Because a single SNP only explains little phenotypic variance due to polygenicity, the standard errors can be well approximated43

as44

ŝX,j ≈
1√
N1

, ŝY,j ≈
1√
N2

. [4]45
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We then calculate the z-scores as
zX,j ≈

1√
N1

GT
1,jx, zY,j ≈

1√
N2

GT
2,jy.

Given the estimates of effect sizes in Eq. [3], we have

E(γ̂j |u) = E
(

GT
1,j(G1u + s1 + e1)

N1
|u
)

=
E
(
GT

1,jG1u
)

N1
=
∑
k

rjkuk,

where rjk = E(G1,ijG1,ik) is the correlation between SNP j and SNP k. Similarly, we have

E(Γ̂j |v) =
∑
k

rjkvk.

By taking expectations over u and v, we have46

E(γ̂j) = 0, E(Γ̂j) = 0. [5]47

Furthermore, we can express the GWAS estimates as

γ̂j = γ̃j + εj ,

Γ̂j = Γj + ξj ,

where γ̃j =
∑

k
rj,kuk and Γj =

∑
k
rj,kvk represent the true marginal effects of SNP j on X and Y , εj and ξj are the48

estimation errors due to the sampling variation and confounding biases from sample structure.49

1.1.3. Derivation of the variance component of the background model. Using the results of single trait LDSC (1), the expected values
of z2

X,j and z2
Y,j can be written as

E(z2
X,j) = N1

M
h2

1`j + 1 +N1FST (h2
1FST + σ2

s)︸ ︷︷ ︸
c1

,

E(z2
Y,j) = N2

M
h2

2`j + 1 +N2FST (h2
2FST + σ2

s)︸ ︷︷ ︸
c2

.

Using the bivariate LD score regression, the expected value of zX,jzY,j can be written as (2),

E(zX,jzY,j) =
√
N1N2

M
ρg`j + Ns(ρg + ρe)√

N1N2
+ ρgF

2
ST

√
N1N2 +

√
N1N2FSTσ

2
s︸ ︷︷ ︸

c12

,

where h2
1 and h2

2 are heritabilities of X and Y , ρg is the genetic covariance between X and Y , c1 ≥ 1 and c2 ≥ 1 in the presence50

of population stratification (FST 6= 0), and c12 6= 0 in the presence of either population stratification (i.e., FST 6= 0) or sample51

overlap (i.e., Ns 6= 0). With the above results, we can obtain52

Var
(
γ̂j
Γ̂j

)
= 1
M

(
h2

1 ρg
ρg h2

2

)
`j +

(
c1ŝ

2
X,j c12ŝX,j ŝY,j

c12ŝX,j ŝY,j c2ŝ
2
Y,j

)
= `jΩ + ŜjCŜj , [6]53

where Ω =
(

σ2
u rgσuτv

rgσuτv τ2
v

)
= 1

M

(
h2

1 ρg
ρg h2

2

)
and Ŝj =

(
ŝX,j 0

0 ŝY,j

)
. From Eq. [6], the polygenic effects and their54

correlation are tagged by the slope of the LD score `j and the influence of sample structure is captured by the intercept term.55

Considering the large sample size of modern GWASs, the estimation errors can be assumed asymptotically normally distributed.56

Combining Eqs. [5] and [6], we can obtain the background model given in Eq. [1].57

We note that our model can incorporate covariates. To see this, we can extend model (2) to incorporate covariates:58

x = W1bcov,x + G1u + s1 + e1, y = W2bcov,y + G2v + s2 + e2, [7]59

where W1 and W2 are the two matrices of covariates, bcov,x and bcov,y are the vectors of covariate effects. Now we define60

projection matrices P1 = I−W1(WT
1 W1)−1WT

1 and P2 = I−W2(WT
2 W2)−1WT

2 . We can transform model (2) as following:61

P1x = P1G1u + P1s1 + P1e1, P2y = P2G2v + P2s2 + P2e2. [8]62

By working with projected genotypes and phenotypes, model (7) is reduced to the same form of model (2) without covariates.63

In summary, the background model of MR-APSS inherits the assumptions of LDSC to account for the confounding bias64

due to pleiotropy and sample structure. First, SNP effect sizes are assumed to be random effects, which allows the variance65

and covariance of SNP effects to be captured by the slope of LDSC, i.e., the coefficients of LD score `j . Second, the rows of66

individual-level genotype matrices are assumed to be drawn i.i.d. from some distributions. This helps us to bypass the difficulty67
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when individual-level GWAS data are inaccessible. Third, LDSC assumes the confounding bias from population stratification68

and overlapped samples is nearly constant across SNPs, such that their influence can be well captured by the intercept terms69

of LDSC. The first assumption and the third assumption allow us to distinguish genetic effects (polygenicity and correlated70

pleiotropy) from confounding bias due to sample structure. With these assumptions, we can estimate the parameters in the71

background model using genome-wide summary statistics. We have closely investigated the summary-statistics-based methods72

for estimating heritability and genetic correlation (3), including LDSC (1), GNOVA (4), and HDL (5). Both simulation studies73

and real data analysis results suggest that the LDSC assumptions can provide a robust estimation of genetic correlation74

based on summary-level data as long as the reference genomes offer a matched LD estimation. In this paper, we mainly focus75

on causal inference in European ancestry. The reference genomes (e.g., from 1000 Genomes Project) are known to provide76

accurate LD estimation for European ancestry. Thus, MR-APSS can provide robust results even in the presence of model77

mis-specification.78

1.2. Derivation of the foreground-background model of MR-APSS. In this section, we derive the foreground-background model79

of MR-APSS given by Eq. [6] in the main text. We begin with the individual-level foreground-background model,80

x = G1(Zγ + u) + s1 + e1, y = G2 (Z(βγ + α) + v) + s2 + e2, [9]81

where x = {xi}i=1,...,N1 is an N1 × 1 phenotype vector for exposure X, y = {yi}i=1,...,N2 is an N2 × 1 phenotype vector for
outcome Y , Z is an M ×M diagonal matrix where the j-th diagonal entry Zj ∼ Bern(π0) indicates that the SNP j has a
foreground signal (Zj = 1) or not (Zj = 0) with π0 = p(Zj = 1), γ = {γj}j=1,...,M and α = {αj}j=1,...,M are vectors collecting
the instrument strengths and direct effects of the M SNPs. We adopt the same assumptions as the background model above
for G1,G2, e1, e2,u, and v. Additionally, we assume that γj and αj are normally distributed and independent of each other,(

γj
αj

)
∼ N (0,Σ) , where Σ =

(
σ2 0
0 τ2

)
.

To assure the phenotype variances equal one, we require that σ2
e1 and σ2

e2 satisfy Mπ0σ
2 + Mσ2

u + σ2
s + σ2

e1 = 1, and82

Mπ0(τ2 + β2σ2) +Mτ2
v + σ2

s + σ2
e2 = 1.83

In MR-APSS, we adopt normality assumptions on the background effects (u,v) and the foreground effects (γ,α). Specifically,84

(u,v) are random effects that capture the polygenicity of complex traits. Although many genome-wide significant variants85

have been identified in the early stage of GWASs, these variants can only explain a small fraction of phenotypic variance of86

complex traits, such as height, BMI, and T2D. This phenomenon was referred to as “missing heritability” (6). Yang et al.87

(7) proposed a linear-mixed-model-based approach, where the random effects were assumed to be normal and the heritability88

was estimated using the restricted maximum likelihood (REML) approach. This seminal paper shows that the majority of89

heritability is not missing but jointly contributed by many variants with small effects known as polygenic effects. Nowadays,90

the polygenicity of complex traits is well accepted by the scientific community (8). Regarding the distributions of (γ,α), we91

made a normal assumption when building our MR-APSS model. Accumulating evidence from analyzing large-scale genetic92

data has implied that the normal distribution for (γ,α) is a simple but very effective assumption for characterizing the effects93

deviating from the polygenic effects. An example includes Regression with Summary Statistics (RSS) (9, 10), where the large94

effects deviating from the polygenic effects are also well characterized by a normal distribution. Their comprehensive real95

data results also suggest that the normal distribution of SNP effect sizes is an effective assumption. In the MR literature, the96

normal assumption on the effect sizes is also commonly adopted. Examples include MRMix (11) and RAPS (12).97

Let γ̃j and Γj are the true marginal effects of SNP j on X and Y , respectively. Based on model in Eq. [9], we can obtain98

the estimated marginal effects of SNP j and their standard errors by,99

γ̂j =
GT

1,jx
N1

, ŝX,j ≈
1√
N1

,

Γ̂j =
GT

2,jy
N2

, ŝY,j ≈
1√
N2

.

[10]100

Note that we only use the summary statistics for a subset of Mt independent IVs for causal inference in our analysis, i.e.,
{γ̂j , Γ̂j , ŝX,j , ŝY,j

∣∣|γ̂j/ŝX,j | > t}j=1,...,Mt , which are obtained by PLINK clumping (r2 < 0.001, 1Mb). After LD clumping, the
IVs become representatives for the corresponding LD regions. To simplify the derivation, we assume that the j-th IV and the
SNPs in its local LD region share the same indicator Zj . We then have the following approximation:

E(γ̂j |u,γ, Zj) ≈
∑
k

rjk(Zjγk + uk),

E(Γ̂j |v,α, Zj) ≈
∑
k

rjk(Zj(βγk + αk) + vk).

Under the foreground-background model, we express (γ̂j , Γ̂j) as101

γ̂j = γ̃j + εj ,

Γ̂j = Γj + ξj ,
[11]102
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where γ̃j =
∑

k
rjk(Zjγk + uk) and Γj =

∑
k
rjk(Zj(βγk + αk) + vk) are the underlying true marginal effects of SNP j on103

X and Y , εj and ξj are the estimation errors which capture the effects of sampling variation and confounding biases due to104

sample structure. As the GWAS sample size is large enough, we assume that εj and ξj follow a normal distribution,105

p(γ̂j , Γ̂j |Zj ,u,γ,v,α,C, Ŝj , `j) = N
((

γ̂j
Γ̂j

)∣∣∣( ∑
k
rjk(Zjγk + uk)∑

k
rjk(Zj(βγk + αk) + vk)

)
, ŜjCŜj

)
. [12]106

By integrating out uk, vk, γk, αk, and Zj in Eq. [12], we obtain the foreground-background model of MR-APSS,

p(γ̂j , Γ̂j |π0, β,Σ,Ω,C, Ŝj , `j)

=π0N
((

γ̂j
Γ̂j

)∣∣∣0, `jA(β)ΣA(β)T + `jΩ + ŜjCŜj
)

+ (1− π0)N
((

γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj
)
,

where A(β) =
(

1 0
β 1

)
.107

1.3. Accounting for selection bias in MR-APSS. We derive the probabilistic model given in Eq. [7] in the main text. To account
for bias due to the IV selection, we modify model (6) in the main text by conditioning on the selection operation |γ̂j/ŝX,j | > t,
where t is a z-score threshold corresponding to a p-value threshold for the IV selection. Thus, we have

p
(
γ̂j , Γ̂j

∣∣∣|γ̂j/ŝX,j | > t
)

=p
(
Zj = 1

∣∣∣|γ̂j/ŝX,j | > t
)
p
(
γ̂j , Γ̂j

∣∣∣Zj = 1, |γ̂j/ŝX,j | > t
)

+

p
(
Zj = 0

∣∣∣|γ̂j/ŝX,j | > t
)
p
(
γ̂j , Γ̂j

∣∣∣Zj = 0, |γ̂j/ŝX,j | > t
)

=πt
p
(
γ̂j , Γ̂j |Zj = 1

)
p
(
|γ̂j/ŝX,j | > t

∣∣∣Zj = 1
) + (1− πt)

p
(
γ̂j , Γ̂j

∣∣∣Zj = 0
)

p
(
|γ̂j/ŝX,j | > t

∣∣∣Zj = 0
)

=πt
N
((

γ̂j
Γ̂j

)∣∣∣0, `jA(β)ΣA(β)T + `jΩ + ŜjCŜj
)

2Φ
(

−tŝX,j√
`jσ2+`jσ2

u+c1ŝ2
X,j

) + (1− πt)
N
((

γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj
)

2Φ
(

−tŝX,j√
`jσ

2
u+c1ŝ2

X,j

) ,

where πt = p
(
Zj = 1

∣∣∣|γ̂j/ŝX,j | > t
)
is the probability that the j-th IV carries the foreground signal after selection and Φ(·) is

the standard normal cumulative distribution function. From the third line to the fourth line, we used the foreground component
and background component

p(γ̂j , Γ̂j |Zj = 1) = N
((

γ̂j
Γ̂j

)∣∣∣0, `jA(β)ΣA(β)T + `jΩ + ŜjCŜj
)
,

p(γ̂j , Γ̂j |Zj = 0) = N
((

γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj
)
.

1.4. Parameter Estimation.108

1.4.1. Estimation of Ω and C in the background model. We use LDSC to estimate the matrices Ω and C in the background model of
MR-APSS, where genome-wide summary statistics are taken as inputs. Based on Eq. [6], we then construct the estimates of Ω
and C by:

Ω̂ = 1
M

(
ĥ2

1 ρ̂g
ρ̂g ĥ2

2

)
,

and
Ĉ =

(
ĉ1 ĉ12
ĉ12 ĉ2

)
,

where ĥ2
1 and ĥ2

2 are the heritability estimates from the slopes of single-trait LD score regressions for X and Y , ĉ1 and ĉ2 are109

the intercepts estimated from single-trait LD score regression for X and Y , ρ̂g is the estimate of genetic covariance, and ĉ12 is110

the intercept estimate from bivariate LD score regression, respectively.111

Regarding the estimation of Ω and C, there are two important questions to be addressed. First, MR-APSS is built upon112

the proposed foreground-background model. Since Ω̂ is estimated based on summary statistics across the whole genome, the113

foreground signals are also included to estimate Ω. Does Ω̂ over-estimate the magnitude of the invalid signals of the background114
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component and thus lead to reduced statistical power? Second, MR-APSS assumes that the estimation uncertainty of Ω̂ and Ĉ115

can be ignored. To what extent does the estimation uncertainty of Ω̂ and Ĉ affect causal inference? Next, we provide more116

evidence to address these two questions.117

(1). Evaluation of the influence of overestimation of Ω on the power of MR-APSS118

We believe that the over-estimation should be minor due to the polygenic nature of human genetics: the genome-wide119

significant SNPs often can only explain a very small proportion of heritability, and thus the inclusion of those SNPs can120

only contribute a tiny amount of overestimation. As we have shown before, the p-values of MR-APSS were well-calibrated121

(nearly uniformly distributed between 0 and 1) in both null simulations and real data analysis with negative control outcomes,122

suggesting the small amount of over-estimation is ignorable under null. Then a remaining concern is whether the over-estimation123

would reduce the power of MR-APSS under alternatives. To illustrate this, we manually fixed the background component124

Ω̂ and Ĉ at their ground truth (denoted as MR-APSS (fix background at its truth)) and compared it with MR-APSS. The125

comparison of the two methods in terms of the power is shown in Fig. S12, suggesting that the overestimation of Ω lead to a126

minor decrease in power. As shown in the comprehensive simulations and real-data analysis, MR-APSS can still provide high127

statistical power.128

(2). Evaluation of the influence of the estimation uncertainty in Ω̂ and Ĉ on p-values from MR-APSS129

We have shown that MR-APSS produced calibrated p-values in the null simulations under various settings. Here we130

conducted the simulation under alternative to evaluate the influence of the estimation uncertainty in Ω̂ and Ĉ on p-values131

from MR-APSS. We compared the p-values from MR-APSS with/without accounting for uncertainty in Ω̂ and Ĉ, denoted as132

MR-APSS (account for uncertainty in Ω̂ and Ĉ) and MR-APSS, respectively.133

We used a block-wise jackknife approach to measure the uncertainty in β̂ due to estimation error of Ω̂ and Ĉ using
genome-wide summary statistics. Specifically, we divided the genome-wide SNPs into n = 22 blocks and then applied a
delete-one-block procedure to estimate Ω and C. As such, we obtained n = 22 pairs of estimated Ω̂ and Ĉ. After that, we
applied MR-APSS using these estimates and obtained n = 22 estimated β̂ which were regarded as the delete-one-block estimates
of β. Based on these estimates, we then calculated the jackknife Standard Error (SE) which accounts for the uncertainty in β̂
due to estimation of Ω and C. We denoted this standard error as SE0(β̂). As a conservative estimation of the standard error,
we defined the total standard error of β̂ accounting for the uncertainty in Ω̂, Ĉ, and the model fitting as

SETotal(β̂) =
√

SE0(β̂)2 + SE(β̂)2,

where SE(β̂) is the standard error of β from MR-APSS (without accounting for uncertainty in Ω̂ and Ĉ).134

From simulation results shown in Fig. S11, we found that the inference p-values obtained by MR-APSS (accounting for135

uncertainty in Ω̂ and Ĉ) and MR-APSS agreed well with each other. Our results suggest that the influence of estimation136

uncertainty in Ω̂ and Ĉ on p-values obtained from MR-APSS was ignorable.137

1.4.2. The Variational EM algorithm. We derive a variational EM algorithm to obtain the estimates of the unknown parameters138

θ = (β, πt, σ2, τ2) by maximizing the log-likelihood function given in Eq. [8] of the main text. We denote γ̂ = {γ̂j}j=1,...,Mt ,139

Γ̂ = {Γ̂j}j=1,...,Mt , γ = {γj}j=1,...,Mt , α = {αj}j=1,...,Mt , and Z = {Zj}j=1,...,Mt . By treating γ,α, and Z as latent variables,140

the complete data likelihood can be obtained as following:141

p

(
γ̂, Γ̂, γ,α,Z

∣∣∣θ, t,Mt

)
=
Mt∏
j=1

p

(
γ̂j , Γ̂j

∣∣∣γj , αj , Zj , θ, |γ̂j/ŝX,j | > t) · p(γj , αj
∣∣∣Zj , θ, |γ̂j/ŝX,j | > t

)
· p
(
Zj

∣∣∣θ, |γ̂j/ŝX,j | > t

)

=
Mt∏
j=1

p

(
γ̂j , Γ̂j

∣∣∣γj , αj , Zj , θ)
p

(
|γ̂j/ŝX,j | > t

∣∣∣γj , αj , Zj , θ) ·
p

(
|γ̂j/ŝX,j | > t

∣∣∣γj , αj , Zj) p(γj , αj∣∣∣Zj , θ)
p

(
|γ̂j/ŝX,j | > t

∣∣∣Zj , θ) · p
(
Zj

∣∣∣|γ̂j/ŝX,j | > t, θ

)

=
Mt∏
j=1

p

(
γ̂j , Γ̂j

∣∣∣γj , αj , Zj , θ) p(γj , αj∣∣∣Zj , θ)
p

(
|γ̂j/ŝX,j | > t

∣∣∣Zj , θ) · p
(
Zj

∣∣∣|γ̂j/ŝX,j | > t, θ

)

=
Mt∏
j=1

N
((

γ̂j
Γ̂j

) ∣∣ZjA(β)
(
γj
αj

)
, `jΩ̂ + ŜjĈŜj

)
N
((

γj
αj

) ∣∣0, `jΣ)(
2Φ
(

−tŝX,j√
`j σ̂

2
u+ĉ1ŝ2

X,j

))1−Zj (
2Φ
(

−tŝX,j√
`jσ2+`j σ̂2

u+ĉ1ŝ2
X,j

))Zj πZjt π
1−Zj
t .

[13]142

Here we use p(γj , αj |`j ,Σ) = N
((

γj
αj

)∣∣0, `jΣ) after accounting for LD.143

Given Eq. [13], the complete data log-likelihood can be written as:144
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log p(γ̂, Γ̂,γ,α,Z
∣∣θ, t,Mt)

=

Mt∑
j=1

logN
((

γ̂j
Γ̂j

)
| ZjA(β)

(
γj
αj

)
, `jΩ̂ + ŜjĈŜj

)
+

Mt∑
j=1

logN
((

γj
αj

)
| 0, `jΣ

)
+

Mt∑
j=1

Zj logπt + (1− Zj) log(1− πt)−

Mt∑
j=1

Zj log

(
2Φ

(
−tŝX,j√

`jσ2 + `j σ̂2
u + ĉ1ŝ2

X,j

))
− (1− Zj) log

(
2Φ

(
−tŝX,j√

`j σ̂2
u + ĉ1ŝ2

X,j

))

=

Mt∑
j=1

−
1
2

log det(ŜjĈŜj + `jΩ̂)−

Mt∑
j=1

1
2

{(
γ̂j
Γ̂j

)
− ZjA(β)

(
γj
αj

)}T
(ŜjĈŜj + `jΩ̂)−1

{(
γ̂j
Γ̂j

)
− ZjA(β)

(
γj
αj

)}
+

Mt∑
j=1

−
1
2

log det(`jΣ)−
1
2

(
γj
αj

)T
(`jΣ)−1

(
γj
αj

)
+

Mt∑
j=1

Zj logπt + (1− Zj) log(1− πt)−

Mt∑
j=1

Zj log

(
2Φ

(
−tŝX,j√

`jσ2 + `j σ̂2
u + ĉ1ŝ2

X,j

))
− (1− Zj) log

(
2Φ

(
−tŝX,j√

`j σ̂2
u + ĉ1ŝ2

X,j

))
+ constant.

145

Let q(γ,α,Z) be a variational distribution. The logarithm of the marginal likelihood can be written as

log p(γ̂, Γ̂|θ, t,Mt)
=Eq(γ,α,Z)(log p(γ̂, Γ̂|θ, t,Mt))

=Eq(γ,α,Z)

(
log p(γ̂, Γ̂,γ,α,Z|θ, t,Mt)

p(γ,α,Z
∣∣γ̂, Γ̂, θ, t,Mt)

)

=Eq(γ,α,Z)

(
log p(γ̂, Γ̂,γ,α,Z|θ, t,Mt)

q(γ,α,Z) − log
p(γ,α,Z

∣∣γ̂, Γ̂, θ, t,Mt)
q(γ,α,Z)

)
=L(q; θ, t,Mt) + DKL

(
q(γ,α,Z)||p(γ,α,Z

∣∣γ̂, Γ̂, θ, t,Mt)
)
,

where
L(q; θ, t,Mt) = Eq(γ,α,Z)

(
log p(γ̂, Γ̂,γ,α,Z|θ, t,Mt)

q(γ,α,Z)

)
,

DKL
(
q(γ,α,Z)||p(γ,α,Z

∣∣γ̂, Γ̂, θ, t,Mt)
)

= −Eq(γ,α,Z)

(
log

p(γ,α,Z
∣∣γ̂, Γ̂, θ, t,Mt)

q(γ,α,Z)

)
.

Since the Kullback-Leibler (KL) divergence DKL
(
q(γ,α,Z)||p(γ,α,Z

∣∣γ̂, Γ̂, θ, t,Mt)
)
is non-negative, L(q; θ, t,Mt) is the146

evidence lower bound (ELBO) of the marginal log-likelihood log p(γ̂, Γ̂|θ, t,Mt). Thus, maximization of L(q; θ, t,Mt) w.r.t.147

variational distribution q and parameter θ follows the EM framework: in the E-step, variational distribution q is updated to148

approximate the true posterior; in the M-step, parameters in θ are optimized to increase the ELBO.149

E-step. To make it feasible for evaluation of the lower bound L(q; θ, t,Mt), we adopt the mean-field assumption that the150

variational distribution q(γ,α,Z) can be factorized as:151

q(γ,α,Z) =
Mt∏
j=1

q(γj , αj , Zj) =
Mt∏
j=1

q(γj , αj |Zj)q(Zj). [14]152

Noting that Zj is a binary variable, we define153

q(Zj) = ω
Zj
j (1− ωj)(1−Zj), where ωj = q(Zj = 1). [15]154

Based on the mean-field approximation, we can derive the optimal solutions for the q distribution in Eq. [14] at each step. We
first obtain the optimal solution for q(γj , αj |Zj), for j = 1, . . . ,Mt. Given Zj = 1, we have

log q(γj , αj |Zj = 1) = Eq−j
(
log p(γ̂, Γ̂,γ,α,Z|θ, t,Mt)

)
+ constant,
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where Eq−j denotes the expectation w.r.t. the q distribution over (γ, α) except (γj , αj), conditioning on Zj = 1. Thus, we
have

log q(γj , αj |Zj = 1)

=−
1
2

{(
γ̂j
Γ̂j

)
−A(β)

(
γj
αj

)}T
(ŜjĈŜj + `jΩ̂)−1

{(
γ̂j
Γ̂j

)
−A(β)

(
γj
αj

)}
−

1
2

(
γj
αj

)T
`−1
j Σ−1

(
γj
αj

)
+ constant.

We observe that the right hand side of the above expression is a quadratic function of γj and αj , and we can identify155

q(γj , αj |Zj = 1) as a Gaussian distribution:156

q(γj , αj |Zj = 1) = N
((

γj
αj

)∣∣∣µj ,Λ−1
j

)
, [16]157

where
Λj = A(β)T (ŜjĈŜj + `jΩ̂)−1A(β) + `−1

j Σ−1,

µj = Λ−1
j A(β)T (ŜjĈŜj + `jΩ̂)−1

(
γ̂j
Γ̂j

)
.

Similarly, the optimal solution for q(γj , αj |Zj = 0) is given by

log q(γj , αj |Zj = 0) = −1
2

(
γj
αj

)T
`−1
j Σ−1

(
γj
αj

)
+ constant.

Thus, we have158

q(γj , αj |Zj = 0) = N
((

γj
αj

)∣∣∣0, `jΣ) . [17]159

Combining Eqs. [14], [15], [16], and [17], we have

q(γj , αj , Zj) =
[
ωjN

((
γj
αj

)∣∣∣µj ,Λ−1
j

)]Zj [
(1− ωj)N

((
γj
αj

)∣∣∣0, `jΣ)]1−Zj

.

Once the variational distribution q(γj , αj , Zj) is obtained, we can evaluate the ELBO L(q; θ, t,Mt):160

L(q; θ, t,Mt) =Eq log p(γ̂, Γ̂,γ,α,Z|θ, t,Mt)− Eq log q(γ,α,Z), [18]161

where
Eq log p(γ̂, Γ̂,γ,α,Z

∣∣∣θ, t,Mt)

=
Mt∑
j=1

ωjµ
T
j A(β)T (ŜjĈŜj + `jΩ̂)−1

(
γ̂j
Γ̂j

)
−

Mt∑
j=1

1
2ωj Tr

[
A(β)T (ŜjĈŜj + `jΩ̂)−1A(β)(Λ−1

j + µjµ
T
j )
]
+

Mt∑
j=1

−1
2 log det(`jΣ)− 1

2ωj`
−1
j µTj Σ−1µj −

1
2 Tr

[
ωj`
−1
j Σ−1Λ−1

j

]
− (1− ωj)+

Mt∑
j=1

ωj log πt + (1− ωj) log(1− πt)−

Mt∑
j=1

ωj log

(
2Φ

(
−tŝX,j√

`jσ2 + `j σ̂2
u + ĉ1ŝ2

X,j

))
− (1− ωj) log

(
2Φ

(
−tŝX,j√

`j σ̂2
u + ĉ1ŝ2

X,j

))
+ constant,

and
− Eq log q(γ,α,Z)

=
Mt∑
j=1

1
2ωj log det(Λ−1

j ) + 1
2(1− ωj) log det(`jΣ)− ωj logωj − (1− ωj) log(1− ωj).

By maximizing L(q; θ, t,Mt) w.r.t. ωj , we obtain

ωj =
1

1 + exp(−bj)
,
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where

bj =
1
2

µTj Λjµj + log
πt

1− πt
+

1
2

log
det(Λ−1

j )
det(`jΣ)

− log

Φ
(

−tŝX,j√
`jσ2+`j σ̂2

u+ĉ1ŝ2
X,j

)
Φ
(

−tŝX,j√
`j σ̂

2
u+ĉ1ŝ2

X,j

) .

162

M-step. We derive the updating equations for parameters β, πt, τ2, and σ2. We first derive the updating equation for β.
The terms in L(q; θ, t,Mt) involving β are

L(β) =
Mt∑
j=1

ωjµ
T
j A(β)T (ŜjĈŜj + `jΩ̂)−1

(
γ̂j
Γ̂j

)
Mt∑
j=1

−
1
2
ωjTr

[
A(β)T (ŜjĈŜj + `jΩ̂)−1A(β)(Λ−1

j + µjµ
T
j )
]
.

Here we write A(β) =
(

1 0
β 1

)
as A(β) = I2 + βV1, where I2 =

(
1 0
0 1

)
, and V1 =

(
0 0
1 0

)
. Taking the derivative of L(β)163

w.r.t. β and setting it to zero, the updating equation for β is given as164

β =

∑Mt
j=1 ωjµ

T
j VT

1 (ŜjĈŜj + `jΩ̂)−1
(
γ̂j
Γ̂j

)
− ωj Tr(VT

1 (ŜjĈŜj + `jΩ̂)−1(Λ−1
j + µjµ

T
j ))∑Mt

j=1 ωj Tr
[
VT

1 (ŜjĈŜj + `jΩ̂)−1V1(Λ−1
j + µjµ

T
j )
]
)

. [19]165

166

We next derive the updating equation for πt. The terms in L(q; θ, t,Mt) involving πt are

L(πt) =
Mt∑
j=1

ωj log πt +
Mt∑
j=1

(1− ωj) log(1− πt).

By setting the derivative of L(πt) w.r.t. πt to zero, we obtain167

πt =
∑Mt

j=1 ωj

Mt
. [20]168

We then derive the updating equation for τ2. Denote µj = (µγj , µαj ) and the diagonal elements in Λ−1
j by (σ2

γj , σ
2
αj ). The

terms in L(q; θ, t,Mt) involving τ2 are given as

L(τ2) = −1
2

Mt∑
j=1

ωj log τ2 − 1
2

Mt∑
j=1

ωj
µ2
αj + σ2

αj

`jτ2 .

Therefore, we obtain the updating equation for τ2 as

τ2 =
∑Mt

j=1 ωj(µ
2
αj + σ2

αj )/`j∑Mt
j=1 ωj

.

Finally, we derive the update for σ2. The terms in L(q; θ, t,Mt) involving σ2 are

L(σ2) =
Mt∑
j=1

−1
2ωj log σ2 − 1

2ωj
µ2
γj + σ2

γj

ljσ2 − ωj log

(
2Φ

(
−tŝX,j√

`jσ2 + `j σ̂2
u + ĉ1ŝ2

X,j

))
.

If t = 0, we directly set the derivative of L(σ2) w.r.t. σ2 to zero and obtain the update for σ2:

σ2 =
∑Mt

j=1 ωj(µ
2
γj + σ2

γj )/`j∑Mt
j=1 ωj

.

If t 6= 0, direct maximization of L(σ2) is intractable because of the normalization terms in the truncated Gaussians distributions.
Instead, we can obtain a tractable lower bound for L(σ2):

L(σ2) ≥−
Mt∑
j=1

1
2

ωj

σ2(old) (σ2 − σ2(old))−
Mt∑
j=1

1
2
ωj
µ2
γj

+ σ2
γj

`jσ2 −

Mt∑
j=1

1
2
ωjt`j ŝX,j

φ

(
−tŝX,j√

ljσ
2(old)+`j σ̂2

u+ĉ1ŝ2
X,j

)
Φ
(

−tŝX,j√
`jσ

2(old)+`j σ̂2
u+ĉ1ŝ2

X,j

) (`jσ2(old) + `j σ̂
2
u + ĉ1ŝ

2
X,j)

− 3
2 (σ2 − σ2(old)),
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where σ2(old) is the estimate of σ2 from the previous step. To obtain the tractable lower bound, we use the facts that -log σ2

and -log
(

2Φ
(

−tŝX,j√
`jσ2+`j σ̂2

u+ĉ1ŝ2
X,j

))
are concave w.r.t. σ2. Then we can maximize the tractable lower bound w.r.t. σ2 to

obtain the update for σ2 as

σ2 =

√√√√√√√√√√

∑Mt
j=1 ωj(µ

2
γj

+ σ2
γj

)/`j

∑Mt
j=1

ωj

σ2(old) +
∑Mt

j=1 ωjt`j ŝX,j

φ

(
−tŝX,j√

`jσ
2(old)+`j σ̂2

u+ĉ1ŝ2
X,j

)
Φ

(
−tŝX,j√

`jσ
2(old)+`j σ̂2

u+ĉ1ŝ2
X,j

) (`jσ2(old) + `j σ̂2
u + ĉ1ŝ2X,j)

− 3
2

.

169

1.5. Sensitivity Analysis. In the foreground model of MR-APSS, we assume that the direct effect αj is independent of the IV170

strength γj , i.e., rf = Corr(γj , αj) = 0 (the subscript f refers to the foreground model). In other words, we assume that the171

association between the exposure and the outcome is induced by their causal relationship rather than rf after accounting172

for confounding factors in the background model, such as correlated pleiotropy and sample structure. Although our method173

relies on this assumption to infer the causal effect, we can empirically check the influence of this assumption via the following174

sensitivity analysis. We can check how β̂ changes when rf is fixed at different values. Let’s consider a real example for BMI175

and T2D where MR-APSS reported the causal effect between BMI and T2D β̂ = 0.328 with p-value = 6.77× 10−9. We first set176

β = 0 and obtained the foreground correlation as r̂f = 0.330. This means that the foreground correlation is at most 0.330 even177

in the absence of causal effects. Then we varied rf at a grid of values rf ∈ {0, 0.033, . . . , 0.330} and then re-estimated β. As178

shown in supplementary Fig. S13, the estimated causal effect β̂ varied as rf was set to different values. Clearly, the results of179

sensitivity analysis indicate that the causal effect between BMI and T2D remained to be significant as long as rf < 0.198.180

In this analysis, we need to estimate parameters (β, πt,Σ) when we assume that the IV strength (γj) and the direct effect181

(αj) are not independent and the correlation parameter rf is set to a non-zero value (rf 6= 0). The only change to the EM182

algorithm of MR-APSS (see SI Appendix, section 1.4.2) is the update function for Σ. We now derive the update function for Σ183

when rf is set to be none-zero. We rewrite Σ as184

Σ =
(
σ′ 0
0 τ ′

)(
1 rf
rf 1

)(
σ′ 0
0 τ ′

)
= Σ0RΣ0, [21]185

where Σ0 =
(
σ′ 0
0 τ ′

)
and R =

(
1 rf
rf 1

)
. Because R =

(
1 rf
rf 1

)
is fixed and known, we only need to obtain the update186

function for Σ0.187

Recall that terms in L(q; θ, t,Mt) given in Eq. [18] involving Σ are

L(Σ) =
Mt∑
j=1

−
1
2

log det(`jΣ)−
1
2
ωj`
−1
j µTj Σ−1µj −

1
2

Tr
[
ωj`
−1
j Σ−1Λ−1

j

]
+

Mt∑
j=1

ωj log

(
2Φ

(
−tŝX,j√

`jσ2 + `j σ̂2
u + ĉ1ŝ2X,j

))
− (1− ωj) log

(
2Φ

(
−tŝX,j√

`j σ̂2
u + ĉ1ŝ2X,j

))
+ constant.

This function can be bounded by

L(Σ) ≥
Mt∑
j=1

−1
2ωj log det(Σ(old))− 1

2ωj Tr
(
Σ−(old)(Σ−Σ(old))

)
−

Mt∑
j=1

1
2ωj`

−1
j µTj Σ−1µj −

1
2 Tr

[
ωj`
−1
j Σ−1Λ−1

j

]
−

Mt∑
j=1

1
2ωj`jtŝX,j

φ

(
−tŝX,j√

`jσ2+`j σ̂2
u+ĉ1ŝ2

X,j

)
Φ
(

−tŝX,j√
`jσ2+`j σ̂2

u+ĉ1ŝ2
X,j

) (`jσ2 + `j σ̂
2
u + ĉ1ŝ

2
X,j)−3/2bT1 (Σ−Σ(old))b1,

where bT1 =
(
1 0

)
and Σ(old) is the estimate of Σ from the previous step. By taking the derivative of L(Σ) with respect to
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Σ0 and setting it to zero, we have

Mt∑
j=1

−ωjΣ−(old)Σ0R +
Mt∑
j=1

ωj`
−1
j Σ−1

0 R−1Σ−1
0 (µjµ

T
j + Λ−1

j )Σ−1
0 −

Mt∑
j=1

ωj`jtŝX,j

φ

(
−tŝX,j√

`jσ2+`j σ̂2
u+ĉ1ŝ2

X,j

)
Φ
(

−tŝX,j√
`jσ2+`j σ̂2

u+ĉ1ŝ2
X,j

) (`jσ2 + `j σ̂
2
u + ĉ1ŝ

2
X,j)−3/2b1bT1 Σ0R = 0.

Denote B1 =
∑Mt

j=1 ωjΣ
−(old)+

∑Mt
j=1 ωj`jtŝX,j

φ

(
−tŝX,j√

`jσ
2+`j σ̂2

u+ĉ1ŝ2
X,j

)
Φ

(
−tŝX,j√

`jσ
2+`j σ̂2

u+ĉ1ŝ2
X,j

) (`jσ2+`j σ̂2
u+ĉ1ŝ2

X,j)−3/2b1bT1 , and B2 =
∑Mt

j=1 ωj`
−1
j (µjµTj +

Λ−1
j ). We can rewrite the above equation as following

B1 = Σ−1
0 R−1Σ−1

0 B2Σ−1
0 R−1Σ−1

0 .

To solve the above equation, we use the following lemma from matrix computation (13): Given two positive definite matrices188

A and B, they are related with the matrix equation B = X−1AX−1. Then Y = L−T (LTAL)1/2L−1 is the unique positive189

definite solution to the matrix equation, where L is the Cholesky factor of B. By applying this lemma, we have190

Σ0RΣ0 = L1
−T (L1

TB2L1)1/2L1
−1, [22]191

where L1 is the Cholesky factor of B1 satisfying B1 = L1L1
T . To obtain Σ0, we apply the above lemma to Eq. [22] again and

then obtain
Σ0 = LR

−T (LR
T (L1

−T (L1
TB2L1)1/2L1

−1)LR)1/2LR
−1,

where LR is the Cholesky factor of R satisfying R = LRLR
T . Then we set the non-diagonal elements of Σ0 to zero and192

update Σ using Eq. [21].193

1.6. Adjustment of bias due to LD clumping. Besides the bias due to the p-value thresholding, we are aware of the selection
bias due to the LD clumping procedure. This is because SNPs with smaller p-values are selected as IVs in the LD clumping
procedure. As shown in Fig. S10 (Left panel), the median of p-values from IVs after LD clumping is smaller than that of
IVs before LD clumping. To account for the bias due to LD clumping, we propose the following adjustment on the p-value
threshold in MR-APSS:

p-value threshold← IV threshold×min
(

median(p-valuesafter)
median(p-valuesbefore)

, 1
)
,

where p-valuesbefore and p-valuesafter correspond to the p-values from IVs before LD clumping and after LD clumping. As194

shown in the formula, we adjust the IV threshold by the ratio of the median of p-values.195

To examine the effectiveness of the adjustment, we compared the results of MR-APSS with the adjusted p-value threshold196

and its non-adjusted version. As we know, selection bias can lead to over-estimation of foreground signals and thus more invalid197

IVs will be falsely detected as valid IVs, resulting in an inflated type I error rate. Therefore, we first examined the ability of198

the two methods (MR-APSS with / without p-value threshold adjustment) on the detection of effective IVs. As shown in Fig.199

S10 (Right panel), we observed a reasonable increase of effective IVs as the IV threshold became looser using MR-APSS with200

the adjusted threshold. However, the number of effective IVs detected by MR-APSS without threshold adjustment increased201

sharply as the IV threshold became relaxed. We next examined the p-values from causal inference provided by the two methods.202

As shown in Fig. S9, the p-values provided by MR-APSS without threshold adjustment were inflated. Meanwhile, based on our203

proposed threshold adjustment, the p-values were uniformly distributed without inflation, indicating the effectiveness of the204

adjustment.205

1.7. Binary traits. Similar to existing summary-level MR-methods, we consider linear models to perform causal inference even206

for binary traits. There are two major reasons. First, most of the released GWAS summary statistics are obtained under linear207

models (14). As long as the case-control ratio is not extremely unbalanced, linear models are known to work well when they are208

applied to binary traits (0-1 observed scale) in GWASs (14, 15). This is because a linear model can be viewed as a first-order209

approximation to the liability model (16, 17). Second, the effect sizes or heritability estimated using linear models can be210

transformed to the liability scale (16–18) or odds ratio (19, 20).211

To have better interpretation of the causal effect estimates for binary traits, here we show that the analysis result of traits in212

the observed 0-1 scale based on linear models can be transformed to the liability scale based on the probit model. Specifically,213

we consider the following three cases with a binary exposure or a binary outcome: (a) a continuous exposure and a binary214
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outcome; (b) a binary exposure and a continuous outcome; and (c) a binary exposure and a binary outcome. We show that the215

causal effect estimate obtained with linear models is still interpretable for these three cases.216

Case (a): a continuous exposure (X) and a binary outcome (Y ).217

For a continuous exposure X, we consider a linear model to relate genotypes with phenotypes:218

xi = b0,x + WT
i bcov,x + GT

i (Zγ + u) + e1i, [23]219

where xi is the i-th individual’s phenotypic value of the exposure, Gi is an M × 1 genotype vector,Wi is the covariate vector,220

and bbcov,x is the corresponding coefficient vector. Z is an M ×M diagonal matrix with the j-th entry Zj ∈ {0, 1} indicating221

whether the j-th SNP is an effective IV with a foreground effect, γ = {γj}j=1,...,M is a vector of the instrument strength,222

u = {uj}j=1,...,M is a vector of the polygenic effects on X, and e1i is the independent noise term.223

For a binary outcome trait Y , we consider the following probit model (which is also known as the liability model in genetics224

(16)):225

p (yi = 1|Gi,Wi) = Φ
(
bb0,y + WT

i bbcov,y + βbxi + GT
i Zαb + GT

i v′b
)
, [24]226

where yi ∈ {0, 1} is the phenotypic value of the i-th individual, bb0,y is the intercept term, bbcov,y is the corresponding coefficient227

vector of covariates, βb represents the causal effect of X on Y in the liability scale, v′b = {v′bj }j=1,...,M is an M × 1 vector of228

SNP effect sizes, αb = {αbj}j=1,...,M is a vector of direct effects, Φ(·) is the cumulative distribution function of standard normal229

distribution, and the superscript b denotes the coefficient of a binary trait in the liability scale.230

Plugging Eq. [23] into Eq. [24], we have

p (yi = 1|Gi,Wi) = Φ
(
bb0 + WT

i bbcov + GT
i Z(βbγ + αb) + Givb + βbe1i

)
,

where bb0 = b0,xβ + b0,y, bbcov = bcov,xβ + bcov,y, and vb = βbu + v′b which represents the polygenic effects of genotypes on Y231

in the liability scale.232

To make the notation simple, we rewrite the above model as

p (yi = 1|Gi,Wi) = Φ
(
bb0 + Wibbcov + Giγ

b + βbe1i
)
,

where γb = Z(βbγ + αb) + vb is an M × 1 vector collecting the genetic effects on Y in the liability scale. We denote the j-th
element of γb as

Γbj = Zj(βbγj + αbj) + vbj .

With the above preparation, we can apply the known results in (16, 17) (e.g., see Eq. [76] in Text S3 of (17)) to obtain a
linear approximation of p (yi = 1|Gi,Wi) as

p (yi = 1|Gi,Wi) ≈ k2 + k2(1− k2)φ(bb0)
K2(1−K2)

(
Wibbcov + Giγ

b + βbe1i
)
,

where k2 is the case proportion in the ascertained case-control sample, K2 is the case proportion in the population, and φ(·) is
the normal density function. This implies that the effect sizes estimated by linear regression, Γj , can be transformed into the
liability scale Γbj by

Γbj = K2(1−K2)
k2(1− k2)φ(bb0)

Γj .

Consequently, we have
Zj(βbγj + αbj) + vbj = K2(1−K2)

k2(1− k2)φ(bb0)
(Zj(βγj + αj) + vj),

where βb is the causal effect in the liability scale and β is the causal effect obtained by the linear model. Therefore, we can first
obtain the causal effect with linear models and then transform it back to the liability scale

βb = K2(1−K2)
k2(1− k2)φ(bb0)

β.

In our paper, we perform hypothesis testing (H0: β = 0 vs HA: β 6= 0) to examine the significance of causal relationship.233

The testing result can be directly applied to examine whether the causal effect exists in the liability scale (H0: βb = 0 vs HA:234

βb 6= 0).235

Case (b): a binary exposure and a continuous outcome236

For a binary exposure X, we again consider the following probit model:237

p (xi = 1|Gi,Wi) = Φ
(
bb0,x + WT

i bbcov,x + GT
i (Zγb + ub)

)
, [25]238

where bb0,x is the intercept term, bbcov,x is the coefficient vector of covariates, γb = {γbj}j=1,...,M is an M × 1 vector of foreground239

effects, ub = {ubj}j=1,...,M is an M × 1 vector of background effects, and the superscript b denotes the coefficient of a binary240

trait in the liability scale.241
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For a continuous outcome Y , we consider the following linear model,242

yi = b0,y + WT
i bcov,y + βxi + GT

i (Zα + v′) + e2i, [26]243

where b0,y is the intercept term, bcov,y is the corresponding coefficient vector of covariates, v = {vj}j=1,...,M is an M × 1 vector244

of background effects, α = {αj}j=1,...,M is the vector of direct effect on yi, and β is the causal effect of interest.245

With the above preparation, we can apply the known results in (16, 17) to obtain an approximation of p (xi = 1|Gi,Wi) as

p (xi = 1|Gi,Wi) = E(xi|Gi,Wi) ≈ k1 +
k1(1− k1)φ(bb0,x)
K1(1−K1)

(
WT

i bbcov,x + GT
i Zγb + GT

i ub
)
,

where k1 is the case proportion in the ascertained case-control sample of the exposure, K1 is the case proportion in the246

population of the exposure, and φ(·) is the normal density function. The above equation suggests that we can obtain a linear247

approximation for the binary trait X,248

xi ≈ b0,x + WT
i bcov,x + GT

i Zγ + GT
i u, [27]249

where b0,x = k1,bcov,x = k1(1−k1)φ(bb0,x)
K1(1−K1) bbcov,x,γ = k1(1−k1)φ(bb0,x)

K1(1−K1) γb, and u = k1(1−k1)φ(bb0,x)
K1(1−K1) ub. Note that γ and u are vectors250

of effects in linear scale.251

Plugging Eq. [27] into Eq. [26], we have
yi = b0 + WT

i bcov + GT
i (Z(βγ + α) + v) + e2i,

where b0 = b0,y + βb0,x, bcov = bcov,y + βbcov,x, and v = βu + v′ which represents the vector of polygenic effects of genotypes252

on Y . We denote the j-th element of γ, the j-th element of u, and the j-th element of v as γj , uj , and vj , respectively.253

To make the notation simple, we rewrite the above model as
yi = b0 + WT

i bcov + GT
i Γ + e2i,

where Γ = Z(βγ + α) + v. The j-th element of Γ can be expressed as
Γj = Zj(βγj + αj) + vj .

This implies that we can obtain a good approximation of the causal effect β using linear models for binary exposure X and254

continuous outcome Y .255

Case (c): a binary exposure and a binary outcome256

Similarly, for a binary exposure X, we consider a probit model given in Eq. [25]. We then apply the known results in257

(16, 17) to obtain a linear approximation for the exposure which is given in Eq. [27]. For a binary outcome Y , we consider the258

probit model given in Eq. [24].259

Plugging Eq. [27] into Eq. [24], we have
p (yi = 1|Gi,Wi) = Φ

(
bb0 + WT

i bbcov + GT
i Z(βbγ + αb) + Givb

)
,

where bb0 = bb0,y + βbb0,x is the intercept term, bbcov = bbcov,y + βbbcov,x is the coefficient vector of covariates, and vb = βbu + v′b260

represents the vector of polygenic effects on Y in the liability scale.261

Again, we can rewrite the above model as
p (yi = 1|Gi,Wi) = Φ

(
bb0 + WT

i bbcov + GiΓb
)
,

where Γb = Z(βbγ + αb) + vb is an M × 1 vector collecting the genetic effects on Y in the liability scale. We denote the j-th
element of Γb as

Γbj = Zj(βbγj + αbj) + vbj .

Now, we apply the known results in (16, 17) to obtain a linear approximation of p (yi = 1|Gi,Wi) as

p (yi = 1|Gi,Wi) ≈ k2 + k2(1− k2)φ(bb0)
K2(1−K2)

(
Wibbcov + GiΓb

)
,

where k2 is the case proportion in the ascertained case-control sample of the outcome, K2 is the case proportion in the
population of the outcome, and φ(·) is the normal density function. This implies that the effect sizes estimated by linear
regression, Γj , can be transformed into the liability scale Γbj by

Γbj = K2(1−K2)
k2(1− k2)φ(bb0)

Γj .

Consequently, we have
Zj(βbγj + αbj) + vbj = K2(1−K2)

k2(1− k2)φ(bb0)
(Zj(βγj + αj) + vj),

where βb is the causal effect in the liability scale and β is the causal effect obtained by the linear model. Therefore, we can first
obtain the causal effect with linear models and then transform it back to the liability scale

βb = K2(1−K2)
k2(1− k2)φ(bb0)

β.

From the above derivation, we can conclude that the causal effect estimate obtained with linear models is still interpretable262

for the three cases.263
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1.8. Theoretical justification of the uniformity of the approximated distribution for GWAS summary statistics. Based on the264

Berry-Essen theorem (21, 22), we can show that the uniformity of the approximated distribution of the summary statistics γ̂j265

and Γ̂j for all j can be guaranteed when the third absolute moment of phenotype and the genotype variables are bounded by266

finite values. Given the true marginal effect of SNP j on the exposure, denoted as γ̃j , j = 1, . . . ,M , we first provide detailed267

proof for the uniformity of the normality approximation of the conditional distribution of γ̂j |γ̃j for all j (see proposition 1268

below). We next show that γ̂j follows a two-component Gaussian mixtures uniformly for all j under the MR-APSS model269

(Main text, Eq. [1]). Analogously, we can obtain the uniformity of the approximation of distribution of Γ̂j and the uniformity270

of the approximation of the joint distribution of (γ̂j , Γ̂j) for all j (Main text, Eq. [6]).271

(a). Uniform normal approximation of γ̂j |γ̃j for all j272

Given the true marginal effect of SNP j on the exposure, denoted as γ̃j , j = 1, . . . ,M , we first derive the uniform normal273

approximation of the conditional distribution for γ̂j |γ̃j .274

Proposition 1 (Uniformity of normal approximation of γ̂j |γ̃j for all j). Under the model given in Eq. [9] and
summary statistics (γ̂j , ŝX,j) given in Eq. [10], and if E(|xi|3) ≤ C1 < ∞ and E(|G1,ij |3) ≤ C2 < ∞ for any i, j, then the
conditional distribution of γ̂j |γ̃j , j = 1, . . . ,M, uniformly in distribution converges to a normal distribution, i.e.

(γ̂j − γ̃j)
ŝX,j

d−→ N (0, 1), uniformly for j = 1, . . . ,M,

Proof. By Eq. [10], ŝX,j is replaced by
√

1/N1. Let’s denote the cumulative distribution function (cdf) of
√
N1(γ̂j − γ̃j) by275

FN1,j(·) and denote the cdf of the standard normal distribution by Φ(·).276

Given γ̂j = GT
1,jx

GT
1,jG1,j

and GT
1,jG1,j
N1

=
∑N1

i=1
G2

1,ij
N1

= 1, we have

√
N1(γ̂j − γ̃j) =

√
N1

(
GT

1,jx
N1

−
GT

1,jG1,j

N1
γ̃j

)
= 1√

N1
GT

1,j(x−G1,j γ̃j)

= 1√
N1

GT
1,jej

= 1√
N1

N1∑
i=1

G1,ijeij

,
1√
N1

N1∑
i=1

ζij ,

where ζij = G1,ijeij . Given E(G1,ij) = 0, Var(G1,ij) = 1, E(eij) = 0, and Var(eij) ≈ 1, we have E(ζij) = 0 and277

E(ζ2
ij) = E(G2

1,ij)E(e2
ij) ≈ 1, for any i, j. Because E(|G1,ij |3) < C1 < ∞, and E(|eij |3) = E(|xi − G1,ij γ̃j |3) ≤ 4(E(|xi|3) −278

E(|G1,ij γ̃j |3)) = 4E(|xi|3) − 4E(|G1,ij |3)E(|γ̃j |3) ≤ 4C1 − 4C2 ∗ r3 ≤ ∞, where E(|γ̃j |3) = r3 < ∞, we have E |ζ∗ij |3 =279

E(|G1,ij |3)E(|eij |3) ≤ C1(4C1 − 4C2 ∗ r3) = C∗ <∞, for any i, j.280

According to the Berry-Essen theorem (21, 22), we have

sup
x

|FN1,j(x)− Φ(x)| ≤ C0ψ0, for j = 1, . . . ,M,

where C0 is an absolute constant, and ψ0 = N
−3/2
1

∑N1
i=1 E |ζij |

3 < 1√
N1
C∗.281

It means that, for any j, we have

sup
x

|FN1,j(x)− Φ(x)| ≤ C0√
N1

C∗ → 0, as N1 →∞,

Hence, we can obtain √
N1(γ̂j − γ̃j) d−→ N (0, 1) uniformly for j = 1, . . . ,M.

We thus obtain a uniform normal approximation of the conditional distribution of γ̂j |γ̃j ∼ N (γ̃j , ŝ2
X,j) where ŝX,j = 1√

N1
.282

�283

(b). Uniform approximation of the distribution of γ̂j284

We first consider the case that SNPs are independent of each other (i.e., there is no LD effects between SNPs). Based on
our model assumption in Eq. [9], we have

γ̃j = Zjγj + uj ,

and
γ̃j ∼ π0N (0, σ2 + σ2

u) + (1− π0)N (0, σ2
u).
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Let Fγ̂j (x) = p(γ̂j ≤ x) be the cumulative distribution of γ̂j , we have285

Fγ̂j (x) =p(γ̂j ≤ x)
=p(
√
N1(γ̂j − γ̃j) ≤

√
N1(x− γ̃j))

=E
[
p(
√
N1(γ̂j − γ̃j) ≤

√
N1(x− γ̃j)|γ̃j)

]
=E

[
FN1,j(

√
N1(x− γ̃j))

]
=E [FN1,j((x− γ̃j)/ŝX,j)] .

As shown above, we have obtained

sup
x

|FN1,j(x)− Φ(x)| ≤ C0√
N1

C∗ → 0, as N1 →∞, for any j.

Therefore,
sup
x

∣∣∣Fγ̂j (x)− E [Φ((x− γ̃j)/ŝX,j)]
∣∣∣

= sup
x

|E [FN1,j((x− γ̃j)/ŝX,j)]− E [Φ((x− γ̃j)/ŝX,j)]|

≤E
[

sup
x

|FN1,j((x− γ̃j)/ŝX,j)− Φ((x− γ̃j)/ŝX,j)|
]

≤ C0√
N1

C∗ → 0, as N1 →∞, for any j.

Consequently, we obtain that the approximated distribution of γ̂j , i.e. Fγ̂j (x), uniformly converges in distribution to286

E [Φ((x− γ̃j)/ŝX,j)] for any j = 1, . . . ,M .287

Now, we derive the closed form of the approximated distribution E [Φ((x− γ̃j)/ŝX,j)], which is given by288

E [Φ((x− γ̃j)/ŝX,j)]

=

∫ +∞

−∞

∫ x

−∞

1√
2πŝ2

X,j

exp

{
−

(t− γ̃j)2

2ŝ2
X,j

}
dt

(
π0√

2π(σ2 + σ2
u)

exp

{
−

γ̃2
j

2(σ2 + σ2
u)

}
+

1− π0√
2πσ2

u

exp

{
−
γ̃2
j

2σ2
u

})
dγ̃j

=

∫ x

−∞

∫ +∞

−∞

π0

2π
√
ŝ2
X,j

(σ2 + σ2
u)

exp

{
−

(t− γ̃j)2

2ŝ2
X,j

−
γ̃2
j

2(σ2 + σ2
u)

}
+

1− π0

2π
√
ŝ2
X,j

σ2
u

exp

{
−

(t− γ̃j)2

2ŝ2
X,j

+
γ̃2
j

2σ2
u

}
dγ̃jdt.

[28]289

290

The term in the first exponent within the integrals of above equation can be simplified as

(t− γ̃j)2

ŝ2X,j
+

γ̃2
j

(σ2 + σ2
u)

=
(

1
ŝ2X,j

+
1

σ2 + σ2
u

)
γ̃2
j +

t2

ŝ2X,j
−

2γ̃jt
ŝ2X,j

=
(

1
ŝ2X,j

+
1

σ2 + σ2
u

)(
γ̃j −

t
ŝ2
X,j

1
ŝ2
X,j

+ 1
σ2+σ2

u

)2

+
t2

σ2 + σ2
u + ŝ2X,j

.

291

As a result, we have∫ +∞

−∞

π0

2π
√
ŝ2
X,j

(σ2 + σ2
u)

exp

{
−

(t− γ̃j)2

2ŝ2
X,j

−
γ̃2
j

2(σ2 + σ2
u)

}
dγ̃j

=
π0

2π
√
ŝ2
X,j

(σ2 + σ2
u)

exp

{
−

t2

2(σ2 + σ2
u + ŝ2

X,j
)

}∫ +∞

−∞

exp

{
−

(
1

2ŝ2
X,j

+
1

2(σ2 + σ2
u)

)(
γ̃j −

t

ŝ2
X,j

1
ŝ2
X,j

+ 1
σ2+σ2

u

)2}
dγ̃j

=
π0

2π
√
ŝ2
X,j

(σ2 + σ2
u)

exp

{
−

t2

2(σ2 + σ2
u + ŝ2

X,j
)

} √
2π√

1
ŝ2
X,j

+ 1
σ2+σ2

u

=
π0√

2π(σ2 + σ2
u + ŝ2

X,j
)

exp

{
−

t2

2(σ2 + σ2
u + ŝ2

X,j
)

}
.

292

Similarly, we can compute ∫ +∞

−∞

(1− π0)
2π
√
ŝ2X,jσ

2
u

exp
{
−

(t− γ̃j)2

2ŝ2X,j
−

γ̃2
j

2σ2
u

}
dγ̃j

=
1− π0√

2π(σ2
u + ŝ2X,j)

exp
{
−

t2

2(σ2
u + ŝ2X,j)

}
.

293

Xianghong Hu, Jia Zhao, Zhixiang Lin, Yang Wang, Heng Peng, Hongyu Zhao, Xiang Wan, Can Yang
15 of 70



Consequently, we have

E
[
Φ((x− γ̃j)/ŝX,j)

]
=
∫ x

−∞

π0√
2π(σ2 + σ2

u + ŝ2X,j)
exp
{
−

t2

2(σ2 + σ2
u + ŝ2X,j)

}
+

1− π0√
2π(σ2

u + ŝ2X,j)
exp
{
−

t2

2(σ2
u + ŝ2X,j)

}
dt,

which gives
γ̂j ∼ π0N (0, σ2 + σ2

u + ŝ2
X,j) + (1− π0)N (0, σ2

u + ŝ2
X,j), for j = 1, . . .M.

Next, we consider the case that SNPs are in LD. Note that we only use the summary statistics for a subset ofMt independent
IVs from the genome-wide SNPs for causal inference in MR-APSS analysis, i.e., {γ̂j , Γ̂j , ŝX,j , ŝY,j

∣∣∣|γ̂j/ŝX,j | > t}j=1,...,Mt , which
are obtained by LD clumping (r2 < 0.001, 1Mb). In the presence of LD, we have γ̃j =

∑
k
rjk(Zjγk + uk) (Eq. [11]). The

marginal distribution of γ̃j for the j-th SNP is given by γ̃j ∼ π0N (0, `jσ2 + `jσ
2
u) + (1− π0)N (0, `jσ2

u), where `j =
∑M

k=1 r
2
jk

with rjk denotes the correlation between SNP j and k. Given the uniform approximation of the conditional distribution γ̂j |γ̃j ,
we can obtain uniform mixture Gaussian approximations for those Mt independent SNPs:

γ̂j ∼ π0N (0, `jσ2 + `jσ
2
u + ŝ2

X,j) + (1− π0)N (0, `jσ2
u + ŝ2

X,j), for j = 1, . . . ,Mt.

Similarly, we can obtain the uniformity of the approximation of distribution of Γ̂j , i.e. Γ̂j ∼ π0N (0, `jβ2σ2 + `jτ
2 + `jσ

2
v +294

ŝ2
Y,j) + (1−π0)N (0, `jσ2

v + ŝ2
Y,j), for j = 1, . . . ,Mt., and the uniformity of the approximation of the joint distribution of (γ̂j , Γ̂j)295

given in Eq. [6] of the main text for all j = 1, . . . ,Mt.296

1.9. Discussion on the asymptotic normality of GWAS summary statistics after PC adjustment. PC adjustment is a standard297

approach to accounting for population stratification in GWAS data analysis (23). To our best knowledge, the distribution of298

summary statistics after PC adjustment has not been rigorously established in the literature. In this section, we provide a299

justification on the asymptotic normality of GWAS summary statistics after PC adjustment. To avoid confusion, we will first300

discuss how PC adjustment is applied in the GWAS context and then provide our justification. For clarity, we use notations301

different from our main content.302

Let us begin our discussion with the following linear model:303

y = Zα+ ε, [29]304

where y is an n× 1 vector of phenotypic values, Z is an n× p standardized genotype matrix (whose column has mean zero
and variance 1/p), α is a p× 1 vector of SNP effect sizes, and ε is an n× 1 vector of independent errors that is distributed as
N(0, σ2

ε In) with In being the n-dimensional identity matrix. To generate the summary statistics, the following simple linear
model is often used in GWAS:

y = Zjaj + ξ,

where only one SNP is considered at a time. The summary statistics are obtained as305

âj = (ZTj Zj)−1ZTj y, s.e.(âj) =
√
σ2
j (ZTj Zj)−1. [30]306

This approach is often referred to as marginal screening in the statistical community (24). In the early days of GWAS, people307

have found that the summary statistics given by Eq. [30] are largely confounded by population stratification (23).308

To account for population stratification, a few PCs are calculated from the standardized genotype matrix Z and PC scores
are included as covariates (23). Let Z = Û Λ̂V̂ T be the singular value decomposition (SVD), where we use the hat notation
(Û , Λ̂ and V̂ ) to indicate that they are estimated from data. Specifically, the following linear model with PC adjustment is
commonly used in GWAS:

y =
q∑
k=1

Ûkbk + Zjaj + ξ,

where bk is the corresponding coefficients corresponding to Ûk. In real GWAS data analysis, q = 10 or 20 PCs are often used.309

Noting that q � n, and here we only consider two PCs without loss of generality. We assume that the underlying true
model relating phenotype y with the genotypes and PC scores is given as

y = U1β1 + U2β2 + Zα+ ε,

where U1 and U2 are the underlying true PC scores rather than their estimates (Û1 and Û2). Clearly, this model is a natural310

extension of model (29). To account for population stratification, the following model incorporating PC adjustment is used311

accordingly312

y = Û1b1 + Û2b2 + Zjaj + ξ, [31]313

where two PCs (Û1 and Û2) and one SNP are included, and b1, b2, aj are the corresponding regression coefficients to be314

estimated. This approach is often referred to as conditional screening in the statistical community (25).315
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Based on model (31), aj can be estimated as

âj = eT (ŴT Ŵ )−1ŴT y,

where e = [0, 0, 1]T and Ŵ = [Û1, Û2, Zj ]. Accordingly, let W = [U1, U2, Z] collect the underlying true PC scores and the316

genotype matrix. With these notations, we have317

âj = eT (ŴT Ŵ )−1ŴT (U1β1 + U2β2 + Zα+ ε)

= eT (ŴT Ŵ )−1ŴTW

[
β1
β2
α

]
+ eT (ŴT Ŵ )−1ŴT ε.

[32]318

To illustrate the asymptotic normality of âj based on Eq. [32], we assume that Z satisfies a linear structure, namely, Z = TX,319

where T ∈ Rn×n is deterministic and X ∈ Rn×p is random with independent mean 0 and variance 1
p
variables. Further, we320

assume that Σ = TTT admits a spiked structure, namely, Σ = I + d1U1U
T
1 + d2U2U

T
2 with orthonormal U1 and U2. We further321

denote by d̂i the i-th largest eigenvalue of ZZT = TXXTTT and set Ûi the corresponding `2 normalized eigenvector. Let322

Z = Û Λ̂V̂ T be the SVD of Z, where Λ̂ collects the singular values λ̂1 =
√
d̂1, λ̂2 =

√
d̂2 and etc. In Random Matrix Theory, it323

is well known that when d1 and d2 are sufficiently large, Ûi will favor the direction of Ui, and does not favor any other direction.324

More precisely, when p
n

= τ and n→∞, for any given unit vector w ∈ Sn−1, we have |ÛTi w|2 = d2
i−n/p

di(di+n/p)
|UTi w|2 +Op(n−1/2),325

see Theorem 2.5 of (26) for instance. Under our model assumption, by a leave-one-out argument, one can easily show that Ûi326

is almost independent of Zj . Further, Zj does not favor the direction Ui. By the above estimate of |ÛTi w|2, it is easy to show327

that |ÛTi Zj |2 is negligible. When p
n

= τ and n→∞, we can actually estimate all entries in ŴT Ŵ as328

ŴT Ŵ =

ÛT1 Û1 ÛT1 Û2 ÛT1 Zj
ÛT2 Û1 ÛT2 Û2 ÛT2 Zj
ZTj Û1 ZTj Û2 ZTj Zj

 =

 1 0 ÛT1 Zj
0 1 ÛT2 Zj

ZTj Û1 ZTj Û2
n
p


=

( 1 0 0
0 1 0
0 0 n/p

)
+ negligible error.

[33]329

By the estimate of |ÛTi w|2, we have330

ŴTW =

 Û1U1 ÛT1 U2 ÛT1 Z

Û2U1 ÛT2 U2 ÛT2 Z
ZTj U1 ZTj U2 ZTj Z



=


(

d2
1−n/p

d1(d1+n/p)

) 1
2 0 λ̂1V̂

T

0
(

d2
2−n/p

d2(d2+n/p)

) 1
2

λ̂2V̂
T

0 0 ZTj Z

+

 Op(n−1/2) 0 0
0 Op(n−1/2) 0
0 0 0

 .

[34]331

Now we look at the first term of Eq. [32]. Using Eq. [33] and Eq. [34], we have

eT (ŴT Ŵ )−1ŴTW

[
β1
β2
α

]
→ p

n
ZTj Zα =

p∑
l=1

ZTj Zlαl.

To see the normality of
∑p

l=1 Z
T
j Zlαl, we can condition on Zj , and then ZTj Zl is a linear combination of Z` entries. By CLT,332

ZTj Zl|Zj → N (0, 1
p
‖Zj‖2) and further we have ZTj Zl → N (0, n

p2 ) by the concentration of ‖Zj‖2. Further,
∑p

l=1 Z
T
j Zlαl|Zj is333

a linear combination of asymptotically normal variables. By a further application of CLT, we see that
∑p

l=1 Z
T
j Zlαl|Zj is334

asymptotically normal, and the limiting normal distribution does not depend on Zj . Hence,
∑p

l=1 Z
T
j Zlαl itself is asymptotically335

normal N (0, n
p2 ‖α‖22). Therefore, we show that the first term in Eq. [32] indeed is asymptotically normal.336

Next we check the second term of of Eq. [32]. Because ε is a vector of independent errors with a normal distribution, we
have

eT (ŴT Ŵ )−1ŴT ε→ N (0, eTM−1
1 e σ2

ε ) = N (0, p
n
σ2
ε ),

where M1 =

( 1 0 0
0 1 0
0 0 n/p

)
is given in Eq. [33]. From the above discussion, it is easy to see that the first term and the337

second term in the RHS of (32) are asymptotically independent, due to (33). Hence, we can conclude that âj given in Eq. [32]338

is indeed asymptotically normal.339
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The real data Z may not satisfy the assumption of our toy model Z = TX. Nevertheless, the above argument can be340

potentially extended to a more general model such as the separable model Z = TXS where both column- and row-dependence341

are allowed (see (27) for instance). The justification of the asymptotic normality for âj without any model assumption is out of342

reach for this moment. It will be certainly an interesting direction for theoretical study in the future.343

Finally, according to our experience, the publicly available summary statistics have been generated with PC adjustment.344

However, it does not mean that sample structure is no longer an issue after PC adjustment. As demonstrated by the LDSC345

method (1) and several other recent works (e.g., sample structure driven by socioeconomic status (28) or geographic structure346

(29)), confounding bias still remains as a severe issue for downstream analysis of using GWAS summary statistics. This fact347

motivates us to develop a statistical method to simultaneously correct pleiotropy and sample structure in MR analysis.348

2. Related methods349

2.1. Background. Classical assumptions on valid IVs. Let X be the exposure and Y be the outcome. As most MR methods
apply LD clumping to make SNPs nearly independent, here we assume that there are p independent SNPs represented by
mutually independent random variables G1, G2, ..., Gp. Then we consider the following individual-level model:

X = f(G1, ..., Gp, U,EX),

Y = g(X,G1, ..., Gp, U,EY ),

U = h(G1, ..., Gp, EU ),

where U is the unmeasured confounder and EX , EY , EU are mutually independent random noises which satisfy (EX , EY ) |= (G1, ..., Gp, U),350

EU |= (G1, ..., Gp).351

A variable Gj is called a valid IV if it satisfies the following three assumptions:352

(A-I). Relevance: Gj 6 |= X|U ;353

(A-II). Effective random assignment: Gj |= U ;354

(A-III). Exclusion restriction: Gj |= Y |X,U .355

Linear model for MR. Many MR methods assume the linearity of f, g, h, i.e, functions f, g, h are linear in their arguments.356

Under this assumption, the linear model for MR is written as:357

X =
p∑
j=1

γ∗jGj + ηXU + EX , [35]358

359

Y = βX +
p∑
j=1

αjGj + ηY U + EY , [36]360

361

U =
p∑
j=1

ψjGj + EU , [37]362

where β is the causal effect of exposure X on outcome Y . Based on the linear model for MR, the IV Gj is valid if363

(A-I). Relevance: γ∗j 6= 0;364

(A-II). Effective random assignment: ψj = 0;365

(A-III). Exclusion restriction: αj = 0.366

Assumptions on IVs recently proposed in the literature. In the literature of MR, several assumptions were recently introduced to367

relax assumptions (A-II) and (A-III):368

InSIDE under (A-II). The InSIDE assumption relaxes the exclusion restriction assumption: The direct effect αj of the IV369

Gj on the outcome Y can be nonzero (violation of (A-III)), but the Instrument Strength must be Independent of the Direct370

Effect, i.e., γ∗j |= αj .371

Majority valid. The majority valid assumption allows for possible violation of (A-II) and (A-III), but it requires that372

more than 50% of the IVs being used are valid IVs.373

Plurality valid. The plurality valid assumption also allows possible violation of (A-II) and (A-III), and it is weaker374

than the majority valid assumption. It requires that out of all groups of IVs having the same asymptotic ratio estimates of the375

causal effect, the largest group is the group of valid IVs. The difference of the majority valid assumption and the plurality valid376

assumption can be seen from the following example. Suppose there are three groups of IVs, with group proportions 30%, 30%,377

and 40%. The first group does not satisfy (A-II), the second group does not satisfy (A-III), and the third group satisfies378

(A-I), (A-II), and (A-III). In this case, the plurality valid assumption holds while the majority valid assumption does not379

hold.380

NOME. The assumption NOME refers to the NO Measurement Error assumption. It assumes that the variances of381

IV-exposure association estimates are negligible in summary-level MR methods.382
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2.2. Review of summary-level MR methods. All of the compared summary-level MR methods, including dIVW (30) and RAPS
(12) from the statistical community, assume the linearity of functions f, g, h to derive the model for GWAS summary-level data.
The linear model for MR in Eqs. [35], [36], [37] is equivalent to the following model:

X =
p∑
j=1

(γ∗j + ηXψj)Gj + E′X , E
′
X = ηXEU + EX ,

Y =
p∑
j=1

[β(γ∗j + ηXψj) + αj + ηY ψj ]Gj + E′Y , E
′
Y = β(ηXEU + EX) + (ηY EU + EY ).

For the sake of clarity, we do not consider the influence of linkage disequilibrium in this model, although we have carefully383

addressed the issue in our proposed MR-APSS.384

Now we can define385

γj = γ∗j + ηXψj , [38]386

387

Γj = β(γ∗j + ηXψj) + αj + ηY ψj = βγj + αj + ηY ψj , [39]388

where γj and Γj are the underlying true marginal effect sizes of Gj on exposure X and outcome Y . The estimated effect sizes389

and their standard errors, denoted as (γ̂j , ŝX,j) and (Γ̂j , ŝY,j), are available in the released GWAS summary statistics. From390

Eqs. [38], [39], if Gj is a valid IV, i.e., (A-I) ensures γ∗j 6= 0, (A-II) ensures ψj = 0, (A-III) ensures αj = 0, then391

γj = γ∗j , Γj = βγ∗j = βγj . [40]392

Therefore, summary-level MR methods essentially use ratio estimates to perform causal inference. However, the assumptions393

on IVs, especially (A-II) and (A-III), are often violated, and different summary-level MR methods are proposed to address394

the challenge. To summarize the efforts made in the development of summary-level MR methods, we roughly divide the related395

methods into three groups.396

Group 1: methods which require that all IVs are valid.397

IVW is a standard approach in two-sample summary-level MR studies under the strict condition that all IVs are valid, i.e.,398

all IVs satisfy the relationship Γj = βγj . IVW forms a meta analysis of single causal estimates β̂j = Γ̂j/γ̂j . By further requiring399

NOME, IVW reports the causal effect estimate by taking the inverse-variance weighted (wj = Var(β̂j)−1 = (ŝ2
Y,j/γ̂

2
j )−1) mean400

of β̂j , leading to a simple estimator as
∑p

j=1
β̂jwj∑p

j=1
wj

.401

Group 2: methods which addresses the possible violation of (A-III).402

The MR methods in Group 2 are developed to relax (A-III). These methods, including Egger (31), RAPS (12), and dIVW403

(30), still require assumptions (A-I) and (A-II), but relax (A-III) by allowing for the presence of direct effect of IVs on the404

outcome (αj 6= 0). In this case, combining Eqs. [38], [39], and the condition ψj = 0 ensured by (A-II), MR methods in Group405

2 rely on the following relationship:406

γj = γ∗j , Γj = βγ∗j + αj = βγj + αj . [41]407

To account for the existence of non-zero αj , methods in this group further require that direct effects αj of IVs on the outcome408

are independent of instrument strength γj between IVs and the exposure, which is referred to as the InSIDE condition. Under409

this condition, direct effects αj ’s, which are also referred to as horizontal pleiotropic effects in the literature of MR, can be410

viewed as independent random noises. Hence, Eq. [41] adopted by MR methods in this group can be viewed as the noisy411

version of Eq. [40] adopted by IVW in Group 1. Methods in this group make different assumptions on the distribution of αj412

and use different strategies to construct estimators for the causal effect. Egger assumes that all IVs are affected by directional413

pleiotropy, i.e., E(αj) = µ, and it extends IVW estimator by further introducing an intercept term to capture the possible414

existence of non-zero µ. Despite this improvement over IVW, Egger provides conservative results for causal inference, as known415

in literature. Different from MR-PRESSO and Egger, two MR methods, RAPS and dIVW, specify a distribution for αj . RAPS416

and dIVW assume that αj ’s are independent and identically distributed random variables that follow normal distribution with417

mean zero. Additionally, they carefully account for the bias induced by the usage of many weak IVs by making use of estimation418

errors. These two methods adopt different strategies to estimate the causal effect under the similar assumptions. To have a419

robust estimate of the causal effect when αj are deviated from the assumed distribution, RAPS modifies the profile likelihood.420

The recently proposed method dIVW extends IVW by modifying the weights. The resulting dIVW estimator is shown to be421

consistent and asymptotically normal in the presence of balanced pleiotropy (αj ∼ N (0, τ2)). Although much efforts have been422

made by developing MR methods in Group 2, the InSIDE condition may be violated due to correlated pleiotropy. The usage of423

MR methods in Group 2 may be limited in the presence of correlated pleiotropy.424

Group 3: methods which address the possible violation of assumptions (A-II) and (A-III).425

MR Methods in Group 3 improve over MR methods in Groups 1 and 2 by allowing for IVs violating assumptions (A-II) and426

(A-III). Eqs. [38] and [39] summarize the relationship of effect sizes from invalid IVs, where αj , ψj , ηX , and ηY are possibly427

non-zero. In this group, we summarize six recent works, including weighted-median (32), weighted-mode (33), MRMix (11),428

cML-MA (34), CAUSE(35) and our proposed MR-APSS. These MR methods require extra but weaker assumptions to relax429

(A-II) and (A-III). According to their assumptions, we divide these six methods into three subgroups.430
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• Subgroup 1: MR methods in subgroup 1 require the majority valid assumption. Among all the IVs used for causal431

inference, more than 50% of them satisfy assumptions (A-I), (A-II), (A-III), and thus the relationship Γj = βγj holds432

for the majority of IVs. The method weighted-median is an MR approach of this kind. It combines the IVW estimator433

and the simple median estimator to provide a weighted median estimator which is consistent under the condition that at434

least 50% of the weight comes from valid IVs. Although progress has been made by methods in subgroup 1 to provide435

robust estimators, the validity of their required assumption is still hard to verify.436

• Subgroup 2: MR methods in subgroup 2, including weighted-mode, MRMix, cML-MA, are developed based on plurality437

valid assumption. Under this assumption, IVs satisfying (A-I), (A-II), and (A-III) can form the largest group among438

all groups of IVs having the same asymptotic ratio estimates of the causal effect. Clearly, this assumption is weaker than439

the majority valid assumption. With the plurality valid assumption, MR methods in this subgroup can extend the simple440

mode estimator to perform causal inference. The weighted-mode method modifies the simple mode estimator by using a441

new weighting mechanism. MRMix is a model-based MR approach that leverages normal-mixture model to capture the442

mode of valid IVs. The cML-MA method uses the constrained likelihood approach to provide causal effect estimates443

where the L0 penalty is introduced to select valid IVs among all IVs. We evaluated these methods using simulation and444

real data analysis. We found that the weighted-mode method is often very conservative. We also find that MRMix and445

cML-MA tend to provide inflated type I errors in the presence of population stratification.446

• Subgroup 3: MR methods in subgroup 3, including CAUSE and our proposed MR-APSS, allow all IVs to be possibly
invalid. The CAUSE model distinguishes two types of pleiotropy: correlated pleiotropy and uncorrelated pleiotropy.
To account for the two types of pleiotropy, CAUSE uses the following model to relate effect size on exposure (γj) and
outcome (Γj)

Γj = βγj + Zjηγj + αj ,

where β is the causal effect of interest, η is the correlated pleiotropic effect, αj is uncorrelated pleiotropy, and Zj ∈ {0, 1}447

indicates whether correlated pleiotropy exists. To make the above model identifiable, CAUSE assumes that the proportion448

of IVs affected by correlated pleiotropy should be less than 50% and uncorrelated pleiotropy αj ∼ N(0, τ2). In this sense,449

CAUSE tries to combine the majority valid assumption and balanced pleiotropy. Despite this conceptual advance, a closer450

examination of CAUSE (details presented in our supplementary note) shows that CAUSE tends to treat the causal effect451

as correlated pleiotropy during the model fitting, leading to very conservative performance for detecting causal effects.452

In contrast to CAUSE, MR-APSS relaxes (A-II) and (A-III) by imposing the LDSC assumptions in its background453

model and the InSIDE condition in the foreground model. By integrating the background model and the foreground model454

using a mixture model, MR-APSS not only accounts for two types of pleiotropy but also accounts for sample structure455

(population stratification, cryptic relatedness, and sample overlap). To the best of our knowledge, however, sample456

structure is largely ignored in the literature of summary-level MR methods. Furthermore, MR-APSS allows incorporation457

of IVs with moderate effects to improve statistical power. To do so, MR-APSS accounts for selection bias (which is458

also referred to as winner’s curse in the GWAS context) to avoid bias due to the IV selection. Among all compared459

summary-level MR methods, MR-APSS and recently developed dIVW are the only two methods that correct for selection460

bias. This correction is critical to improve power and avoid inflated type I errors.461

2.3. Review of individual-level MR methods. Different from summary-level MR methods which take GWAS summary statistics462

and a reference genome as inputs, individual-level MR methods can access individual-level samples, including genotypes G,463

phenotypes of exposure trait X and outcome trait Y , and covariates Z. Here we mainly focus on individual-level MR methods464

which aim to relax assumptions (A-II) and (A-III). As a supplement, we also summarize whether the compared individual-level465

MR methods assume the linearity for MR model or not in Table S1 to have a better comparison with summary-level MR466

approaches which require linearity for MR model. To summarize the progress made by individual-level MR studies, we roughly467

divide the related methods into three groups according to the key assumptions that they required.468

Group 1: methods which require all IVs to be valid.469

Two-stage least squares (TSLS) and Limited information maximum likelihood (LIML)(36) are two methods for performing470

causal inference based on the strict assumption that all IVs are valid. TSLS relies on the linear MR model and it is a two-stage471

sequential regression method. In the first stage, TSLS regresses exposure X on IVs G to obtain fitted values of the exposure as472

X̂|G. In the second stage, it then regresses outcome Y on the fitted values of the exposure X̂|G. The obtained coefficient in473

the second stages serves as the causal effect estimate for TSLS. LIML extends TSLS by combining the two-stage regressions474

into a unified likelihood-based method. LIML often improves over TSLS as it avoids overfitting and reduces the impact of475

many weak instruments bias compared to TSLS.476

Group 2: methods which address the possible violation of (A-III).477

The MR approach MBTSLS (37) is a representative method which belongs to group 2. MBTSLS allows a direct effect αj on478

outcome Y in the MR model by imposing the InSIDE condition, i.e., direct effects αj of IVs on the outcome are independent of479

instrument strength γ∗j between IVs and the exposure. Although methods in group 2 improve over methods in group 1, they480

are not satisfactory for performing causal inference as the InSIDE assumption and (A-II) may be violated.481

Group 3: methods which addresses the possible violation of (A-II) and (A-III).482
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Representative methods in this groups include sisVIVE (38), Adaptive Lasso (39), TSHT (40), GENIUS (41), GENIUS-483

MAWII (42), and MR-MiSTERI (43). Here we roughly divide these methods into three subgroups according to the key484

assumptions that they required.485

• Subgroup 1: MR methods in subgroup 1 require the assumption that more than 50% of IVs being used are valid IVs486

satisfying (A-I), (A-II), and (A-III), which is known as the majority valid assumption. Two methods, sisVIVE and487

Adaptive Lasso, are developed under the majority valid assumption to relax (A-II) and (A-III). The method sisVIVE488

is an L1 penalized regression approach based on the majority valid assumption, where the L1 penalty is introduced to489

account for the sparsity of pleiotropic effects of IVs. Compared with sisVIVE, Adaptive Lasso can obtain a consistent490

estimator for causal effects under weaker conditions.491

• Subgroup 2: MR methods in subgroup 2 are based on the plurality valid assumption. TSHT is an MR method of492

this kind. TSHT is a two-stage hard thresholding approach. In the first stage, it identifies the set of IVs that satisfy493

(A-I) by thresholding the strength of associations between IVs and the exposure. In the second stage, TSHT constructs494

multiple estimators for pleiotropic effects as ( ̂Γj − βγj)[k] = Γ̂j − Γ̂k
γ̂k
γ̂j , where the k-th estimator is built upon the ratio495

estimate obtained using the k-th IV. It then performs thresholding on these estimates of pleiotropic effects with voting to496

select valid IVs. The resulting causal effect estimate is proved to be consistent under the plurality valid condition. It is497

worthwhile mentioning that TSHT uses both individual-level data and summary statistics in its two-stage thresholding498

procedure. So it belongs to individual-level MR methods.499

• Subgroup 3: MR methods in subgroup 3 allow all IVs to be possibly invalid. Pervasive pleiotropy can lead to the
violation of majority valid assumption and plurality valid assumption. Two individual-level MR methods, GENIUS and
GENIUS-MAWII, are thus developed to provide robust estimate for causal effect even all IVs are invalid. Unlike existing
methods, GENIUS leverages heteroscedasticity of the exposure for a robust estimator of causal effect. To see the key idea
of GENIUS, we consider a simple exposure-outcome model:

X = γ(G) + U, Y = βX + α(G) + U,

where G |= U , α(G) represents the influence of pleiotropy and thus (A-III) is violated. Based on this simple model, it is
easy to see that

E{[G− E(G)]Y }
E{[G− E(G)]X} = β + E{[G− E(G)]α(G)}

E{[G− E(G)]X} + E{[G− E(G)]U}
E{[G− E(G)]X}︸ ︷︷ ︸

=0 because G |= U

.

Therefore, using ratio E{[G−E(G)]Y }
E{[G−E(G)]X} to obtain the causal effect β only works when E{[G− E(G)]α(G)} = 0. To eliminate500

the influence of α(G), GENIUS uses the exposure residual term X − E(X|G) because E{[X − E(X|G)]α(G)} = 0.501

Instead of working with ratio E{[G−E(G)]Y }
E{[G−E(G)]X} , GENIUS considers the following relationship,502

E{[G− E(G)][X − E(X|G)]Y }
E{[G− E(G)][X − E(X|G)]X} = β+E{[G− E(G)][X − E(X|G)]α(G)}

E{[G− E(G)][X − E[X|G]]X}

+E{[G− E(G)][X − E(X|G)]U}
E{[G− E(G)][X − E(X|G)]X} ,

[42]503

where the second term on the right hand side is zero because E{[G − E(G)][X − E(X|G)]α(G)} = 0 and the third
term is zero by assumption G |= U . Therefore, the causal effect can be obtained by E{[G−E(G)][X−E(X|G)]Y }

E{[G−E(G)][X−E(X|G)]X} , where
E{[G− E(G)][X − E(X|G)]X} = Cov[G, var(X|G)] 6= 0 is the key assumption which requires heteroscedasticity of the
exposure. In the GENIUS paper, the authors consider a more general model than what we consider here,

E(X|G,U) = γ(G,U) + ξx(U), E(Y |X,G,U) = βX + α(G,U) + ξy(U),

where γ(G,U), α(G,U), and ξy(U) are some unknown functions satisfying γ(0, U) = α(0, U) = 0 and the orthogonality
conditions:

Cov(α(G,U), γ(G,U)|G) = Cov(α(G,U), ξx(U)|G) = Cov(ξy(U), γ(G,U)|G) = 0.

The assumption G |= U can be further relaxed by a weaker second-order condition Cov(ξx(U), ξy(U)|G) = ρ, where ρ is504

a constant. With these key assumptions, GENIUS can relax (A-II) and (A-III). GENIUS-MAWII further extends505

GENIUS by allowing for incorporation of many weak IVs. GENIUS-MAWII proposes a continuous updating estimator of506

the causal effect and establishes its consistency and asymptotic normality. Very recently, a new MR method MR-MiSTERI507

(43) has been proposed by requiring heteroscedasticity of the outcome.508
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2.4. Discussion on CAUSE. To gain insight into the assumptions and the properties of CAUSE, we first provide a review on
CAUSE and then discuss its model. CAUSE is proposed to distinguish two types of pleiotropy. The first type of pleiotropy
is uncorrelated pleiotropy where the direct effects of SNPs on the outcome are not correlated with the SNP effects on the
exposure. The second type of pleiotropy is correlated pleiotropy. It occurs when the SNPs affect both the exposure and the
outcome through shared pathways. The InSIDE condition no longer holds when correlated pleiotropy arises. To account for
uncorrelated pleiotropy and correlated pleiotropy simultaneously, CAUSE models the relationship of SNP effects between the
exposure and the outcome as follows:

Γi = βγi + Ziηγi + θi,

where β is the causal effect of interest, η is the correlated pleiotropic effect, θi is an uncorrelated pleiotropic effect, and Zi is
indicators for a valid IV (Zi = 0) or not (Zi = 1). To successfully identify causal effect, CAUSE assumes that the proportion
of IVs affected by correlated pleiotropy should be less than 50%, q = Pr(Zi = 1) < 0.5 (this is very similar to the majority
valid assumption). With the prior on true SNP effects on the exposure and the outcome γi ∼ N (0, σ2),Γi ∼ N (0, τ2) and the

variance of estimation errors Si(ρ) =
(

s2
X,i ρsX,isY,i

ρsX,isY,i s2
Y,i

)
, the CAUSE model is written as

p(γ̂i, Γ̂i|β, η, σ2, τ2,Si) =qN
((

γ̂i
Γ̂i

)∣∣∣0,( σ2 (β + η)σ2

(β + η)σ2 (β + η)2σ2 + τ2

)
+ Si(ρ)

)
+

(1− q)N
((

γ̂i
Γ̂i

)∣∣∣0,( σ2 βσ2

βσ2 β2σ2 + τ2

)
+ Si(ρ)

)
.

On the right hand side of the above equation, the first term is related to IVs affected by correlated pleiotropic effects and the509

second term characterizes IVs that are only affected by uncorrelated pleiotropy.510

To perform causal inference with this model, CAUSE proposes the following workflow:511

• (step 1) Fix β = 0, η = 0, and estimate σ2, τ2 (parameters in priors) and ρ (impact of sample overlapping) using512

genome-wide summary statistics.513

• (step 2) Fit the null model: fix β = 0, and estimate η, q using selected IVs (p-value ≤ IV threshold).514

• (step 3) Fit the CAUSE model using selected IVs.515

• (step 4) Compute the expected log pointwise posterior density (ELPD) test statistics by comparing the results between516

the fitted null model and the fitted CAUSE model.517

The problem occurs in step 2 of CAUSE. When fixing β = 0, the model becomes

p(γ̂i, Γ̂i|β = 0, η, σ2, τ2,Si)

= qN
((

γ̂i
Γ̂i

)∣∣∣0,( σ2 ησ2

ησ2 η2σ2 + τ2

)
+ Si(ρ)

)
+ (1− q)N

((
γ̂i
Γ̂i

)∣∣∣0,(σ2 0
0 τ2

)
+ Si(ρ)

)
.

Therefore, the underlying causal effect can be absorbed into the estimated η (in the first term of the right hand side). As a518

result, the causal estimate given by CAUSE is biased to the null (β = 0) even in simulations where data generation matches519

the CAUSE model. The p-value obtained through computing ELPD by comparing the null model and the CAUSE model will520

be deflated, leading to lower statistical power.521

2.5. Measures of the IV strength in literature. For clarity, we use a model of summary-level MR methods in groups 1 and 2 as
an example to illustrate the notions of IV strength in the literature of summary-level MR methods. These methods rely on the
following linear model for MR:

X =
∑
j

γjGj + ηXU + EX , Y = βX +
∑
j

αjGj + ηY U + EY ,

where subscript j denotes the j-th SNP, X is a phenotype vector of the exposure, Y is a phenotype vector of the outcome, Gj522

is a genotype vector of the j-th SNP, X,Y,Gj are standardized to have zero mean and variance one, U is the unmeasured523

confounder, EX , EY are independent random noises. Here we do not consider the influence of linkage disequilibrium (LD) in524

this model to avoid unnecessary confusion. By regressing X and Y on Gj , we can obtain the estimated effect sizes of the j-th525

SNP and their standard errors (γ̂j , ŝX,j), (Γ̂j , ŝY,j), respectively. In this setting, we typically obtain ŝ2
X,j ≈ 1/N1, ŝ

2
X,j ≈ 1/N2526

because the genotypes and phenotypes are assumed to be standardized, where N1 and N2 are the GWAS sample sizes of the527

exposure and the outcome, respectively. We denote the corresponding true effect sizes as γj and Γj . Then, MR methods in528

groups 1 and 2 (Main text, Table 1) are closely related to the fitting of the following errors-in-variables regression of Γ̂j on γ̂j :529 (
γ̂j
Γ̂j

)
|γj , αj ∼ N

((
γj

βγj + αj

)
,

(
ŝ2
X,j 0
0 ŝ2

Y,j

))
, ∀j = 1, ...,Mt,

αj = 0, or αj follows a specified distribution,
[43]530
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where subscript t corresponds to the IV selection criterion (|γ̂j/ŝX,j | ≥ t), Mt represents the number of selected IVs for
the given threshold t, and {γj}j=1,...,Mt are regarded as nuisance parameters. The {γ̂j}j=1,...,Mt serve as predictors in this
errors-in-variables regression, and the {γj}j=1,...,Mt are the underlying true effect sizes with strengths |γj |, j = 1, ...,Mt. In the
literature of MR, the collective IV strength (12) is defined as

Collective IV strength :=
Mt∑
j=1

γ2
j = ‖γ‖22.

Another notion related to the IV strength is the average IV strength (12, 30):531

Average IV strength := 1
Mt

Mt∑
j=1

γ2
j

ŝ2
X,j

. [44]532

Next, we discuss our definition of the IV strength. Recall that the MR-APSS model is given as:533 (
γ̂j
Γ̂j

)
= Zj

(
γj

βγj + αj

)
Uncorrelated pleiotropy︸ ︷︷ ︸

Foreground

+
(
uj
vj

)
Polygenicity

Correlated pleiotropy

+
(
ej
ξj

)
Sample structure

(Population stratification,
cryptic relatedness,
sample overlap, etc.)︸ ︷︷ ︸

Background

, j = 1, . . .Mt,

[45]534

where the background model is designed to account for polygenicity, correlated pleiotropy, and sample structure, and the535

foreground model aims to identify informative instruments and account for uncorrelated pleiotropy to perform causal inference.536

By assuming the covariance matrices of (uj , vj)T and (ej , ξj)T , the MR-APSS model can be written as:537 (
γ̂j
Γ̂j

)
|Zj , γj , αj ∼ N

(
Zj

(
γj

βγj + αj

)
,

(
σ2
u rgσuσv

rgσuσv σ2
v

)
+
(

c1ŝ
2
X,j c12ŝX,j ŝY,j

c12ŝX,j ŝY,j c2ŝ
2
Y,j

))
. [46]538

Comparing Eq. [46] with Eq. [43], MR-APSS performs MR analysis based on the foreground component (Zj = 1). The core539

term which captures the causal relationship is
(

γj
βγj + αj

)
with Zj = 1. As γj , Zj , and Mt are random variables in the540

MR-APSS model, we define the total IV strength of MR-APSS using its expectation as:541

Total IV strength for MR-APSS := E

 ∑
j∈{1,...,Mt} s.t. Zj=1

γ2
j

∣∣∣t
 = E

(
Mt∑
j=1

Zjγ
2
j

∣∣∣t) . [47]542

Correspondingly, we define the average IV strength of the Mt IVs selected based on threshold t (|γ̂j/ŝX,j | ≥ t) by:543

Average IV strength for MR-APSS = E

(
1
Mt

Mt∑
j=1

Zjγ
2
j

∣∣∣t) . [48]544

Next, we need to find connection between our definitions and the definitions given in MR literature (e.g., Eq. [44]). Please
be noted that σ2

Xj
= 1/N1 in our setting because genotypes and phenotypes are assumed to be standardized. Therefore, Eq.

[44] can be further written as

Average IV strength := 1
Mt

Mt∑
j=1

γ2
j

ŝ2
X,j

= N1‖γ‖22/Mt.

In this sense, our definitions is closely related to the definitions of the IV strength in the literature except that we have an545

additional variable Zj to indicate whether the j-th SNP is a valid IV. As our definitions only involves the foreground effect γj546

of the j-th IV with Zj = 1, it naturally excludes the direct effect αj , the polygenic effect uj and estimation error ej because547

they are affected by uncorrelated pleiotropy, correlated pleiotropy and sample structure (see Eq. [45]), respectively.548

So far, we have mainly discussed the definitions of the IV strengths for the summary-level MR methods. Here we would like
to use GENIUS-MAWII as an example to discuss the IV strength defined by the individual-level methods. Different from
the summary-level MR methods which use SNP effect sizes to define the IV strengths, both GENIUS and GENIUS-MAWII
leverages heteroscedasticity of the exposure to perform causal inference. GENIUS-MAWII further extends GENIUS to account
for the utility of many weak IVs. To see the key idea of GENIUS-MAWII, we consider a simple model:

X = γ(G) + U, Y = βX + α(G) + U,
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where G and U are independent, and α(G) represents the influence of pleiotropy. Pleiotropy α(G) can bias the causal effect
estimate as it induces the violation of (A-III). In this case, GENIUS-MAWII makes use of the following relationship to address
the challenge:

E{[G− E(G)][X − E(X|G)]Y }
E{[G− E(G)][X − E(X|G)]X} = β,

where E{[G− E(G)][X − E(X|G)]X} = Cov[G,Var(X|G)] 6= 0 (heteroscedasticity of the exposure) holds. The above equation549

illustrates that GENIUS-MAWII regards Cov[G,Var(X|G)] as “valid IVs” to perform causal inference. Correspondingly,550

GENIUS-MAWII essentially makes use of quantities |Cov[G,Var(X|G)]| to define measure of weak identification. Here we can551

see that GENIUS-MAWII uses a different type of information as the IV strength. Therefore, the proposed MR-APSS method552

and GENIUS-MAWII are quite complementary to each other. Comparison results of these methods have been included in SI553

Appendix Figs. S17-S21.554

2.6. Theoretical analysis of the IVW and dIVW estimators under the MR-APSS model.555

2.6.1. The IVW estimator. We show that the IVW estimator is asymptotically biased under the MR-APSS model in the presence of
pleiotropy and sample structure. To do this, we first assume that all the selected Mt IVs carry both background and foreground
components. Without loss of the key idea of MR-APSS, this assumption is helpful to simplify the theoretical derivation. With
this assumption, we have the following MR-APSS model,(

Γ̂j
γ̂j

)
∼ N

((
vj + βγj + αj

uj + γj

)
,

(
c2ŝ

2
Y,j c12ŝX,j ŝY,j

c12ŝX,j ŝY,j c1ŝ
2
X,j

))
, j = 1, 2, ...,Mt,

where uj and vj are polygenic effects of the j-th IV on the outcome and the exposure traits, effects βγj + αj , γj are the556

foreground components, and the variance-covariance matrix is related to the influence of sample structure.557

To facilitate the analysis of asymptotic properties of the IVW estimator under MR-APSS, we follow the setting of theoretical
analysis in dIVW (30) and RAPS (12). We consider the case that all the underlying effects vj , uj , γj , αj have been realized and
fixed. We denote (

µ1j
µ2j

)
=
(
vj + βγj + αj

uj + γj

)
,

(
S11j S12j
S12j S22j

)
=
(

c2ŝ
2
Y,j c12ŝX,j ŝY,j

c12ŝX,j ŝY,j c1ŝ
2
X,j

)
.

Then we have (
Γ̂j
γ̂j

)
∼ N

((
µ1j
µ2j

)
,

(
S11j S12j
S12j S22j

))
, j = 1, 2, ...,Mt.

By the definition of the IVW estimator, we have558

β̂IVW − β =
∑Mt

j=1

(
Γ̂j γ̂j − βγ̂2

j

)
ŝ−2
Y,j∑Mt

j=1 γ̂
2
j ŝ
−2
Y,j

. [49]559

For every j, we have
E(γ̂2

j ŝ
−2
Y,j) = (µ2

2j + S22j)ŝ−2
Y,j ,

Var(γ̂2
j ŝ
−2
Y,j) = [E(γ̂4

j )− E2(γ̂2
j )]ŝ−4

Y,j = (4µ2
2j + 2S22j)S22j .

To simply notation, we define

wj = µ2
2j ŝ
−2
Y,j , vj = S22j ŝ

−2
Y,j , κ = 1

Mt

Mt∑
j=1

µ2
2j

S22j
= 1
Mt

Mt∑
j=1

(uj + γj)2

c21ŝ
2
X,j

.

With these notations, we have

E(γ̂2
j ŝ
−2
Y,j) = wj + vj , Var(γ̂2

j ŝ
−2
Y,j) = (4wj + 2vj)vj , κ = 1

Mt

Mt∑
j=1

wj
vj
.

By the definition of vj = c1ŝ
2
X,j

ŝ2
Y,j

, it is reasonable to require that vj is bounded when Mt →∞, because this assumption holds
when the sample sizes of exposure X and outcome Y diverge in the same order. Hence, we obtain

Var(γ̂2
j ŝ
−2
Y,j)

[
∑Mt

j=1(wj + vj)]2
=
∑Mt

j=1(4wj + 2vj)vj
[
∑Mt

j=1(wj + vj)]2
≤

4[
∑Mt

j=1(wj + vj)] maxj vj
[
∑Mt

j=1(wj + vj)]2
= O( 1

κMt +Mt
) = o(1),

as κMt +Mt →∞. By Markov’s inequality, we have560 ∑Mt
j=1 γ̂

2
j ŝ
−2
Y,j∑Mt

j=1(wj + vj)
p→ 1. [50]561
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Next, we evaluate mean and variance of the numerator given in Eq. [49]. We have the following expression for every j,

E[(Γ̂j γ̂j − βγ̂2
j )ŝ−2

Y,j ] = (µ1jµ2j + S12j − βµ2
2j − βS22j)ŝ−2

Y,j .

Var[(Γ̂j γ̂j − βγ̂2
j )ŝ−2

Y,j ]

= [E(Γ̂2
j γ̂

2
j )− 2β E(Γ̂j γ̂3

j ) + β
2 E(γ̂4

j )− E2(Γ̂j γ̂j − βγ̂2
j )]ŝ−4

Y,j

=
β2(4µ2

2jS22j + 2S2
22j)− β(4S12jS22j + 4µ2

2jS12j + 4µ1jµ2jS22j) + S2
12j + 2µ1jµ2jS12j + µ2

1jS22j + µ2
2jS11j + S11jS22j

ŝ4
Y,j

.

562

To simplify the notation, we denote

bj = E[(Γ̂j γ̂j − βγ̂2
j )ŝ−2

Y,j ], a
2
j = Var[(Γ̂j γ̂j − βγ̂2

j )ŝ−2
Y,j ],

and further define

Kj =
(Γ̂j γ̂j − βγ̂2

j )ŝ−2
Y,j − bj

aj
, σ2

p =
Mt∑
j=1

a2
j .

Then, under the condition that maxj(a2
j/σ

2
p) = o(1) as Mt →∞, for any ε > 0, we have563

Mt∑
j=1

E
[
a2
jK

2
j

σ2
p
I{aj |Kj |>εσp}

]
≤

Mt∑
j=1

a2
j

σ2
p

max
j

E[K2
j I{aj |Kj |>εσp}] = max

j
E[K2

j I{aj |Kj |>εσp}] = o(1), [51]564

as Mt →∞. Inequality (51) verifies Lindeberg’s condition. Hence, by Lindeberg central limit theorem, as Mt →∞,565 ∑Mt
j=1(Γ̂j γ̂j − βγ̂2

j )ŝ−2
Y,j −

∑Mt
j=1 bj

(
∑Mt

j=1 a
2
j )1/2

d→ N (0, 1). [52]566

Now we can define the bias term and the variance term as

biasIVW =
∑Mt

j=1 bj∑Mt
j=1(wj + vj)

, VIVW =
∑Mt

j=1 a
2
j

[
∑Mt

j=1(wj + vj)]2
.

Combining Eqs. [50] and [52], we have the following result by Slutsky’s theorem,

V
−1/2
IVW (β̂IVW − β − biasIVW ) d→ N (0, 1).

To see the asymptotic bias of β̂IVW , we need to check the limit of the following term as Mt →∞,567

biasIVW

V
1/2
IVW

=

∑Mt

j=1
bj∑Mt

j=1
(wj+vj)√ ∑Mt

j=1
a2
j

[
∑Mt

j=1
(wj+vj)]2

=

∑Mt

j=1
bj√∑Mt

j=1
a2
j

=

∑Mt

j=1
[(µ1jµ2j + S12j − βµ2

2j − βS22j)ŝ
−2
Y,j

]

{
∑Mt

j=1
[β2(4µ2

2jS22j + 2S2
22j)− β(4S12jS22j + 4µ2

2jS12j + 4µ1jµ2jS22j) + S2
12j + 2µ1jµ2jS12j + µ2

1jS22j + µ2
2jS11j + S11jS22j ]ŝ

−4
Y,j
}1/2

.

[53]568

569

Now we consider the case of using strong IVs, where µ2
1j ŝ
−2
Y,j , µ1jµ2j ŝ

−2
Y,j , µ

2
2j ŝ
−2
Y,j are higher-order terms compared with

S11j ŝ
−2
Y,j , S12j ŝ

−2
Y,j , S22j ŝ

−2
Y,j , as Mt →∞. In such case, the dominant term in biasIVW /V 1/2

IVW is roughly∑Mt
j=1(µ1jµ2j − βµ2

2j)ŝ−2
Y,j

[
∑Mt

j=1(4β2µ2
2jS22j − 4βµ2

2jS12j − 4βµ1jµ2jS22j + 2µ1jµ2jS12j + µ2
1jS22j + µ2

2jS11j)ŝ−4
Y,j ]1/2

.

Hence, noting that µ1j = vj + βγj + αj , µ2j = uj + γj , the asymptotic bias of the IVW estimator can be induced by the570

correlation of polygenic effects uj , vj due to the presence of correlated pleiotropy.571

In the case of using many weak IVs where the influence of terms S11j ŝ
−2
Y,j , S12j ŝ

−2
Y,j , S22j ŝ

−2
Y,j can not be neglected compared572

to that of µ2
1j ŝ
−2
Y,j , µ1jµ2j ŝ

−2
Y,j , µ

2
2j ŝ
−2
Y,j as Mt → ∞. As indicated by Eq. [53], the non-zero c12 in S12j = c12ŝX,j ŝY,j due to573

sample structure can also induce the asymptotic bias of the IVW estimator.574
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2.6.2. The dIVW estimator. We show that the dIVW estimator is asymptotically biased under the MR-APSS model in the presence
of pleiotropy and sample structure. Let Γ̂j , γ̂j be the estimates of the j-th IV’s effects Γj , γj on the outcome and the exposure,
respectively. Let ŝY,j , ŝX,j be the corresponding standard errors of the estimates. Because of the large sample size of GWAS,
the uncertainty in estimating ŝY,j , ŝX,j can be ignored. The dIVW estimator is developed based on the following model:

Γ̂j |γj , α0j ∼ N (β0γj + α0j , ŝ
2
Y,j), α0j ∼ N (0, τ2

0 ), γ̂j ∼ N (γj , ŝ2
X,j),

where β0 is causal effect, α0j accounts for horizontal pleiotropy, and τ2
0 is the variance of horizontal pleiotropic effects. It is

worthwhile to mention that the above dIVW model can be regarded as a simplified version of the RAPS model. The difference
is that RAPS further robustly accounts for the potential existence of outliers in horizontal pleiotropic effects (for some j, α0j
can be much larger than what is predicted by α0j ∼ N (0, τ2

0 )). By demonstrating the bias of dIVW under MR-APSS model,
we are able to explain the key reason that causes the biases of MR methods in group 2 under our proposed MR-APSS model.
For the sake of simplicity, in the following analysis, we do not include the discussion related to the selection of IVs and the
selection bias. In this case, the dIVW estimator is written as:

β̂dIVW =
∑

j
Γ̂j γ̂j ŝ−2

Y,j∑
j
(γ̂2
j − ŝ2

X,j)ŝ
−2
Y,j

, τ̂2
dIVW =

∑
j
[(Γ̂j − β̂dIVW γ̂j)2 − ŝ2

Y,j − β̂2
dIVW ŝ

2
X,j ]ŝ−2

Y,j∑
j
ŝ−2
Y,j

.

As β̂dIVW does not depend on τ̂2
dIVW , we only focus on the analysis of β̂dIVW . We will show that β̂dIVW is asymptotically575

biased under the MR-APSS model.576

Following a similar argument in the theoretical justification for the bias of the IVW method, here we assume that all the
selected Mt IVs carry both background and foreground components to show dIVW is biased under the MR-APSS model,. With
this assumption, we have the following MR-APSS model,(

Γ̂j
γ̂j

)
∼ N

((
vj + βγj + αj

uj + γj

)
,

(
c2ŝ

2
Y,j c12ŝX,j ŝY,j

c12ŝX,j ŝY,j c1ŝ
2
X,j

))
, j = 1, 2, ...,Mt,

where uj , vj are polygenic effects of the j-th IV on the outcome and the exposure traits, βγj + αj , γj are the foreground effects,
and the variance-covariance matrix is related to the influence of sample structure. Following the setting of theoretical analysis
in dIVW (30), we consider the case that all the underlying effects vj , uj , γj , αj have been realized and fixed. We denote(

µ1j
µ2j

)
=
(
vj + βγj + αj

uj + γj

)
,

(
S11j S12j
S12j S22j

)
=
(

c2ŝ
2
Y,j c12ŝX,j ŝY,j

c12ŝX,j ŝY,j c1ŝ
2
X,j

)
.

Then we have (
Γ̂j
γ̂j

)
∼ N

((
µ1j
µ2j

)
,

(
S11j S12j
S12j S22j

))
, j = 1, 2, ...,Mt.

By the definition of the dIVW estimator, we have577

β̂dIVW − β =
∑Mt

j=1

(
Γ̂j γ̂j − βγ̂2

j + βŝ2
X,j

)
ŝ−2
Y,j∑Mt

j=1(γ̂2
j − ŝ2

X,j)ŝ
−2
Y,j

. [54]578

For every j, we have
E[(γ̂2

j − ŝ2
X,j)ŝ−2

Y,j ] = (µ2
2j + S22j − ŝ2

X,j)ŝ−2
Y,j ,

Var[(γ̂2
j − ŝ2

X,j)ŝ−2
Y,j ] = (4µ2

2j + 2S22j)S22j .

Note that it is sufficient to show that the dIVW estimator is biased under the MR-APSS model with c1 = c2 = 1 as it is a
special case of the MR-APSS model. To simplify the theoretical derivation, we then consider the case S11j = ŝ2

Y,j , S22j = ŝ2
X,j .

By further defining

wj = µ2
2j ŝ
−2
Y,j , vj = S22j ŝ

−2
Y,j , κ = 1

Mt

Mt∑
j=1

µ2
2j

S22j
= 1
Mt

Mt∑
j=1

(uj + γj)2

ŝ2
X,j

,

we have

E[(γ̂2
j − ŝ2

X,j)ŝ−2
Y,j ] = wj , Var(γ̂2

j ŝ
−2
Y,j) = (4wj + 2vj)vj , κ = 1

Mt

Mt∑
j=1

wj
vj
.

By the definition of vj = ŝ2
X,j

ŝ2
Y,j

, it is reasonable to require that vj is bounded when Mt →∞, because this assumption holds
when the sample sizes of exposure X and outcome Y diverge in the same order. As this assumption often holds in real
applications, it is reasonable to assume that there exists a constant C > 0 such that C−1 ≤ vj ≤ C, ∀j. Hence, we obtain

C−1
Mt∑
j=1

wj ≤ κMt =
Mt∑
j=1

wj
vj
≤ C

Mt∑
j=1

wj ,
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therefore,
Var[(γ̂2

j − ŝ2
X,j)ŝ−2

Y,j ]
(
∑Mt

j=1 wj)2
≤

4C
∑Mt

j=1 wj + 2MtC
2

(
∑Mt

j=1 wj)2
= 4C2κMt + 2C2Mt

C−2κ2M2
t

= O( 1
κMt

+ 1
κ2Mt

).

Following the same condition, κ
√
Mt →∞ as Mt →∞, required by theoretical analysis in dIVW, we obtain

Var[(γ̂2
j − ŝ2

X,j)ŝ−2
Y,j ]

(
∑Mt

j=1 wj)2
≤ o(1), asMt →∞.

By Markov’s inequality, we have579 ∑Mt
j=1(γ̂2

j − ŝ2
X,j)ŝ−2

Y,j∑Mt
j=1 wj

p→ 1. [55]580

Next, we evaluate mean and variance of the numerator given in Eq. [54]. For every j,

E[(Γ̂j γ̂j − βγ̂2
j + βŝ2

X,j)ŝ−2
Y,j ] = (µ1jµ2j + S12j − βµ2

2j)ŝ−2
Y,j .

Var[(Γ̂j γ̂j − βγ̂2
j + βŝ

2
X,j)ŝ

−2
Y,j ]

=
β2(4µ2

2jS22j + 2S2
22j)− β(4S12jS22j + 4µ2

2jS12j + 4µ1jµ2jS22j) + S2
12j + 2µ1jµ2jS12j + µ2

1jS22j + µ2
2jS11j + S11jS22j

ŝ4
Y,j

.

We denote
bj = E[(Γ̂j γ̂j − βγ̂2

j + βŝ2
X,j)ŝ−2

Y,j ], a
2
j = Var[(Γ̂j γ̂j − βγ̂2

j + βŝ2
X,j)ŝ−2

Y,j ],
and

Kj =
(Γ̂j γ̂j − βγ̂2

j + βŝ2
X,j)ŝ−2

Y,j − bj
aj

, σ2
p =

Mt∑
j=1

a2
j .

Then, under the condition that maxj(a2
j/σ

2
p) = o(1) as Mt →∞, for any ε > 0, we have581

Mt∑
j=1

E
[
a2
jK

2
j

σ2
p
I{aj |Kj |>εσp}

]
≤

Mt∑
j=1

a2
j

σ2
p

max
j

E[K2
j I{aj |Kj |>εσp}] = max

j
E[K2

j I{aj |Kj |>εσp}] = o(1), [56]582

as Mt →∞. Inequality (56) verifies Lindeberg’s condition. Hence, by Lindeberg central limit theorem, as Mt →∞,583 ∑Mt
j=1(Γ̂j γ̂j − βγ̂2

j + βŝ2
X,j)ŝ−2

Y,j −
∑Mt

j=1 bj

(
∑Mt

j=1 a
2
j )1/2

d→ N (0, 1). [57]584

Define

biasIVW =
∑Mt

j=1 bj∑Mt
j=1 wj

, VdIVW =
∑Mt

j=1 a
2
j

(
∑Mt

j=1 wj)2
.

Combining Eqs. [55] and [57], we have the following result by Slutsky’s theorem,

V
−1/2
dIVW (β̂dIVW − β − biasIVW ) d→ N (0, 1).

To see the asymptotic bias of β̂IVW , we need to check the limit of the following term as Mt →∞,585

biasIVW

V
1/2
dIVW

=

∑Mt

j=1
bj√∑Mt

j=1
a2
j

=

∑Mt

j=1
[(µ1jµ2j + S12j − βµ2

2j)ŝ
−2
Y,j

]

{
∑Mt

j=1
[β2(4µ2

2jS22j + 2S2
22j)− β(4S12jS22j + 4µ2

2jS12j + 4µ1jµ2jS22j) + S2
12j + 2µ1jµ2jS12j + µ2

1jS22j + µ2
2jS11j + S11jS22j ]ŝ

−4
Y,j
}1/2

.

[58]586

587

Compared to the asymptotic bias of the IVW estimator, the numerator in the asymptotic bias of the dIVW estimator588

corrects for the bias induced by the term −βS22j ŝ
−2
Y,j . This is because the dIVW estimator has taken the uncertainty ŝ2

X,j of γ̂j589

into account and thus can eliminate the bias due to the usage of many weak IVs to perform MR analysis. According to Eq.590

[58], however, dIVW is still biased due to its neglect of correlated pleiotropy and sample structure. Specifically, we observe that591

µ1j = vj + βγj + αj , µ2j = uj + γj . The asymptotic bias of the dIVW estimator can be induced by the correlation of polygenic592

effects uj , vj due to the presence of correlated pleiotropy. Besides the influence of correlated pleiotropy, the influence of terms593

S11j ŝ
−2
Y,j , S12j ŝ

−2
Y,j , S22j ŝ

−2
Y,j can not be neglected in the case of using many weak IVs . As indicated by Eq. [58], the non-zero594

c12 in S12j = c12ŝX,j ŝY,j due to sample structure can also induce the asymptotic bias of the dIVW estimator.595
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3. Simulation studies596

3.1. Simulations under the MR-APSS model. MR-APSS assumes that the effects of SNP j on the exposure and the outcome
have the following relationship:

γ̃j = Zjγj + uj , Γj = Zj(βγj + αj) + vj ,

where β is causal effect of interest, uj , vj are background signals, γj , αj are foreground signals, and Zj indicates whether SNP j
carries foreground signals (Zj = 1) or not (Zj = 0). In the simulation, we assumed that the background component accounted
for a total heritability of h2 = 0.5 for each trait. Given that there were M = 47, 049 SNPs, we set the background variances to
be σ2

u = τ2
v = h2

M
. Then the background signals were sampled by(

uj
vj

)
∼ N

((
0
0

)
,

(
σ2
u rgσuτv

rgσuτv τ2
v

))
,

with varying genetic correlation rg ∈ {0.1, 0.2}. Additionally, we randomly chose 500 out of 47,049 SNPs to carry foreground
signals. Specifically, Zj = 1 were randomly assigned on 500 SNPs while Zj = 0 were assigned on the remaining 46,549 SNPs.
For those 500 SNPs which carried foreground signals, we assumed that the foreground-background variance ratios for exposure
and outcome were σ2 : σ2

u ∈ {10, 20, 40} and τ2 : τ2
v = 1. Then the foreground effects of the 500 SNPs were sampled by(

γj
αj

)
∼ N

((
0
0

)
,

(
σ2 0
0 τ2

))
.

We generated phenotypes based on simulated SNP effects and real genotypes from UKBB. To simulate scenarios with or
without sample structure, we used 0 or 10,000 overlapped samples in exposure and outcome studies. If individual i was shared
in the exposure and outcome studies, then the environmental noises were simulated by(

εx,i
εy,i

)
∼ N

((
0
0

)
,

(
1− h2 re(1− h2)

re(1− h2) 1− h2

))
,

where re ∈ {0.3, 0.6}. If individual i was not shared, the noise terms were independently generated as

εx,i ∼ N (0, 1− h2), and εy,i ∼ N (0, 1− h2).

To simulate phenotype vectors, we standardized the genotype matrices from UKBB (i.e., the standardized genotypes on each
SNP to have zero mean and unit variance) and denoted them as Gx and Gy, respectively. Let εx and εy be the random noises
of exposure and outcome traits, respectively. Then, the phenotype vectors of exposure and outcome traits were simulated as

x = Gxγ̃ + εx, y = GyΓ + εy.

3.2. Simulations under the CAUSE model. Following the CAUSE model, we simulated effects (γj ,Γj) of SNP j on exposure X
and outcome Y based on following relationship:

Γj = βγj + Zjηγj + θj ,

where β is causal effect of interest, η is the correlated pleiotropic effect, θj is uncorrelated pleiotropic effect, and Zj indicates
whether the SNP is affected by correlated pleiotropy (Zj = 1) or not (Zj = 0). CAUSE assumes sparsity for direct effects
(γj , θj). Here we randomly assigned P1 = 10, 000 out of 47,049 SNPs with non-zero effects on exposure X. To be specific, the
effects of P1 = 10, 000 SNPs on exposure X were sampled by γj ∼ N (0, h2

P1
), where h2 = 0.5 is the heritability of exposure X.

The remaining 36, 049 SNPs were not associated with exposure X. To simulate Y , we followed the assumption from CAUSE
that the proportion of IVs affected by correlated pleiotropy should be lower than 50%, i.e., we sampled Zj by Zj ∼ Bern(q),
where q = Pr(Zj = 1) < 0.5. Here we varied q as q ∈ {0.2, 0.4}. To ensure that the heritability of Y was h2 = 0.5, we then
randomly chose P2 = 10, 000 out of 37, 049 SNPs and assigned non-zero effects as θj ∼ N (0, (1−β2−qη2)h2

P2
). Similar to the

simulations based on MR-APSS model, we simulated phenotype vectors for X and Y by

x = Gxγ + εx, y = GyΓ + εy,

where Gx,Gy were standardized genotype matrices, εx, εy were noise vectors sampled based on(
εx,i
εy,i

)
∼ N

((
0
0

)
,

(
1− h2 re(1− h2)

re(1− h2) 1− h2

))
,

if individual i was shared in the exposure and outcome studies, and

εx,i ∼ N (0, 1− h2), εy,i ∼ N (0, 1− h2),

otherwise.597
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3.3. Evaluation of the performance of individual-level MR methods in simulation studies. We evaluated the performance of598

four individual-level MR methods, including TSLS, TSHT, GENIUS, and GENIUS-MAWII, based on simulations under the599

MR-APSS model and the CAUSE model. We first evaluated the type I errors of these methods. Fig. S1 (A) and Fig. S6 (A)600

show the QQ-plots of − log(p)-values produced by these methods under different settings in the MR-APSS model and the601

CAUSE model, respectively. Clearly, TSLS, TSHT produced inflated p-values in the presence of pleiotropy and sample structure.602

When influence of sample structure was small (c12 = 0.075 under MR-APSS model, re = 0.2 under CAUSE model), the603

p-values produced by GENIUS are well-calibrated, but its p-values tended to be slightly inflated when the influence of sample604

structure became larger (c12 = 0.15 under MR-APSS model, re = 0.6 under CAUSE model). The p-values of GENIUS-MAWII605

remained to be calibrated in all the settings. Besides GENIUS-MAWII, we also observed that the p-values produced by Egger,606

Weighted-mode, and MR-APSS were well-calibrated. Next we evaluated the power of GENIUS and GENIUS-MAWII as607

they provided satisfactory type I error control under the null (β = 0). We compared these two methods with MR-APSS,608

Egger, and CAUSE. Fig. S1 (C) and Fig. S6 (C) show that MR-APSS had a higher power than GENIUS, GENIUS-MAWII,609

Weighted-mode, and Egger in the simulations under the MR-APSS model as well as under the CAUSE model.610

4. Real data analysis611

4.1. GWAS summary statistics and pre-processing. For all GWAS summary datasets, we used SNPs in the set of HapMap 3 list612

with minor allele frequency >0.05. We further excluded SNPs in the complex Major Histocompatibility Region (Chromosome613

6, 26Mb−34Mb). Following the process in LDSC (18), we checked the χ2 statistic of each SNP and excluded SNPs with614

χ2 > max{80, N/1000} to prevent the outliers that may unduly affect the results. For a pair of exposure and outcome traits,615

we took the overlapped SNPs from their GWAS summary statistics and aligned the sign of effect sizes for those SNPs to the616

same allele. Then we applied bivariate LDSC to estimate the Ω and C using genome-wide summary statistics. After this step,617

we selected SNPs as IVs using an IV threshold (with the default p-value 5× 10−5), and applied PLINK clumping (r2 < 0.001,618

window size 1Mb) to obtain nearly independent IVs. Finally, we fitted the proposed foreground-background model to infer the619

causal effect.620

4.2. Illustrative examples for the IV strength. We consider Height (GIANT) and Height (UKBB) as exposures to examine the621

influence of sample size on the IV strength. The sample sizes for Height (GIANT) and Height (UKBB) are 253,288 and 385,748,622

respectively. The p-value threshold for IV selection varied from 5× 10−8 to 5× 10−5. We evaluated the number of IVs, average623

IV strength, and total IV strength when we considered Height (GIANT) and Height (UKBB) as exposures, and each of the624

remaining 24 traits as an outcome (The information of these traits is listed in SI Appendix, Table S1). Based on our MR-APSS625

model, we define the number of valid IVs as πtMt, where πt = p(Zj = 1
∣∣|γ̂j/ŝXj | ≥ t) is the proportion of IVs with foreground626

signal given in Eq. [7] of main text, and Mt is the number of selected IVs based on the threshold t. As shown in Fig. S14A and627

Fig. S14B, given the same IV threshold, the number selected IVs as well as the number of valid IVs of Height (UKBB) are628

larger than those of Height (GIANT) because Height (UKBB) has a larger sample size. Fig. S14C and Fig. S14D show the629

estimated average IV strength defined in Eq. [11] and total IV strength defined in Eq. [12] of the main text. The larger sample630

size of Height (UKBB) allows us to select more SNPs with moderate effects as IVs. Therefore, given the same IV threshold, the631

average IV strength of Height (UKBB) is weaker than that of Height (GAINT) but the total IV strength of Height (UKBB) is632

stronger. To further examine the influence of the IV threshold on estimating causal effects, we compared the estimated causal633

effects of Height (UKBB) and Height (GIANT) on the outcome traits. As shown in Fig. S15, despite their different sample634

sizes, the causal inference results of Height (UKBB) and Height (GIANT) agree with each other for different IV thresholds. Of635

note, the standard errors of Height (UKBB) are smaller than those of Height (GIANT).636

4.3. The default IV threshold for MR-APSS in real applications. Regarding the IV selection threshold, we have shown that the637

type I error rate of MR-APSS is insensitive to the choice of IV threshold, and the statistical power of MR-APSS can be638

improved by including SNPs with moderate effects using a looser IV threshold (Fig. 5 of main text). Practically, we recommend639

using 5× 10−5 as the default IV threshold. There are two major reasons. First, for most of exposure traits, we have observed640

that the proportion of valid IVs (πt) decreases when the IV threshold p-value becomes looser, as shown in (Fig. 5A of main641

text). If the IV threshold becomes looser, the proportion of valid IVs can be very small as most selected SNPs belong to the642

background component. As we are working with a mixture model, we hope that πt should be bounded away from either 0 or 1.643

Second, perhaps more important, we have observed the selection bias due to the LD clumping procedure. To ensure that IVs644

are nearly independent, as a common practice, we applied LD clumping after using the IV threshold for SNP selection. Please645

be noted that the LD clumping procedure will retain SNPs with smaller p-values. When the IV threshold p ≤ 5× 10−5, we find646

the bias due to LD clumping is very small and can be corrected empirically, i.e., adjusting the IV threshold by the ratio of the647

median after the LD clumping to the median before LD clumping (see the details in the SI Appendix, section 1.6, Figs S9-S10).648

When the IV threshold becomes looser, say, 5× 10−3, all SNPs that survive after LD clumping will have a p-value much smaller649

than 5 × 10−3. To our best knowledge, no method can analytically correct this bias due to the complicated process of LD650

clumping. Therefore, we would like to recommend using 5× 10−5 as the default IV threshold in real data analysis.651

4.4. Evaluation of the performance of individual-level MR methods in real data analysis.652

4.4.1. Type I error control of individual-level MR methods. Different from summary-level MR methods, individual-level MR methods653

require that both exposure X and outcome Y have been measured for the individuals under consideration. To have a comparison,654
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we use the individual-level data from UKBB. Again, we use the same five traits as the negative control outcomes. Among the655

26 exposure traits used to compare the summary-level MR methods, we can extract 8 traits from UKBB, including Daytime656

sleepiness, Neuroticism, Angina, BMI, Height, HBP, Income, and Intelligence. In total, we have 8× 5 = 40 pairs to evaluate657

individual-level methods. As a supplement, we also include the 10 summary-level MR methods (see Table 1 in main text) in658

comparison.659

Regarding the data quality control (QC) when we handle individual-level datasets, we followed the QC criteria described in660

(44) to include individuals. In total, there are 337,209 samples satisfying these criteria. For genotypes, we only keep those SNPs661

in the Hapmap3 with minor allele frequency > 0.01, missing genotypes in less than 0.1 of the sample, and Hardy-Weinberg662

equilibrium (HWE) p-value > 10−7. The IVs for the individual-level methods are selected using the IV threshold p = 5× 10−8.663

We evaluated the type I errors of four individual-level MR methods and ten summary-level MR methods based on the 40664

trait pairs. Fig. S16 shows the QQ-plots of − log(p) -values of all MR methods. Clearly, TSLS and TSHT produced inflated665

p-values, while GENIUS and GENIUS-MAWII produced well-calibrated p-values. The obtained results suggest that the key666

assumption of GENIUS and GENIUS-MAWII (heteroscedasticity of the exposure) is robust in the presence of pleiotropy667

and sample structure. We also noticed that MR-APSS and Weighted-mode produced well-calibrated p-values among ten668

summary-level MR methods.669

4.4.2. MR-APSS is complementary to GENIUS and GENIUS-MAWII. So far, we have found that GENIUS, GENIUS-MAWII, MR-APSS,670

and Weighted-mode can produce well-calibrated p-values based on real data analysis using negative control outcomes. Next, we671

evaluated the estimation efficiency of MR methods using 8 exposure traits and negative control outcomes. Fig. S17 shows672

the causal effect estimates (β̂) and their 95% confidence intervals (obtained as 2×s.e.(β̂)) obtained by the 14 MR methods673

where we used 8 exposure traits and one negative outcome trait (Hair_Blonde). The results of other four negative control674

outcomes are given in Fig. S18 - Fig. S21. The ground-truth of the causal effects should be zero (i.e., β = 0) because we are675

using the negative control outcomes. Let’s first focus on the comparison between GENIUS (GENIUS-MAWII) and MR-APSS.676

In Fig. S17A, the 95% confidence intervals of GENIUS and GENIUS-MAWII were shorter than those of MR-APSS. Because677

all three methods can control the type I errors, GENIUS and GENIUS-MAWII were more efficient than MR-APSS. In Fig.678

S17B, the situation changed. MR-APSS had shorter 95% confidence intervals than those of GENIUS and GENIUS-MAWII.679

The above real data analysis can be explained by the fact that GENIUS (GENIUS-MAWII) and MR-APSS use different types680

of information for causal inference. The IV strength of GENIUS and GENIUS-MAWII is related to heteroscedasticity of681

the exposure while the IV strength of MR-APSS is related to the SNP effect sizes deviating from polygenic effects. When682

heteroscedasticity of the exposure is strong, GENIUS and GENIUS-MAWII can be very efficient estimators of the causal683

effect and they are also robust in the presence of pleiotropy and sample structure. For example, when obesity-related traits684

are considered as exposures, the heteroscedasticity assumption is often satisfied (45). However, When some other traits are685

considered as exposures, the heteroscedasticity assumption may not hold. An example trait is height. According to Wang et al.686

(2019) (45), more than 1,000 independent loci have been identified by GWAS to be associated with height but no variance687

quantitative trait locus (vQTL) has been identified. This helps to explain why GENIUS and GENIUS are more efficient than688

MR-APSS when BMI is the exposure but less efficient than MR-APSS when Height is the exposure. In summary, MR-APSS is689

complementary to GENIUS and GENIUS-MAWII in terms of estimation efficiency.690

4.5. Analysis results of LCV. We have mainly focused on comparing MR-APSS with methods using IVs. We note that causal691

inference can be performed without using IVs, for example, a recently developed summary-level data based method: the latent692

causal variable (LCV) model (46). Unlike exsisting summary-level MR methods which use instrument variables to infer the693

causal effect between trait pairs, LCV estimates the so-called genetic causality proportion (GCP) without using instrument694

variables. Under the LCV model, trait 1 is defined to be partially genetically causal for trait 2 (0 < GCP < 1) if part of the695

genetic component in trait 1 is causal for the trait 2, and trait 1 is defined to be fully genetically causal (GCP = 1) for trait 2696

if the entire genetic component in trait 1 is causal for the trait 2. Notably, trait pairs with low GCP values have limited partial697

causality, and the large GCP estimate implies a plausible causal effect between traits. As suggested by the LCV paper, trait698

pairs with ĜCP > 0.6 are unlikely to be false positives. To facilitate comparison of MR-APSS with LCV, we applied LCV699

to the trait pairs between 26 complex traits and the five negative control outcomes. As shown in Fig. S32, LCV produced700

deflated p-values. We further applied LCV to the 320 trait pairs among 26 traits. As shown in supplementary Fig. S33, LCV701

identified only four trait pairs with ĜCP > 0.6 based on Bonferroni correction. Our results suggest that LCV tends to be702

conservative in real data analysis.703
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Quantile−quantile plots under the null (β = 0)

Genetic correlation rg = 0, correlation induced by sample structure c12 = 0.075
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Fig. S1. Comparison of 14 MR methods on simulated data based on the MR-APSS model. (A) Quantile-quantile plots of− log10(p)-values under null simulations with varying
settings including (i) rg = 0.0, c12 = 0.075, (ii) rg = 0.1, c12 = 0.075, (iii) rg = 0.0, c12 = 0.15. (B) Estimates of causal effect under the alternative simulations
(β = 0.2). (C) Power in settings where the causal effect size β varied from 0.05 to 0.45. The comparison of power was conducted among those methods whose type I errors
were under controlled in the null simulations. The results were summarized from 50 replications.
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Fig. S2. Type I error control of 14 MR methods in the presence of genetic correlation induced by pleiotropy under MR-APSS model. Quantile-quantile plots of− log10(p)-values
under null simulations (β = 0) with varying genetic correlation rg ∈ {0.1, 0.2} and with fixed correlation in estimation errors (c12 = 0.075). The foreground-background
variance ratio was set to be σ2 : σ2

u = 20, τ2 : τ2
v = 1. The results were summarized from 50 replications.
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Fig. S3. Type I error control of 14 MR methods in the presence of sample structure under MR-APSS model. Quantile-quantile plots of−log10(p)-values under null simulations
(β = 0) with genetic correlation rg = 0 and with correlation in estimation errors c12 ∈ {0.075, 0.15}. The correlation in estimation errors was induced by 10,000 overlapped
samples with correlation of environmental noises re = 0.3, 0.6. The foreground-background variance ratio was set to be σ2 : σ2

u = 20, and τ2 : τ2
v = 1. The results were

summarized from 50 replications.

Xianghong Hu, Jia Zhao, Zhixiang Lin, Yang Wang, Heng Peng, Hongyu Zhao, Xiang Wan, Can Yang
33 of 70



σ2 : σu
2 ● ● ●10:1 20:1 40:1

MR−APSS dIVW IVW RAPS

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●●●●●●●●●●●

●●

●
●

●

●●●●●
●●●

●●●

●●●●●
●
●●●

●
●●●

●●

●●
●●

●●●
●

●●●●●●●●●

●●
●

●●
●

●●
●

●

●

●●●●
●●

●●●●●●

●●

●
●●●

●●
●●●

●●●●●●
●

●●●●●
●

●

●●●

●

●
●

●●●●

●
●

●

●●●●●●

●●●
●●●

●
●●

●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●●●●●●●●●●●

●●

●
●

●

●●●●●
●●●

●●●

●●●●●
●
●●●

●
●●

●
●●

●●
●●

●●●
●

●●●●●●●●●

●●
●

●●
●

●●
●

●

●

●●●●
●●

●●●●●●

●●

●
●●●

●●
●●●

●●●●●●
●

●●●●●
●

●

●●●

●

●
●

●●●●

●
●

●

●●●●●●

●●●
●●●

●
●●

●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●●
●

●

●●●

●●

●●●●
●

●
●

●●
●

●●●●●●●
●●●●●

●●●●
●●●●●●●●●

●●
●●●●

●●●
●

●
●

●●

●
●●●●●

●
●●

●●●

●●●●●●●●
●●●●

●
●
●●

●●●●●
●●●●●●●●●

●

●
●●●

●
●

●
●

●●●
●●●

●●●●

●●●●●●
●●●●●●

●●●
●●

●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

MRMix cML−MA Egger CAUSE
●●

●

●

●

●

●●

●
●●

●●●●
●

●
●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

●
●

●

●
●●●●●

●
●

●
●●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●
●

●

●●
●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●

●
●

●●●
●●

●

●●
●●●●

●●
●●●●

●

●●
●
●●●●●●●●●●●●●●

●●●●●●
●●●●●

●

●
●●

●

●

●●
●

●

●
●●

●●●●●●
●

●●●●●●
●●●

●●
●
●●●

●●●●●●●●●●●●●●●

●

●●●●
●●

●
●

●●●●●●
●●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P ●

●

●
●

●
●●

●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●

●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

Weighted−median Weighted−mode GENIUS GENIUS−MAWII
●●

●
●

●●

●●●●●●
●

●●●●
●

●●●●
●●●

●
●●●●●●●●

●●●●
●●●●●●●●

●●●●

●●

●

●

●

●
●

●

●●●●●●●
●●●●

●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●

●

●

●●
●●

●
●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●●●●●●
●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●

●●●●

●
●●●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●

●
●

●
●●●

●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●

●
●●

●●
●●

●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●
●●

●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●

●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●

●

●●

●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

TSLS TSHT
●●●

●●

●●
●

●●●●●●●

●
●

●●

●●●●●
●
●

●●●●
●
●●●

●●●●●●
●●●●

●●●●●●

●●●
●

●
●

●
●

●●●●●
●●

●
●

●
●

●●●
●●●●●

●●●●●●●●●●●●●●●●
●●●●●

●●

●

●●
●

●

●

●

●
●

●●
●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

●●●
●●

●●
●

●●●●●●●

●
●

●●

●●
●●

●
●

●●●●
●
●●●

●●●●●●●
●●●●

●●●●●●

●●●
●

●
●

●
●●

●●●
●●

●●

●
●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●
●●●●

●●

●

●●

●●

●
●

●
●

●
●●

●●●●●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●0

1

2

3

0.0 0.5 1.0 1.5 2.0

Expected −log10P

O
bs

er
ve

d 
−

lo
g 1

0P

Fig. S4. The type I error control of 14 MR methods in settings with varying foreground-background variance ratio (σ2 : σ2
u). Quantile-quantile plots of− log10(p)-values under

null simulations (β = 0) with genetic correlation rg = 0.1 and with correlation in estimation errors c12 = 0.075. The correlation in estimation errors was induced by 10,000
overlapped samples with correlation of environmental noises re = 0.3. The foreground-background variance ratio was varied as σ2 : σ2

u ∈ {10, 20, 40}, τ2 : τ2
v = 1. The

results were summarized from 50 replications.
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u). Power when causal effect size β is

varied from 0.05 to 0.35. The foreground-background variance ratio was varied at: σ2 : σ2
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u = 40 (Right). The results were summarized from 50
replications.
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Quantile−quantile plots under the null (b = 0)

Proportion of IVs affected by correlated pleiotropy P(Zj = 1) = 0.2, correlation induced by sample structure re = 0.2
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Fig. S6. Comparison of 14 MR methods on simulated data based on the CAUSE model. (A) Quantile-quantile plots of− log10(p)-values under null simulations in settings
including (i) q = 0.2, re = 0.2, (ii) q = 0.4, re = 0.2, (iii) q = 0.2, re = 0.6. (B) Estimates of causal effect under alternative simulations with β = 0.2. (C) Power under
causal effect size β varied from 0.1 to 0.4. The comparison of power was conducted among those methods whose type I errors are under controlled in the null simulations.
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Fig. S7. Type I error control of 14 MR methods on inferring causal effects in the presence of correlated pleiotropy under CAUSE model. Quantile-quantile plots of− log10(p)-
values under null simulations (β = 0) with correlated pleiotropic effect η = 0.2. We varied the proportion of SNPs affected by correlated pleiotropy to be q ∈ {0.2, 0.4}. The
results were summarized from 50 replications.
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Fig. S8. The type I error control of 14 MR methods on inferring causal effects under CAUSE model in the presence of sample structure under CAUSE model. Quantile-quantile
plots of− log10(p)-values under null simulations (β = 0) with correlation between estimation errors c12 ∈ {0.075, 0.15}. The correlation in estimation errors was induced
by 10,000 overlapped samples with correlation of environmental noises re ∈ {0.3, 0.6}. The results were summarized from 50 replications.
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Fig. S9. Type I error control of MR-APSS with/without adjustment for selection bias due to LD clumping. Quantile-quantile plots of− log10(p)-values under null simulations
based on the MR-APSS model with genetic correlation rg = 0.1 and with correlation in estimation errors c12 = 0.075. The correlation in estimation errors was induced
by 10,000 overlapped samples with the correlation of environmental noises re = 0.3. MR-APSS with adjustment for selection bias arising from LD clumping is denoted
as MR-APSS (with adjusted p-values). MR-APSS without adjustment for selection bias arising from LD clumping was denoted as MR-APSS (with normal p-values). We
examined the type I error control of MR-APSS (with adjusted p-values) and MR-APSS (with normal p-values) with varying IV thresholds: 5× 10−5(Left), 5× 10−4 (Middle),
5× 10−3(Right). The results were summarized from 50 replications.
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Fig. S10. Comparison of causal inference by MR-APSS with/without accounting for selection bias arising from LD clumping. We performed null simulations based on the
MR-APSS model with genetic correlation rg = 0.1 and with correlation in estimation errors c12 = 0.075. The correlation in estimation errors was induced by 10,000
overlapped samples with correlation of environmental noises re = 0.3. (Left panel) Comparison of the median of selected IVs’ p-values before / after LD clumping. As
expected, the median of IVs’ p-values after clumping were generally smaller than that of before clumping. This is because the default LD clumping procedure is designed to
keep the independent SNPs with the most significant p-values; (Right panel) Boxplots comparing the number of selected IVs and the estimated number of valid IVs (π̂tMt)
which carry the foreground signals detected by MR-APSS. We examined the impact of the p-value adjustment for selection bias arising from LD clumping on the detection of
valid IVs. To be specific, we compared the number of valid IVs detected by MR-APSS with the p-value adjustment and MR-APSS without the adjustment. The IV threshold was
varied from 5× 10−5, 5× 10−4 to 5× 10−3. The results were summarized from 50 replications.
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Fig. S11. The influence of the estimation uncertainty in Ω̂ and Ĉ of the background model on MR-APSS. Quantile-quantile plots of − log10(p)-values under alternative
simulations (β = 0.2) based on MR-APSS model with genetic correlation rg = 0.1 and with correlation in estimation errors c12 = 0075. We compared MR-APSS and
MR-APSS (accounting for uncertainty in Ω̂ and Ĉ) with varying IV thresholds 5× 10−4 (Left), and 5× 10−6 (Right).
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Fig. S12. The influence of overestimation of Ω on the power of MR-APSS. Power under alternative simulations based on the MR-APSS model with genetic correlation rg = 0.1
and with correlation in estimation errors c12 = 0.075. Causal effect β was varied from 0.05 to 0.35. We manually fixed the background components Ω̂ and Ĉ at their ground
truth, denoted as MR-APSS (fix background at its truth), and compared its power to the power of MR-APSS. The results were summarized from 50 replications.
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Fig. S13. Sensitivity analysis result for BMI and T2D. Dots represent the causal effect estimates (y-axis) when changing γf (x-axis), i.e., the correlation between IV strength
(γj) and direct effect (αj) in the foreground model. Error bars represent their 95% confidence intervals.
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Fig. S16. Quantile-quantile plots of − log10(p)-values for causal inference between eight complex traits and five negative control outcomes from fourteen MR methods,
including four individual-level methods (A), ten summary-level methods (B-D).
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Fig. S17. Causal effect estimates and their 95% confidence intervals from different MR methods between eight exposures and one negative control outcome (Hair colour:
blonde).
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Fig. S18. Causal effect estimates and their 95% confidence intervals from different MR methods between eight exposures and one negative control outcome (Hair colour:
black).
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Fig. S19. Causal effect estimates and their 95% confidence intervals from different MR methods between eight exposures and one negative control outcome (Hair colour: dark
brown).
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Fig. S20. Causal effect estimates and their 95% confidence intervals from different MR methods between eight exposures and one negative control outcome (Hair colour: light
brown).
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Fig. S21. Causal effect estimates and their 95% confidence intervals from different MR methods between eight exposures and one negative control outcome (Tanning).
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Fig. S22. Causal relationships between 26 complex traits detected by IVW. The positive and negative estimates of causal effects of the exposure on the outcome are indicated
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Fig. S23. Causal relationships between 26 complex traits detected by dIVW. The positive and negative estimates of causal effects of the exposure on the outcome are indicated
by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number of IVs (< 4).
Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S24. Causal relationships between 26 complex traits detected by RAPS. The positive and negative estimates of causal effects of the exposure on the outcome are
indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number of
IVs (< 4). Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S25. Causal relationships between 26 complex traits detected by Egger. The positive and negative estimates of causal effects of the exposure on the outcome are
indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number of
IVs (< 4). Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S26. Causal relationships between 26 complex traits detected by MRMix. The positive and negative estimates of causal effects of the exposure on the outcome are
indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number of
IVs (< 4). Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S27. Causal relationships between 26 complex traits detected by cML-MA. The positive and negative estimates of causal effects of the exposure on the outcome are
indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number of
IVs (< 4). Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S28. Causal relationships between 26 complex traits detected by Weighted-median. The positive and negative estimates of causal effects of the exposure on the outcome
are indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number
of IVs (< 4). Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S29. Causal relationships between 26 complex traits detected by Weighted-mode. The positive and negative estimates of causal effects of the exposure on the outcome
are indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Cells marked with× are trait pairs excluded in MR analysis due to insufficient number
of IVs (< 4). Non-diagonal cells shaded with grey color are those with genetic correlation large than 0.75.
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Fig. S30. Causal relationships between 26 complex traits detected by CAUSE. The positive and negative estimates of causal effects of the exposure on the outcome are
indicated by red up-pointing triangles and blue down-pointing triangles, respectively. Non-diagonal cells shaded with grey color are those with genetic correlation large than
0.75.
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Fig. S31. Quantile-quantile plots of − log(p)-values produced by several summary-level MR methods for trait pairs between 26 complex traits and five negative control
outcomes. We varied the IV threshold at 5× 10−5, 5× 10−6, 5× 10−7 and 5× 10−8 to test their performance.
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Fig. S32. Quantile-quantile plots of− log 10(p)-values from LCV for the test of partial causality between 26 complex traits and five negative control outcomes.
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Fig. S33. Partially or fully genetically causal relationships among 26 complex traits based on LCV. The blue shaded squares indicate significant partially or fully causal effect of
trait 1 on trait 2 based on Bonferroni correction.
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Table S1. Summary of individual-level MR methods.

Method Linearity (A-II) (A-III) Key assumptions
TSLS X X X All IVs are valid.

LIML (36) X X X All IVs are valid.
MBTSLS (37) X X × InSIDE.
sisVIVE (38) X × × Majority valid.

Adaptive lasso (39) X × × Majority valid.
TSHT (40) X × × Plurality valid.

GENIUS (41) × × × All IVs can be invalid.
Heteroscedasticity of the exposure.

GENIUS-MAWII (42) × × × All IVs can be invalid.
Heteroscedasticity of the exposure.

MR-MiSTERI (43) × × × All IVs can be invalid.
Heteroscedasticity of the outcome.

IV: Instrumental Variable; Three IV assumptions: (A-I) IVs are associated with the exposure; (A-II) IVs are inde-
pendent of confounders; and (A-III) IVs only affect the outcome through the exposure.
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Table S2. GWAS sources

Trait Group Description N Data link
Tanning (47) Negative control outcome Ease of skin tanning 378,364 https://atlas.ctglab.nl/ukb2_sumstats/f.1727.0.0_res.EUR.

sumstats.MACfilt.txt.gz

Hair: black (47) Negative control outcome
Hair colour: Black
(natural, before greying)

385,603 https://atlas.ctglab.nl/ukb2_sumstats/1747_5_logistic.EUR.
sumstats.MACfilt.txt.gz

Hair: blonde (47) Negative control outcome
Hair colour: Blonde
(natural, before greying)

385,603 https://atlas.ctglab.nl/ukb2_sumstats/1747_1_logistic.EUR.
sumstats.MACfilt.txt.gz

Hair: dark brown (47) Negative control outcome
Hair colour: Dark brown
(natural, before greying)

385,603 https://atlas.ctglab.nl/ukb2_sumstats/1747_4_logistic.EUR.
sumstats.MACfilt.txt.gz

Hair: light brown (47) Negative control outcome
Hair colour: Light brown
(natural, before greying)

385,603 https://atlas.ctglab.nl/ukb2_sumstats/1747_3_logistic.EUR.
sumstats.MACfilt.txt.gz

Height (GIANT) (48) Anthropometric Standing Height 253,288 http://www.broadinstitute.org/collaboration/giant/images/
0/01/GIANT_HEIGHT_Wood_et_al_2014_publicrelease_
HapMapCeuFreq.txt.gz

BMI (47) Anthropometric Body Mass Index 385,336 https://atlas.ctglab.nl/ukb2_sumstats/f.21001.0.0_res.EUR.
sumstats.MACfilt.txt.gz

Height (UKBB) (47) Anthropometric Standing Height 385,748 https://atlas.ctglab.nl/ukb2_sumstats/f.50.0.0_res.EUR.
sumstats.MACfilt.txt.gz

CAD (49) Cardiovascular Coronary Artery disease 184,305 http://www.cardiogramplusc4d.org/media/
cardiogramplusc4d-consortium/data-downloads/cad.additive.
Oct2015.pub.zip

Angina (47) Cardiovascular self-reported: angina 289,307 http://atlas.ctglab.nl/ukb2_sumstats/20002_1074_logistic.EUR.
sumstats.MACfilt.txt.gz

HBP (47) Cardiovascular High blood pressure 385,699 https://atlas.ctglab.nl/ukb2_sumstats/6150_4_logistic.EUR.
sumstats.MACfilt.txt.gz

CD (50) Immune Crohn disease 40,266 ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/
human/2016-11-07/cd_build37_40266_20161107.txt.gz

RA (51) Immune rheumatoid arthritis 58,284 https://grasp.nhlbi.nih.gov/downloads/ResultsOctober2016/
Okada/RA_GWASmeta_European_v2.txt.gz

IBD (50) Immune Inflammatory Bowel Disease 59,957 ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/
human/2016-11-07/ibd_build37_59957_20161107.txt.gz

Urate(52) Metabolic Serum Urate 110,347 https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/
2012/2012_GUGC_urate_and_gout/GUGC_MetaAnalysis_
Results_UA.csv.zip

T2D (53) Metabolic Type II diabetes 898,130 http://diagram-consortium.org/downloads.html
ASD (54) Neurological/Psychiatric Autism Spectrum disorser 15,954 https://www.med.unc.edu/pgc/results-and-downloads/

downloads
AD (55) Neurological/Psychiatric Late-onset Alzheimer’s Disease 54,162 http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_

download.php
Anorexia (56) Neurological/Psychiatric Anorexia Nervosa 72,517 https://www.med.unc.edu/pgc/results-and-downloads/

downloads
SCZ (57) Neurological/Psychiatric Schizophrenia 105,318 http://walters.psycm.cf.ac.uk/clozuk_pgc2.meta.sumstats.txt.gz
Intelligence (47) Neurological/Psychiatric Fluid intelligence score 125,935 https://atlas.ctglab.nl/ukb2_sumstats/f.20016.0.0_res.EUR.

sumstats.MACfilt.txt.gz
MDD (47) Neurological/Psychiatric Major Depressive Disorder 244,890 https://atlas.ctglab.nl/ukb2_sumstats/41204_F32_logistic.EUR.

sumstats.MACfilt.txt.gz
Smoking (58) Neurological/Psychiatric Ever smoked regularly(no ukb) 249,171 https://conservancy.umn.edu/bitstream/handle/11299/

201564/SmokingInitiation.WithoutUKB.txt.gz?sequence=
42&isAllowed=y

Neuroticism (47) Neurological/Psychiatric Neuroticism 312,740 https://atlas.ctglab.nl/ukb2_sumstats/f.20127.0.0_res.EUR.
sumstats.MACfilt.txt.gz

Depression (59) Neurological/Psychiatric Depressive Symptoms 381,455 https://ctg.cncr.nl/documents/p1651/sumstats_depression_ctg_
format.txt.gz

Alcohol (60) Neurological/Psychiatric Drinks per week 414,343 https://www.dropbox.com/s/7hjxdhlxlwa482n/DRINKS_PER_
WEEK_GWAS.txt?dl=0

Daytime sleepiness (61) Neurological/Psychiatric Daytime sleepiness 452,071 https://personal.broadinstitute.org/mvon/Saxena.fullUKBB.
DaytimeSleepiness.sumstats.zip

Insomnia (62) Neurological/Psychiatric Insomnia 453,379 https://personal.broadinstitute.org/mvon/Saxena_fullUKBB_
Insomnia_summary_stats.zip

Income (63) Social Income 286,301 http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST009001-GCST010000/GCST009523/HillWD_31844048_
household_Income.txt.gz

NEB (64) Social Number of children ever born 343,072 https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/
2016/2016_Barban/NumberChildrenEverBorn_Pooled.txt.gz

SWB (65) Social Subject Well Being 298,420 https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/
2016/2016_Okbay_b/SWB_Full.txt.gz
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https://atlas.ctglab.nl/ukb2_sumstats/f.1727.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_5_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_5_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_1_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_1_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_4_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_4_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_3_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/1747_3_logistic.EUR.sumstats.MACfilt.txt.gz
http://www.broadinstitute.org/collaboration/giant/images/0/01/GIANT_HEIGHT_Wood_et_al_2014_publicrelease_HapMapCeuFreq.txt.gz
http://www.broadinstitute.org/collaboration/giant/images/0/01/GIANT_HEIGHT_Wood_et_al_2014_publicrelease_HapMapCeuFreq.txt.gz
http://www.broadinstitute.org/collaboration/giant/images/0/01/GIANT_HEIGHT_Wood_et_al_2014_publicrelease_HapMapCeuFreq.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.21001.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.21001.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.50.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.50.0.0_res.EUR.sumstats.MACfilt.txt.gz
http://www.cardiogramplusc4d.org/media/cardiogramplusc4d-consortium/data-downloads/cad.additive.Oct2015.pub.zip
http://www.cardiogramplusc4d.org/media/cardiogramplusc4d-consortium/data-downloads/cad.additive.Oct2015.pub.zip
http://www.cardiogramplusc4d.org/media/cardiogramplusc4d-consortium/data-downloads/cad.additive.Oct2015.pub.zip
http://atlas.ctglab.nl/ukb2_sumstats/20002_1074_logistic.EUR.sumstats.MACfilt.txt.gz
http://atlas.ctglab.nl/ukb2_sumstats/20002_1074_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/6150_4_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/6150_4_logistic.EUR.sumstats.MACfilt.txt.gz
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-11-07/cd_build37_40266_20161107.txt.gz
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-11-07/cd_build37_40266_20161107.txt.gz
https://grasp.nhlbi.nih.gov/downloads/ResultsOctober2016/Okada/RA_GWASmeta_European_v2.txt.gz
https://grasp.nhlbi.nih.gov/downloads/ResultsOctober2016/Okada/RA_GWASmeta_European_v2.txt.gz
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-11-07/ibd_build37_59957_20161107.txt.gz
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-11-07/ibd_build37_59957_20161107.txt.gz
https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/2012/2012_GUGC_urate_and_gout/GUGC_MetaAnalysis_Results_UA.csv.zip
https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/2012/2012_GUGC_urate_and_gout/GUGC_MetaAnalysis_Results_UA.csv.zip
https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/2012/2012_GUGC_urate_and_gout/GUGC_MetaAnalysis_Results_UA.csv.zip
http://diagram-consortium.org/downloads.html
https://www.med.unc.edu/pgc/results-and-downloads/downloads
https://www.med.unc.edu/pgc/results-and-downloads/downloads
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
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https://atlas.ctglab.nl/ukb2_sumstats/f.20016.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.20016.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/41204_F32_logistic.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/41204_F32_logistic.EUR.sumstats.MACfilt.txt.gz
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.WithoutUKB.txt.gz?sequence=42&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.WithoutUKB.txt.gz?sequence=42&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.WithoutUKB.txt.gz?sequence=42&isAllowed=y
https://atlas.ctglab.nl/ukb2_sumstats/f.20127.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.20127.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://ctg.cncr.nl/documents/p1651/sumstats_depression_ctg_format.txt.gz
https://ctg.cncr.nl/documents/p1651/sumstats_depression_ctg_format.txt.gz
https://www.dropbox.com/s/7hjxdhlxlwa482n/DRINKS_PER_WEEK_GWAS.txt?dl=0
https://www.dropbox.com/s/7hjxdhlxlwa482n/DRINKS_PER_WEEK_GWAS.txt?dl=0
https://personal.broadinstitute.org/mvon/Saxena.fullUKBB.DaytimeSleepiness.sumstats.zip
https://personal.broadinstitute.org/mvon/Saxena.fullUKBB.DaytimeSleepiness.sumstats.zip
https://personal.broadinstitute.org/mvon/Saxena_fullUKBB_Insomnia_summary_stats.zip
https://personal.broadinstitute.org/mvon/Saxena_fullUKBB_Insomnia_summary_stats.zip
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001-GCST010000/GCST009523/HillWD_31844048_household_Income.txt.gz
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001-GCST010000/GCST009523/HillWD_31844048_household_Income.txt.gz
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001-GCST010000/GCST009523/HillWD_31844048_household_Income.txt.gz
https://grasp.nhlbi.nih.gov/downloads/ResultsFebruary2017/2016/2016_Barban/NumberChildrenEverBorn_Pooled.txt.gz
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Table S3. Analysis results from MR-APSS and RAPS for BMI and Insomnia

Method
IV Threshold: 5× 10−5 IV Threshold: 5× 10−8

# IV
(#Valid IV)

β̂ s.e.(β̂) p-value
# IV
(#Valid IV)

β̂ s.e.(β̂) p-value

MR-APSS
1298
(219)

0.0337 0.0221 0.128
400
(106)

0.0284 0.0274 0.298

MR-APSS(Ω = 0)
1298
(558)

0.0698 0.0134 1.70e-07
400
(190)

0.0544 0.0197 5.71e-03

MR-APSS(C = I)
1298
(478)

0.0629 0.0162 1.00e-04
400
(200)

0.0519 0.0208 0.012

MR-APSS(Ω = 0,C = I)
1298
(952)

0.0854 0.0100 1.28e-17
400
(352)

0.0739 0.0138 9.09e-08

RAPS 1298 0.0721 0.0074 1.54e-22 400 0.0702 0.0118 3.04e-09

The default IV threshold for MR-APSS is 5× 10−5; the default IV threshold for RAPS is 5× 10−8.
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Table S4. The 36 trait pairs detected by MR-APSS, Egger, CAUSE or Weighted-mode

Exposure Outcome r̂g ĉ12 c1 c2
# IVs: 5e-05
(# valid IVs)

# IVs: 5e-08 MR-APSS IVW RAPS Weighted-mode Egger CAUSE

BMI Angina
0.31
(0.03)

0.08
(0.01)

1.18 1.03
1301
(205)

400
0.09
(3.03e-07)

0.10
(5.83e-39)

0.11
(6.06e-30)

0.10
(4.03e-03)

0.08
(0.03)

0.06
(1.20e-04)

BMI CAD
0.28
(0.03)

0.01
(0.01)

1.18 0.9
1300
(205)

399
0.15
(5.55e-08)

0.14
(6.92e-42)

0.14
(1.47e-27)

0.14
(0.01)

0.32
(4.99e-10)

0.06
(7.40e-04)

BMI Depression
0.22
(0.02)

0.08
(0.01)

1.18 1.02
1297
(212)

399
0.07
(2.09e-05)

0.08
(1.03e-30)

0.08
(5.79e-16)

0.05
(0.09)

-0.01
(0.88)

0.04
(6.61e-04)

BMI HBP
0.35
(0.02)

0.29
(0.01)

1.18 1.13
1301
(206)

400
0.18
(2.76e-07)

0.24
(3.05e-255)

0.26
(2.63e-87)

0.25
(1.67e-17)

0.23
(2.53e-05)

0.12
(2.06e-13)

BMI Income
-0.26
(0.02)

-0.08
(0.01)

1.18 1.05
1300
(222)

400
−0.17
(1.83e-11)

−0.15
(7.87e-73)

−0.14
(4.02e-26)

-0.14
(9.66e-05)

−0.20
(7.42e-05)

−0.07
(4.19e-05)

BMI Smoking
0.26
(0.02)

0.02
(0.01)

1.18 0.98
1284
(215)

399
0.11
(1.36e-06)

0.11
(3.43e-37)

0.11
(1.45e-17)

0.06
(0.28)

0.12
(0.01)

0.06
(2.35e-05)

BMI T2D
0.55
(0.02)

0.14
(0.01)

1.18 1.12
1296
(190)

399
0.33
(6.77e-09)

0.42
(0.00e+00)

0.47
(6.06e-165)

0.47
(2.09e-26)

0.50
(4.16e-10)

0.15
(2.11e-12)

BMI Urate
0.35
(0.03)

0.02
(0.01)

1.18 0.91
1278
(200)

390
0.12
(0.15)

0.20
(4.47e-50)

0.21
(1.26e-34)

0.15
(0.15)

0.26
(1.82e-04)

0.10
(6.74e-06)

Depression Insomnia
0.45
(0.03)

0.18
(0.01)

1.02 1.03
197
(70)

7
0.57
(4.38e-05)

0.39
(3.52e-12)

0.38
(1.97e-03)

0.18
(0.09)

-1.16
(0.31)

0.15
(4.50e-03)

HBP Angina
0.47
(0.04)

0.08
(0.01)

1.12 1.03
684
(189)

197
0.15
(2.19e-13)

0.15
(3.87e-44)

0.14
(1.49e-22)

0.06
(0.22)

0.09
(0.10)

0.10
(9.39e-05)

HBP∗ BMI
0.35
(0.02)

0.29
(0.01)

1.13 1.18
683
(225)

196
0.03
(0.40)

0.10
(2.48e-24)

0.10
(1.14e-04)

0.20
(0.20)

−0.40
(2.80e-05)

0.10
(4.38e-04)

HBP CAD
0.46
(0.03)

0.02
(0.01)

1.12 0.9
683
(192)

196
0.32
(4.92e-22)

0.28
(2.82e-96)

0.28
(4.89e-37)

-0.06
(0.20)

0.16
(0.06)

0.15
(1.82e-08)

HBP∗ Urate
0.30
(0.03)

0.01
(0.01)

1.12 0.9
677
(185)

193
0.07
(0.07)

0.12
(9.27e-12)

0.12
(3.74e-05)

0.79
(0.79)

−0.43
(6.28e-05)

0.07
(8.60e-03)

Height (GIANT) BMI
-0.11
(0.02)

-0.01
(0.01)

1.35 1.19
1188
(320)

527
−0.08
(1.08e-06)

−0.07
(6.65e-66)

−0.08
(1.83e-17)

0.19
(1.05e-03)

-0.13
(4.39e-04)

−0.05
(2.24e-06)

Height (GIANT) CAD
-0.09
(0.02)

-0.04
(0.01)

1.35 0.89
1200
(319)

532
−0.05
(2.51e-05)

−0.05
(4.62e-17)

−0.05
(1.07e-09)

0.01
(0.80)

-0.02
(0.42)

-0.03
(2.14e-03)

Height (GIANT) Income
0.17
(0.02)

0.02
(0.01)

1.34 1.05
1201
(320)

534
0.05
(2.35e-07)

0.05
(3.66e-22)

0.05
(1.45e-11)

0.04
(0.21)

0.05
(0.06)

0.03
(2.14e-04)

Height (UKBB) Angina
-0.19
(0.03)

-0.07
(0.01)

1.97 1.03
2227
(401)

1136
−0.03
(3.99e-05)

−0.04
(5.58e-22)

−0.04
(1.66e-14)

-0.04
(0.02)

-0.02
(0.08)

-0.02
(1.49e-03)

Height (UKBB) BMI
-0.13
(0.02)

-0.10
(0.01)

1.97 1.18
2226
(405)

1136
−0.06
(2.48e-06)

−0.06
(2.01e-85)

−0.08
(2.41e-26)

−0.11
(1.64e-07)

−0.10
(6.78e-06)

−0.04
(5.09e-09)

Height (UKBB) CAD
-0.13
(0.02)

-0.03
(0.01)

1.97 0.9
2224
(397)

1136
−0.06
(7.36e-08)

−0.05
(3.75e-26)

−0.05
(5.95e-14)

0.03
(0.40)

-0.06
(2.01e-03)

-0.02
(1.76e-03)

Height (UKBB) Income
0.21
(0.02)

0.11
(0.01)

1.97 1.05
2226
(395)

1136
0.05
(1.62e-12)

0.06
(3.85e-59)

0.06
(1.67e-31)

0.06
(5.60e-03)

0.04
(0.01)

0.04
(4.39e-07)

Height (UKBB) Intelligence
0.16
(0.02)

0.17
(0.01)

1.97 1.11
2227
(393)

1136
0.07
(1.34e-08)

0.09
(5.97e-61)

0.09
(5.66e-29)

0.06
(0.08)

0.05
(0.03)

0.06
(4.10e-07)

Income BMI
-0.26
(0.02)

-0.08
(0.01)

1.05 1.18
260
(66)

25
−0.47
(7.29e-05)

−0.22
(3.22e-16)

-0.24
(7.46e-03)

-0.17
(0.37)

0.22
(0.73)

-0.10
(0.03)

Income Depression
-0.45
(0.03)

-0.11
(0.01)

1.05 1.02
259
(73)

25
−0.35
(4.07e-09)

−0.27
(1.19e-22)

−0.27
(7.17e-14)

-0.23
(2.02e-03)

-0.44
(0.11)

-0.12
(4.95e-04)

Income Intelligence
0.58
(0.03)

0.12
(0.01)

1.05 1.11
260
(70)

25
1.07
(1.01e-13)

0.79
(1.00e-59)

0.78
(2.30e-21)

0.53
(7.19e-03)

2.31
(6.70e-05)

0.27
(2.12e-03)

Insomnia Depression
0.45
(0.03)

0.18
(0.01)

1.03 1.02
348
(80)

37
0.25
(6.90e-05)

0.24
(5.88e-17)

0.24
(1.04e-09)

0.23
(8.99e-03)

0.19
(0.60)

0.14
(8.11e-04)

Insomnia Neuroticism
0.42
(0.02)

0.23
(0.01)

1.04 1.05
348
(88)

37
0.47
(6.75e-08)

0.43
(2.43e-43)

0.45
(2.80e-12)

0.55
(3.07e-04)

-0.46
(0.38)

0.22
(4.42e-07)

Intelligence Income
0.58
(0.03)

0.12
(0.01)

1.11 1.05
403
(62)

47
0.36
(2.23e-09)

0.29
(7.38e-77)

0.28
(1.26e-19)

0.19
(4.13e-03)

0.81
(7.13e-04)

0.08
(1.53e-03)

Neuroticism Anorexia
0.28
(0.03)

0.02
(0.01)

1.04 1.02
430
(155)

68
0.40
(6.90e-07)

0.24
(1.96e-09)

0.25
(5.95e-06)

0.15
(0.21)

0.21
(0.63)

0.15
(3.75e-03)

Neuroticism Insomnia
0.42
(0.02)

0.23
(0.01)

1.05 1.04
463
(141)

69
0.29
(2.70e-10)

0.27
(1.99e-64)

0.29
(8.01e-26)

0.23
(3.66e-03)

-0.42
(0.03)

0.14
(3.89e-06)

Neuroticism MDD
0.53
(0.05)

0.13
(0.01)

1.05 0.99
463
(151)

69
0.18
(2.06e-05)

0.18
(5.65e-16)

0.18
(1.54e-09)

0.13
(0.08)

0.02
(0.94)

0.10
(0.05)

Neuroticism SCZ
0.21
(0.02)

0.01
(0.01)

1.04 1.1
457
(123)

69
0.57
(7.02e-07)

0.32
(3.63e-21)

0.34
(4.65e-05)

0.17
(0.18)

-0.56
(0.38)

0.15
(2.02e-03)

Neuroticism SWB
-0.66
(0.04)

-0.05
(0.01)

1.04 1
450
(141)

68
−0.23
(5.05e-09)

−0.19
(1.04e-20)

−0.19
(1.11e-11)

-0.02
(0.80)

-0.06
(0.76)

-0.10
(3.47e-03)

SCZ Depression
0.32
(0.03)

0.01
(0.01)

1.1 1.01
664
(163)

121
0.08
(4.10e-05)

0.06
(3.05e-16)

0.07
(6.01e-09)

0.05
(0.23)

0.12
(0.18)

0.04
(8.73e-04)

T2D Angina
0.37
(0.04)

0.06
(0.01)

1.11 1.03
652
(199)

187
0.06
(3.95e-05)

0.06
(1.03e-11)

0.06
(1.35e-06)

0.09
(0.03)

0.04
(0.38)

0.05
(0.03)

T2D CAD
0.39
(0.03)

0.03
(0.01)

1.1 0.89
660
(206)

190
0.13
(1.43e-10)

0.13
(1.56e-36)

0.13
(8.48e-18)

0.10
(6.39e-03)

0.05
(0.35)

0.08
(1.15e-05)

T2D HBP
0.43
(0.02)

0.11
(0.01)

1.11 1.12
652
(202)

187
0.10
(8.69e-07)

0.13
(2.30e-70)

0.13
(1.61e-15)

0.06
(0.02)

-0.01
(0.81)

0.11
(1.01e-07)

We also provided the results of IVW, the standardized MR method require all IVs are valid, and the results of RAPS, a method rely on InSIDE assumption in
the table for comparison. Trait pairs detected by Egger but not by MR-APSS are marked by *.
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