## STING activation promotes robust immune response and tumor regression in glioblastoma models

Gilles Berger,<sup>1,2,3,\*</sup> Erik H. Knelson,<sup>4</sup> Jorge L. Jimenez-Macias,<sup>1</sup> Michal O. Nowicki,<sup>1</sup> Saemi Han,<sup>4</sup> Eleni Panagioti,<sup>1</sup> Patrick H. Lizotte,<sup>4,5</sup> Kwasi Adu-Berchie,<sup>3</sup> Alexander Stafford,<sup>3</sup> Nikolaos Dimitrakakis,<sup>3</sup> Lanlan Zhou,<sup>6</sup> E. Antonio Chiocca,<sup>1</sup> David J. Mooney,<sup>3,7</sup> David A. Barbie,<sup>4</sup> Sean E. Lawler<sup>1,\*</sup>

<sup>1</sup> Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

<sup>2</sup> Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.

<sup>3</sup> Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.

<sup>4</sup> Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

<sup>5</sup> Belfer Center for Applied Cancer Science, Boston, MA, USA.

<sup>6</sup> Legorreta Cancer Center at Brown University; Joint Program in Cancer Biology, Brown University and Lifespan Cancer institute; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.

<sup>7</sup> Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.



**Figure S1. STING immunostaining on mouse tumor models. a, b,** STING IHC staining of established murine CT-2A and GL261 tumors, showing STING is widely expressed in the tumor and expressed in a subset of cell in the healthy tissue. **c,** STING IHC staining for a G9 xenograft tumor; the bulk of the tumor does not express STING to visible levels.



**Figure S2. CXCL10 production following STING activation by 2',3'-cGAMP and ADU-S100. a**, Levels of CXCL10 as measured by ELISA 24 h after STING agonist treatment of the indicated human GBM cell neurosphere lines. **b**, The same graph with the addition of responsive human brain endothelial HCMEC/D3 and brain pericyte HBVP cells to allow comparison.



**Figure S3. Pilot** *in vivo* **STING experiment. a**, Timeline of the experiment. **b**, Flow cytometry analysis of the BILs 3 days after treatment with a bolus of either cGAMP or ADU-S100 in PBS (50  $\mu$ g). **c**, Kaplan-Meier survival analysis from a cohort implanted with cGAMP-loaded hydrogels (100  $\mu$ g).



**Figure S4.** Flow cytometry analysis of brain MDSC populations following STING activation by ADU-S100. a, b, Expression levels of MHC class I/II and PD-L1 on G-MDSC and M-MDSC from BILs extracted from GL261 and CT-2A established tumors in controls and ADU-S100 treated conditions (respectively a and b).



**Figure S5. Assessment of CT-2A tumor immune infiltrates: figures at day 7 after STING agonist treatment. a**, 2D t-SNE plots at day 7 post-treatment of established CT-2A tumors with ADU-S100 treated mice (50 µg, bolus) in red and controls in dark grey. **f**, t-SNE map for treated mice at day 7 colored by the FlowSOM populations; with relevant cell types highlighted. **c**, highly upregulated populations, comprising NK and inflammatory cells. **d**, Heatmap and hierarchical clustering of the FlowSOM populations at day 7.



PC2 (22%)

Log<sub>2</sub>Fold change

**Figure S6. Transcriptome analysis from GL261 tumors treated with ADU-S100. a**, PCA plot for individual samples, ellipsoids drawn with their centroids at the 95% confidence interval. The first two PCs are shown with their proportion of variance explained. Biologically independent animals per group, n = 3. b, Volcano plots for RNA sequencing data from GL261 BILs, ADU-S100 vs PBS showing differentially expressed genes (FDR adjusted *p* threshold  $\leq$  0.1.) **c**, Violin plots showing aggregate expression of IFN and NK-mediated cytotoxicity genes after ADU-S100 treatment of GL261 tumors. FDR adjusted *P* values (Wilcoxon) are given for each gene set (ADU-S100 vs PBS). **d**, Gene ontology analysis after ADU-S100 treatment of GL261 tumors. **e**, Volcano plot for RNA sequencing data from GL261 BILs, ADU-S100 vs PBS showing differentially expressed genes for the NK mediated cytotoxicity KEGG gene set. (FDR adjusted *p* threshold  $\leq$  0.1.).

## **Reference:**

https://www.gsea-msigdb.org/gsea/msigdb/cards/KEGG\_NATURAL\_KILLER\_CELL\_MEDIATED\_CYTOTOXICITY



**Figure S7. Therapeutic STING implants: GL261 survival. a,** IVIS picture of both groups on treatment day. Mice without a clear IVIS signal are discarded from the study. **b, c and d,** IVIS and MRI of both groups at different timepoints.



**Figure S8.** Long-term effect of therapeutic STING implants on the GL261 model. a, Timeline of the experiment. **b**, Graphical summary of the gel preparation. c, BIL flow panel 17 days after therapeutic gel implantation. **d**, PD-L1 expression on CD45<sup>-</sup> cells at the same timepoint. **e**, IVIS of the mice before sacrifice.



**Figure S9. Therapeutic STING implants: CT-2A survival. a, b and c,** IVIS and MRI imaging of both groups at different timepoints as shown.



**Figure S10. a**, Gating strategies employed for the analysis of the TME and **b**, for the quantification of NK cells in peripheral blood.

Table 1. Mouse Flow Panel (all antibodies purchased from Biolegend, San Diego, CA).

CD3 FITC 100306 CD4 PerCP/Cy5 100434 CD19 PE/Cy7 115520 CD49b PE 108908 PD-L1 PE Dazzle 594 124323 CD11b APC 101212 MHC II AF700 107622 F4/80 BV421 123132 H2KB BV510 116523 GR-1 BV570 108431 CD8a BV650 100742 CD45 BV711 103147 CD11c BV785 117335