
 
 

1 
 

 
 
 
 
 
 
Supplementary Information for 
The evolution of synaptic and cognitive capacity: 
Insights from the nervous system transcriptome of Aplysia 
 
 
 
Joshua Orvis, Caroline B. Albertin, Pragya Shrestha, Shuangshuang Chen, Melanie Zheng, Cheyenne J. 
Rodriguez, Luke Tallon, Anup Mahurkar, Aleksey Zimin, Michelle Kim, Kelvin Liu, Eric R. Kandel, Claire M. 
Fraser, Wayne Sossin and Thomas W. Abrams 
 
Corresponding author:  Eric R. Kandel 
erk5@columbia.edu 
 
 
This PDF file includes: 
 

Supplementary text 
Figures S1 to S19 (not allowed for Brief Reports) 
Tables S1 to S5  
Legends for Datasets S1 to S2 
SI References  

 
Other supplementary materials for this manuscript include the following:  
 

Datasets S1 to S2 

 

 

 

 
  



 
 

2 
 

Supplementary Information Text 

 

Methods 
RNA preparation. Trimmed Aplysia ganglia were frozen in liquid nitrogen and ground using a pre-cooled (at -
80 ºC) mortar and pestle on a bed of dry ice. The pulverized sample was homogenized in a glass-Teflon 
homogenizer in 1 ml Trizol at 0 ºC, shaken on a rotator for 20 minutes at 0 ºC and centrifuged at 21,000g for 15 
minutes at 4 ºC. The supernatant was collected and mixed well with 200 µl chloroform, incubated on ice for 5 
minutes, and centrifuged. The upper chloroform phase was retained and combined with an additional 200 ul of 
chloroform, mixed well, centrifuged at 21,000g for 15 minutes, and the chloroform phase retained. This 
additional chloroform step eliminated any traces of Trizol from the solution. 40 µl of 3M sodium acetate (i.e., 
10% of volume) and 1 ml of 100% ethanol (i.e., 2.5X volume) were added to the collected chloroform phase. 
The tube was centrifuged at 21,000g for 30 minutes at 4 ºC. The supernatant was carefully removed and 
discarded, the pellet was washed with 75% ethanol, and the tube centrifuged again. The air-dried pellet, taking 
care to avoid over-drying, was then dissolved in 50 µl nuclease-free water, and the RNA quantified using Nano-
drop. PolyA RNA was sheared and cDNA libraries were prepared with the TruSeq RNA Sample Prep kit 
(Illumina, San Diego, CA). Adapters containing seven nucleotide indexes were ligated to the double-stranded 
cDNA. The DNA was purified between enzymatic reactions and the size selection of the library was performed 
with AMPure XP beads (Beckman Coulter Genomics, Danvers, MA). Libraries were sequenced on Illumina 
HiSeq 2000. The total reads from the CNS were 2.97 billion 100bp paired-end reads.  

 
Assembly of reads.  Paired-end reads were trimmed with Trimmomatic (1). Assembly was performed using 
three different approaches - de novo with Trinity (DN-Trinity) (2), genome-guided de novo, also with Trinity 
(GG-Trinity), and pure genome-guided assembly with StringTie (3) (see Table S1 and AplysiaTools.org for 
genome information). These were then merged using PASA (4). TransDecoder was used to generate CDS 
predictions; the longest CDSs called per transcript from both TransRate-filtered (5) PASA transcripts and 
TransRate-filtered de novo Trinity transcripts were selected and clustered using CD-HIT-EST (6, 7), with the 
following parameters: 
-c	0.97	-G	0	-l	300	-aL	0.35	-AL	max	-aS	0.35	-AS	max	-A	0	-g	1	-r	1	-mask	NX	-M	8000	-T	3	-mismatch	-4	-gap	-12	-gap-ext	-2	-d	50	
A bespoke script filtered these transcripts to select the transcript within each cluster having the longest CDS. 
The longest transcript per cluster was then analyzed with TransDecoder to generate polypeptide predictions. 
These sequences were used as input for Trinotate to generate functional annotation, supplemented by manual 
annotation.  
  
TransRate filtering of contigs. TransRate (5) generates a cumulative score representing assembly accuracy, 
which is the geometric mean of four “contig score components” and eliminates contigs likely to be incorrect (1). 
However, based on examining TOIs, we observed that valid transcripts were lost by this screening. Examination 
of the valid transcripts that were lost suggested that low scores for the sCseg component contributed to the 
erroneous assessment of assembly accuracy. s(Cseg) scores are based on the assumption that there will be equal 
reads across a transcript; we already had documented that fragmentation was due to poor coverage/assignment 
of reads across repeat regions, and thus, transcripts were prone to being eliminated by low Cseg scores. To 
ameliorate this problem, we scaled sCseg, so that it ranged from 0.5 to 1.0, using the following equation: 
Scaled s(Cseg) = 0.5+ s(CSeg)*(1-0.5).  
We then empirically chose 0.4 for the cutoff value for the geometric mean calculated using the scaled sCseg 
based on BUSCO and TOI coverage. This is an example of the difficulty of transcriptome assemblies in the 
absence of closely related assemblies and the benefit of TOIs in optimizing this somewhat arbitrary but 
important process.  
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Phylogenetic analysis.  To identify key synaptic scaffold genes, we searched NCBI for candidate sequences in 
select animal clades. Octopus bimaculoides sequences were identified by tblastn and blastp from a Trinity-
assembled transcriptome from RNAseq reads from supraesophageal brain, subesophageal brain, and optic lobes 
(8). In a number of cases, we were able to stitch together fragmented transcript sequences in other mollusks 
based on orthologous Aplysia sequences. Phylogenetic dendrograms were developed using alignments 
generated by MUSCLE. Maximum likelihood inference was generated with RAxMLGui (9, 10) with 500 
replicates per dendrogram using the following options:  ML+rapid bootstrap, VT amino acid substitution model 
and PROTGAMMAI model for rate substitution. Some alignments  (indicated in legends) were trimmed prior to 
RAxML with TrimAI (11), with User Defined option and the following parameters:  Minimum percentage of 
positions to conserve, 45%; Gap threshold, 0.19; Similarity threshold, 0; Window size, 1.0.. Dendrograms were 
visualized with Figtree (See Table S2 for software details). 
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Additional Postsynaptic Scaffold Proteins 
 
Cornichons 

Cornichons also serve as AMPA receptor regulatory proteins. There are four cornichons in vertebrates with 
no additional duplications in Danio. Two Cornichon-like sequences are found in the Aplysia assembly, one of 
which clusters with the vertebrate Cornichon 1-3 family and one of which clusters with vertebrate Cornichon 4 
(Fig. S7). Unlike TARPS, Cornichons are evolutionarily ancient, and are present in plants and fungi. Cornichon 
1-3 family members are linked to AMPA receptor regulation in both vertebrates and invertebrates (12, 13), 
whereas Cornichon 4 has been implicated in G protein-coupled receptor (GPCR) regulation and localization 
(14). In Trichoplax, which lacks neurons and synapses, there are distinct transcripts encoding a Cornichon 1 
family member and a Cornichon 4 family member (Fig. S7). The earliest-branching phylum in which features of 
the Cornichon 1 and 4 families appear is Porifera. Ctenophores and choanoflagellates encode a single family 
member that does not clearly segregate with either of the two Cornichon families.  
 
Intracellular Postsynaptic Density Scaffold Proteins 
 
DLGs 

There are a number of intracellular proteins important for anchoring these ligand-gated receptors and 
receptor-associated proteins at synapses. The most well-known postsynaptic scaffolding protein group is the 
discs-large family, DLG1-4, including PSD-95, SAP102 and two additional members in vertebrates. DLG1 also 
duplicated in Danio. These proteins conserve three PDZ domains followed by an SH3 domain and an inactive 
guanylate kinase domain (Fig. S5). The divergence of DLGs from other MAGUK (Membrane-Associated 
Guanylate Kinase) members occurred at the base of the metazoan lineage (15). There is only one member in all 
protostomes examined, including Aplysia, that conserve this domain structure (Fig. S8). Previous results 
suggesting multiple members of this family in octopuses (8) were an artifact due to fragmented assembly of a 
single transcript. As discussed in the main text, DLGs regulate AMPA receptors by binding to the C-terminal 
TTPV motif of TARPs, and this sequence is conserved in most non-insect members of the invertebrate TARP-A 
family.  
 
Homer 

 Homers have two conserved domains, an N-terminal EVH1 domain and a C-terminal coiled-coil 
domain, and these domains are conserved in most metazoans (Figs. S5) and in choanoflagellates. While three 
isoforms are present in vertebrates (five in Danio) only one isoform is present in invertebrates including Aplysia 
(Fig. S9). Note, no Homer orthologue is present in C. elegans (16), which is an example of the loss of a synaptic 
scaffold gene. In the PSD, Homer is important for linking IP3 receptors to PSD proteins such as mGluR 
receptors and Shank (17, 18). Interestingly, whereas the IP3 receptor-Homer interaction and Homer 
oligomerization are present in the choanoflagellate orthologue (16), the Shank interaction is not, consistent with 
some specific Homer interactions appearing later in evolution, after these proteins were exapted to serve a 
neuronal role.  
 
Shank 

SH3 and multiple ankyrin repeat protein (Shank), similar to the other intracellular scaffold proteins, first 
originated at the base of the metazoan lineage (19), and is present in choanoflagellates. Shank contains multiple 
ankyrin repeats at the N-terminus, followed by an SH3 domain, a PDZ domain and a conserved SAM domain at 
the C-terminus (Fig. S5). The Shank SH3 domain has several changes that prevent binding to the classic 
proline-rich ligand of SH3 domains (20), and therefore it lacks known binding partners. Interestingly, this SH3 
domain is poorly conserved in molluscs, particularly in Aplysia. There is one Shank orthologue present in all 
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non-bilaterians and in protostomes, including Aplysia, but three isoforms are present after the vertebrate genome 
duplications, with an additional two members in Danio (Fig. S10).  
 
GRIP 

The glutamate receptor-interacting protein (GRIP) contains 7 PDZ domains (Fig. S5) and has many 
ligands. Given that many proteins have multiple PDZ domains, it is somewhat difficult to trace 
phylogenetically. However, based on our reverse-BLAST test (21), in which the putative orthologous protein 
sequence identified in a non-model organism must retrieve the same protein when BLASTed against a well-
annotated reference species (21), almost all non-bilaterian sequences identified by BLAST to GRIP failed, 
except for one sequence from the octocoral Dendronephthya gigantea (Fig. S11). Thus, it appears that the 
protein was present in the last common ancestor of cnidarians and bilaterians, but was lost in most cnidarians. 
There is one GRIP orthologue present in all protostomes, but two isoforms are present in vertebrates after the 
genome duplication, and an additional member is present in Danio.  
 

In summary, the intracellular scaffold proteins generally have multiple isoforms in vertebrates but only a 
single member in most protostomes and invertebrate deuterostomes examined (Table S4). All of these proteins, 
except for GRIP, were present before synapses evolved and have orthologues in choanoflagellates. The roles of 
these proteins in organizing sub-domains of cells clearly predated their use in organizing post-synaptic 
densities. Although the increase in diversity of these proteins in vertebrates (Table S4) is consistent with the 
proposal that complexity of synapses is linked to an increase in synaptic diversity, there are no increases in the 
number of these scaffolding proteins between Aplysia and the more cognitively complex Octopus (Table S4). 
Moreover, there are considerably more isoforms in the cognitively simpler Danio than in mammals (Table S4).  
 
Additional Presynaptic Scaffold Proteins 
 
RIM-Binding Protein  
RIM binding proteins (RIM-BPs) have a series of three SH3 domains, some of which bind to RIM and Ca 
channels, and one to three fibronectin type 3 domains situated between the first and second SH3 domain (Fig. 
S12). RIM-BP acts in concert with RIM in recruiting Ca2+ channels to the active zone, and together with RIM 
and Munc13, plays an important role in vesicle priming (22, 23). In Drosophila RIM-BP is involved in 
homeostatic plasticity (24). Aplysia has a single RIM Binding Protein (RIM-BP), whereas mammals have three 
RIM-BPs, two of which have redundant roles at central synapses. RIM-BP3 is expressed in peripheral tissues, 
and has a specialized role in spermiogenesis. Zebrafish also has three RIMBPs, but there are two RIM-BP2 
genes, so all three may have roles in the CNS. RIM-BP has a distant homolog in Salpingoeca, a colonial 
choanoflagellate. Better conserved RIM-BP homologs are present in Trichoplax and in cnidarians. As with 
Aplysia, all bilaterian invertebrates have a single RIM-BP (Fig. S15).  
 
CAST/ELKS  

ELKS family members include ERC and CAST. CAST/ELKS proteins have a large, highly conserved 
CAST domain, which occupies most of the protein. ELKS contribute importantly, together with RIM, to active 
zone organization. ELKS have a broad range of interactions within additional proteins within active zones, and 
with Ca2+ channel subunits (25). Phosphorylation of CAST regulates vesicle release during high frequency 
firing, reducing synaptic depression (26). The Aplysia sequence is unusual, having a zinc finger GAT1 sequence 
at the N terminus, albeit poorly conserved (Fig. S12) (This GAT1 domain was not found in the other molluscan 
ELKS sequences analyzed.) There is a single ELKS form in all bilaterian invertebrates, whereas mammals have 
two forms, sometimes known as CAST1/ERC2 and ELKS. At the C terminus, mammalian ERC2 has a PDZ 
recognition motif, GIWA, which binds RIM1alpha (27); this same motif is found in the Saccoglossus and 
nematode ELKS, but not in molluscs. Danio has three CAST/ELKS genes. In Drosophila, there is a larger 



 
 

6 
 

orthologous protein, BruchPilot (28), with a large N terminal SMC domain, which is important for specific 
forms of memory (29). Bruchpilot is also found in at least some other arthropods (Fig. S16). CAST/ELKS is not 
found in Trichoplax, ctenophores or sponges, and first appears in the common ancestor of cnidarians and 
bilaterians (Fig. S18).  
 
CASK 

CASK is a presynaptic MAGUK, with a conserved CASK (CAlcium/calmodulin Serine Kinase) domain at 
its N terminus and a Guanylate Kinase domain at its C terminus. Interposed, there are two L27 domains, an SH3 
domain and a PDZ domain. Aplysia CASK has a similar domain structure, but with a single L27 domain (Fig. 
S12) (Among molluscan CASKs, the L27 domains are quite variable:  Octopus CASK has two L27 domains, as 
do Pectin and Mizuhopecten and also Biomphalaria CASKs; Crassostrea CASK has none; Pomacea is similar 
to Aplysia, with a single L27 domain). It should be noted that both in Drosophila and in mammals, CASK has 
postsynaptic, as well as presynaptic functions (30). CASK is not found in Porifera, but is present in Trichoplax 
and Cnidaria (Fig. S18). There is a single CASK gene in most species, including in mammals (Fig. S17). Again, 
Danio has an additional gene, as compared with mammals (Fig. S17). 
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Figure S1. Examples of fragmentation for Reference Transcripts in 2013 Aplysia genome assembly from the Broad 
Institute (Table S1).  
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Figure S2. Examples of fragmentation for Reference Transcripts in the 2013 Aplysia Trinity transcriptome assembly from 
the Broad Institute (Table S1). 
  



 
 

9 
 

 

 
Figure S3. Effect of shearing time and read depth on completeness of transcripts assessed with Reference Transcripts.  
A. Shearing time. RNA shearing time was reduced from the standard duration of 6 min to durations from 60 s to 200 s. 
Reads for each library were randomly downsampled so that an equal number of reads (248 thousand) were assembled 
for each shearing time. Plot shows percent of Reference Transcripts with full coverage by either longest single contig or 
the set of all contigs coding for each transcript. 
B. Read depth. The full set of 2.97 billion Illumina reads was assembled with DN Trinity (2), or first downsampled to 50 
million to 1 million reads prior to assembly. Plot shows percent of Reference Transcripts with full coverage (>97%) by 
either longest single contig or the set of all contigs coding for each transcript. Downsampling was repeated three times, as 
this step exhibited variability; points for all downsampled read sets are means +/- SEM. 
Note, in both graphs, the substantial difference in coverage between longest contig and all of the contigs coding for the 
reference transcripts represents the residual fragmentation of Trinity transcripts for approximately one third of the 
Reference Transcripts, prior to further optimization using PASA and GG-Trinity and Stringtie contigs (Fig. 1A).  
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Figure S4. Coverage of protein sequences for reference transcripts by assemblies. The percent coverage of Reference 
Transcripts by predicted proteins from the Broad 2013 Trinity transcriptome assembly, the final de novo Trinity assembly, 
and the Unigene assembly. Asterisks highlight genes with substantial improvement of coverage with the PASA combined 
transcript set, which included the de novo Trinity, the genome-guided Trinity and the Stringtie contigs (i.e. the Unigene 
transcript set).  
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Figure S5. Structure of Aplysia postsynaptic scaffold proteins analyzed using NCBI conserved domains to identify 
domains. Ac TARP-B1 and Ac TARP-B2 have similar structures as Ac TARP-A. Lengths of scaffold proteins are shown to 
scale (except for Shank for which the C terminus is shown with a gap); lengths of proteins:TARP-A 350 AAs, Ac DLG 863 
AA, Ac Homer 376 AA, Ac Shank 1939, Ac GRIP 1168, Ac NETO-Pro 477 AA, Ac NETO 620, Ac SOL 637, Ac LEV10 
864 AA. The SH3 domain of SHANK has diverged sufficiently for it not to appear as a conserved domain, but residual 
homology does still exist in this region.  
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Figure S6. Extended TARP family dendrogram. Only one representative of the vertebrate claudins was used as there is a 
large expansion of this family in vertebrates. A prebilaterian tetraspanin from Hydra vulgaris, epithelial membrane protein 
(EMP), is the outgroup (not shown in figure). Kune, Sinuous and Pickel are Ecdysozoan proteins implicated in septate 
junctions previously called invertebrate claudins; the members of the Spiralia group that cluster with these are called 
Claudin-like (Claud-L).   
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Figure S7. Cornichon dendrogram. Outgroup was the plant Arabidopsis thaliana cornichon (not shown in figure). 
Abbreviations for species not defined previously:  Ad, Acropora digitifera, Co, Capsaspora owczarzaki; Mb Monosiga 
brevicolus; Ml, Mnemiopsis leidyi; TA, Trichoplax adhaerens.  Amphimedon queenslandica CNIH and CNIH4 were found 
on a single transcript.   
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Figure S8. DLG dendrogram. The Mnemiopsis leidyi DLG protein was used as an outgroup. Abbreviations for species not 
defined previously; Om, Oopsacas minuta (Glass Sponge).  
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Figure S9. Homer dendrogram. Abbreviations for species not defined previously Sr, Salpingoeca rosetta. Outgroup is the 
two cnidarian Homer sequences, from Acropora digitifera and Nematostella vectensis.  
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Figure S10. Shank Dendrogram. Abbreviations for species not defined previously:  Dg, Dendronephthya gigantea; Tn, 
Trichinella nativa. Outgroup is Mneiopsis leidyi Shank.   
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Figure S11. GRIP dendrogram. Outgroup was Aplysia californica MPP (not shown in figure). 
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Figure S12. Presynaptic scaffold protein domains in Aplysia. A. Aplysia RIM Superfamily members. B. Aplysia RIM 
Binding Protein. C. Aplysia ELKS. D. Aplysia CASK. Schematics are to scale (except for Ac Piccolo, for which the C 
terminus is shown with a gap); lengths of proteins:  Ac RIM 1717 AAs, Ac Piccolo 2850, Ac Fife 1132 AAs, Ac RIM-BP 
1751 AAs, Ac ELKS 1167 AAs, Ac CASK 850 AAs.  
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Figure S13. Unc13 dendrogram. Alignment trimmed with TrimAI prior to RAxML analysis (See Methods). Both BAI1-AP 
and Munc13D sequences [and also CAPS sequences (not included in dendrogram)] cluster separately from unc13 
sequences.  
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Figure S14. Putative calmodulin binding sites in Aplysia unc13 isoforms aligned with CaM-binding site in human Munc13 
isoforms A. Initial hydrophobic anchor Tryp residues highlighted in green; additional hydrophobic residues highlighted in 
yellow; putative Tyr anchor residues highlighted in aqua. Note the characteristic pattern of 1-5-8-(12)-26 hydrophobic 
residues (31, 32) conserved across bilaterian phyla, with Aplysia unc13A and unc13B exhibiting this same pattern as 
Danio and Human Munc13-A. Some bilaterian species have lost the hydrophobic residue at postion 26; in Pomacea, this 
residue is shifted by one residue. Aplysia unc13-C displays a substantially 1-8-15 divergent pattern, which we speculate 
may similarly bind CaM, as it resembles another pattern of CaM-binding sequences (33). Human bMunc13-B has a more 
dramatically divergent CaM-binding site, with additional hydrophobic residues extending N terminally to the anchor 
residue (34, 35); because this bMunc13-B sequence is so distinct, it is not included in this alignment. [Note as indicated 
by the position of the N terminal residues shown by numbers at right, these sequences vary substantially in the length of 
the region N terminal to the CaM-binding region, located proximal to the C1-C2 module (e.g. the Aplysia isoforms 
illustrated in Fig. 5).   
 
   

 
Hv_Unc13 DDFKFGRKINRRFGIRHSPRSSVRRQSDQFFNI 394 
Ac_unc13C GGVEFECSESRYAFGKSKLARTRTVAVCQRRRA 143 
Cg_Unc13 AKIRWSQAVKKINTELNKEEINMMGHTEDSRDK 567 
Dm_Unc13A ARQRWHWAYNKIIMQLNNGGGPGEVGLRTNGHP 1647 
Bb_Unc13B ARLRWQNAIAKVRMQIRQEKEAEIRESGGRTSH 413 
Dr_Unc13A AKANWLRLFNRVRLQLQEARGETPGLASLFLQA 584 
Hs_Munc13A AKANWLRAFNKVRMQLQEARGEGEMSKSLWFKG 469 
Ce_Unc13 YQELWHNAYKRVCADLGIKSTVLDGNGSSAANA 621 
La_Unc13 AKMRWIRAFEQVCAHLSERPVGMENGDMDDDHR 389 
Pc_Unc13 ARTRWIEAFNRVCAELNESGSMMGVSDDHDYSE 230 
Ac_Unc13B ARSRWLEAFNRVCAELSETGSLMGREDADYNDG 88 
Ac_Unc13A ARSRWLEAFNRVCAELSETGSLMGREDADYNDG 462 
      1    5   8      12 26 
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Fig. S15. RIM-BP dendrogram. Abbreviations for species not defined previously:   Dv, Drosophila virilis.  
A distantly related gene in the choanoflagellate Salpingoeca rosetta (Sr) served as the outgroup.  
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Fig. S16. CAST/ELKS dendrogram. Abbreviations as in previous dendrograms. The two cnidarian ELKS sequences from 
Acropora and Nematostella served as the outgroup.  
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Fig. S17. CASK Dendrogram. Abbreviations as in previous dendrograms, with two additional abbreviations:  Eg, 
Echinococcus granulosus; Sm, Schmidtea mediterranea (both platyhelminthes); Hr, Helobdella robusta (an annelid). 
Hydra vulgaris MAGUG P5 served as the outgroup (not shown in figure).  
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Figure S18. Representation of scaffold proteins in Holozoa. In general, the absence of a gene in a particular clade could 
reflect incomplete genome or transcriptome assemblies. However, where there are more well-studied species, such as in 
insects, an incomplete assembly is less of a likely explanation. We use Chalumeau to refer to the group of RIM 
superfamily genes found in echinoderms and lancelets (Fig. 4A).  
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Figure S19. Gradual addition of synaptic genes through exaptation or appearance of novel sequences in early phyla with 
synapses. Numbers in parentheses represent refer to key nodes in the appearance of genes used in bilaterian synapses. 
Examples include:  (1) Synaptic SNAREs; (2) RIM, CaV2; (3) vGlut, Synaptotagmin 1; ELKS; (4) GRIP, vGAT; (5) Piccolo 
& Fife; TARP, NETO; (6) genes lost, Fife, SOL. Green outline signifies clades with neurons and synapses. WGD, whole 
genome duplication. Grey shading signifies metazoan clades. Blue shading signifies bilaterian clades.  
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Assembly Source Bioproject 
Aplysia Transcriptome  Broad Institute NCBI Bioproject PRJNA77701 
Aplysia Genome Broad Institute NCBI Bioproject PRJNA13635* 
Aplysia Transcriptome This paper NCBI Bioproject PRJNA792581 
Aplysia Genome Zimin et al. Aplysia Gene Tools 

http://www.aplysiatools.org 
 
Table S1. Assemblies used. *Note, the assemblies on NCBI are continuing to evolve based on new sequences and new 
scaffolds; for example, the genomic sequences now available on BLAST include scaffolds and may be less fragmented 
than the original Broad genome that we analyzed, or than what is available on NCBI BLAST of WGS assemblies or 
available for download (currently the Broad genome contigs).  
 
 
Software Version Reference or website 
Trimmomatic ver 0.38 Bolger et al. (2014) (1) 
Trinity 
with Diginorm* 

ver 2.9.1 Haas et al. (2013) (2) 

Stringtie ver 2.1.1 Pertea et al. (2015) (3) 
PASA ver 2.4.1; Haas et al. (2008) (4) 
TransRate ver 1.0.3 Smith-Unna et al. 2016 (5) 
Transdecoder ver 5.5.0 https://github.com/TransDecoder/TransDecoder 
CD-HIT-EST ver 4.7 Li et al. (2006), Fu et al (2012) (6, 7) 
Trinotate ver 3.2.1 https://github.com/Trinotate/Trinotate 
RAxML GUI ver 2.0.5 Stamatakis (2014), Edler et al. (2020) (9, 10) 
TrimAI ver 1.3 Capella-Gutierrez et al. (2009) (11) 

http://phylemon2.bioinfo.cipf.es/utilities.html 
FigTree ver 1.4.4 http://tree.bio.ed.ac.uk/software/figtree/ 

Table S2. Software used.  
*Diginorm step in Trinity provides read normalization. 
 
Total No. of Contigs 71,104 
Total bases 126,237,157 
Average sequence length  1,775.4 
N50 3,151 
N90 699 
Shortest sequence length 303 
Longest sequence length 42,564 
GC percentage 44.5 

Table S3. Statistics for Unigene contigs. Transdecoder minimum ORF length:  300 bp (Fig. 1A). 
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Family Aplysia Octopus Danio Human 
TARPs 3 5 12 6 
Cubulin containing 
(Neto/Sol/LEV-10) 

4 4 2 2 

Cornichons 2 2 4 4 
DLGs (PSD-95 and others) 1 1 5 4 
GRIP 1 1 3 2 
SHANK 1 1 5 3 
HOMER 1 1 5 3 
     
Postsynaptic Total 14 15 36 24 
     
RIM/Fife/Piccolo/Bassoon 3 3 7 4 
Unc 13 1 1 3 3 
CASK 1 1 2 1 
RIM-BP 1 1 3 2 
ELKS 1 1 3 2 
     
Presynaptic Total 7 7 19 12 

Table S4. Synaptic scaffold proteins. Numbers of family members per species.  

 

 
Human Danio Human 

÷ Danio   
Octopus Aplysia Octopus ÷ 

Aplysia   
Human ÷ 
Aplysia  

GPCR and signaling 2296 4260 0.54   1273 1359 0.94   1.69  
Scaffolding domains 3976 7879 0.5   2633 2335 1.13   1.7  
Ion channels/Transporters 589 1298 0.45   818 707 1.16   0.83  
RNA binding domains 589 491 1.2   283 247 1.14   2.38  
Calcium signaling 381 842 0.45   220 165 1.33   2.31  
Extracellular domains 931 2815 0.55   630 541 1.16   1.72  
Synaptic 
vesicle/transmitter 61 110 0.49   48 32 1.51   1.91 

 

Table S5. The number of proteins containing a PFAM domain using (PFAMA33.1) was determined using the Uniprot 
reference proteome sets from Homo sapiens (Hs) and Danio rerio (Dr), the predicted protein set from Octopus 
bimaculoides (Ob (8) or from the Unigenes for Aplysia (Ac) in this paper. The ratios (Hs/Dr; Ob/Ac and Hs/Ac) are 
calculated from the values shown. The underlying PFAMs used for each family is in Dataset 2.  
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Dataset 1 Legend.  NCBI sequence IDs for proteins in dendrograms.  There is one sheet for each dendrogram, other 
than for Figure 2 and Figure S6 which are both included in the TARP sheet.  

 

Dataset 2 Legend. PFAM families of signaling, scaffolding and neural PFAMs. The individual PFAMs chosen to examine 
the numbers of proteins with specific signaling (i.e. kinases), scaffolding (I.e. PDZ domains) and neuron specific (I.e ion 
channel) domains are shown. The number of proteins containing a PFAM domain using (PFAMA33.1) was determined 
using the Uniprot reference proteome sets from Homo sapiens (Hs) and Danio rerio (Dr), the predicted protein set from 
Octopus bimaculoides (Ob (8)) or from the Unigenes for Aplysia (Ac) in this paper.  
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