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In the supplementary materials we provide a formal description of the Bayesian filer, 

explore the effect of alternative link functions, assess the performance of the filter and 

describe a series of sensitivity and exploratory analyses that assess potential confounding 

factors and alternative explanations for the results reported in the main paper.   

 

Supplementary Methods 

The Bayesian Filter 

Overview: A grid-based recursive Bayesian filter (1) was developed to estimate the causal 

processes described in the generative model (Figure 1). Note that the filter has no free 

parameters and so is not fitted to participant ratings, rather it uses the ratings to estimate 

the values of the causal processes defined by the generative model. 

 

As illustrated in Figure 1a, the filter assumes that affect ratings at a given time point 𝑡, 𝑦𝑡, 
are generated from a Gaussian distribution with an unknown mean, 𝑚𝑢𝑡, and standard 

deviation, exp⁡(𝑆𝐷𝑡), with the later producing noise in the ratings (Figure 1b). Note that 

all variance parameters in the filter are represented in log space to ensure they lie on the 

infinite real line and that it is these log transformed parameters that are analysed in the 

current paper. Formally, the production of ratings is described by: 

 

𝑦𝑡~𝒩(𝑚𝑢𝑡 , exp(𝑆𝐷𝑡))    1 

 

The mean of this distribution may change between time points, leading to volatility of the 

ratings (Figure 1b), with this change described by a second Gaussian distribution, 

centered on the current mean and with a standard deviation of exp(𝑣𝑚𝑢𝑡).  
 

𝑝(𝑚𝑢𝑡+1)~𝒩(𝑚𝑢𝑡 , exp(𝑣𝑚𝑢𝑡))    2 

 

Both the 𝑆𝐷𝑡 and 𝑣𝑚𝑢𝑡 parameters can also change between time points with their 

change governed by Gaussian distributions centred on their current value with standard 

deviations of exp(𝑣𝑆𝐷) and exp(𝑘𝑚𝑢) respectively. These higher-level parameters 

allow the model to conceptualise periods in which noise and volatility are high and other 

periods in which they are low. 

 

𝑝(𝑣𝑚𝑢𝑡+1)~𝒩(𝑣𝑚𝑢𝑡 , exp(𝑘𝑚𝑢))    3 

 

𝑝(𝑆𝐷𝑡+1)~𝒩(𝑆𝐷𝑡, exp(𝑣𝑆𝐷))     4 

 

The filter seeks to estimate the joint posterior probability of the five causal parameters, 

given the affect ratings it has observed. The joint probability distribution at time point 𝑡 is 

defined as: 

 

𝑝(𝑗𝑜𝑖𝑛𝑡𝑡) = 𝑝(𝑚𝑢𝑡 , 𝑣𝑚𝑢𝑡, 𝑘𝑚𝑢, 𝑆𝐷𝑡 , 𝑣𝑆𝐷⁡|𝑦𝑡−1, 𝑦𝑡−2, …⁡𝑦1) 5 

 

This joint probability distribution can be thought of as the filter's belief about the values 

of each parameter in the generative model. The filter uses this distribution as a sufficient 

statistic of the affect generating process (i.e. it assumes that the magnitude of future affect 
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ratings is completely described by this distribution). Formally, this is equivalent to a 

Markovian assumption (i.e. that the joint probability on the next trial depends only on the 

joint probability of this trial and the observed rating) so that that recursive update 

performed by the filter can be stated as: 

 

𝑝(𝑗𝑜𝑖𝑛𝑡𝑡) = 𝑝(𝑚𝑢𝑡 , 𝑣𝑚𝑢𝑡, 𝑘𝑚𝑢, 𝑆𝐷𝑡 , 𝑣𝑆𝐷⁡|𝑦𝑡−1, 𝑗𝑜𝑖𝑛𝑡𝑡−1)   6 

 

We initialize the joint posterior, before observation of any ratings, 𝑝(𝑗𝑜𝑖𝑛𝑡1), as a flat 

distribution. In the next section we describe how the recursive updates are performed 

between time points. 

 

Belief update1: the effect of the observed rating: The update of the joint probability 

distribution between time points is split into two broad components. First the filter has to 

use the rating it observes to update its belief. This is achieved using Bayes rule:  

 

𝑝(𝑗𝑜𝑖𝑛𝑡𝑡−1⁡|⁡𝑦𝑡−1) =
𝑝(𝑦𝑡−1⁡|⁡𝑗𝑜𝑖𝑛𝑡𝑡−1)⁡𝑝(𝑗𝑜𝑖𝑛𝑡𝑡−1)

𝑝(𝑦𝑡−1)
  7 

 

The important points to note here are 1) the likelihood term, 𝑝(𝑦𝑡−1⁡|⁡𝑗𝑜𝑖𝑛𝑡𝑡−1), is a 

function only of the mean, 𝑚𝑢𝑡, and standard deviation, 𝑆𝐷𝑡, of the generative model and 

2) the process described by this equation does not account for the change in values of the 

𝑚𝑢𝑡, 𝑣𝑚𝑢𝑡 or 𝑆𝐷𝑡 parameters between time points described by equations 2-4.  

 

Belief update2: the effect of parameter shifts: The next component of the update deals 

with the change in the 𝑚𝑢𝑡, 𝑣𝑚𝑢𝑡 or 𝑆𝐷𝑡 parameters across time. In order to illustrate 

this in an intuitive fashion, we first describe the update of a single parameter, 𝑚𝑢𝑡, from 

time 𝑡 − 1 to time 𝑡, given the volatility, 𝑣𝑚𝑢𝑡. 
 

𝑝(𝑚𝑢𝑡 ⁡|⁡𝑣𝑚𝑢𝑡) = ∫ 𝑝(𝑚𝑢𝑡 ⁡|⁡𝑚𝑢𝑡−1, 𝑣𝑚𝑢𝑡)⁡𝑑(𝑚𝑢𝑡−1) 8 

 

The integral in this equation sums together the probabilities, across every possible 

starting value of the mean, 𝑚𝑢𝑡−1, that would have led it now to be the new value, 𝑚𝑢𝑡, 
as defined by 𝑝(𝑚𝑢𝑡 ⁡|⁡𝑚𝑢𝑡−1, 𝑣𝑚𝑢𝑡). In this way the original value of the mean is 

"integrated out" and the probability distribution across values of 𝑚𝑢𝑡−1 is updated. The 

same process is applied to the other drifting parameters in the model and is combined 

with the update in response to the observed rating described in equation 7 to give: 

 

𝑝(𝑗𝑜𝑖𝑛𝑡𝑡⁡|⁡𝑦𝑡−1) = 

∭𝑝(𝑗𝑜𝑖𝑛𝑡𝑡−1⁡|⁡𝑦𝑡−1)𝑝(𝑆𝐷𝑡⁡|⁡𝑆𝐷𝑡−1, 𝑣𝑆𝐷) 𝑝(𝑣𝑚𝑢𝑡 ⁡|⁡𝑣𝑚𝑢𝑡−1, 𝑘𝑚𝑢)… 

𝑝(𝑚𝑢𝑡 ⁡|⁡𝑚𝑢𝑡−1, 𝑣𝑚𝑢𝑡), 𝑑𝑆𝐷𝑡−1, 𝑑𝑣𝑚𝑢𝑡−1, 𝑑𝑚𝑢𝑡−1   9 

 

The recursive nature of the filter and the separation of the updating process into two 

components provides a natural approach for dealing with missing data. On days when no 

rating was returned the first phase of the update (equation 7) is omitted, but the second 

phase (remaining terms in equation 9) is applied, leading to a dispersion of the filter's 
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belief about the current parameter values (see supplementary methods for an illustration 

of this and for a sensitivity analysis).  

 

The filter's belief about the value of each node is derived at every time point by 

marginalising over all but the relevant dimension of the joint probability distribution and 

calculating the expected value of that dimension. 

 

Note that the filter estimates magnitudes in an unbounded space, whereas affect ratings 

are produced on a bounded scale (e.g. from 1-7). The magnitude ratings were therefore 

logit transformed before being passed to the filter. The transformation was achieved by 

first scaling the ratings by dividing by 8 (i.e. so the ratings range from 1/8 to 7/8), and 

then transforming this 𝑠𝑐𝑎𝑙𝑒𝑑𝑠𝑐𝑜𝑟𝑒 score using the logit function: 

 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑𝑠𝑐𝑜𝑟𝑒 = −ln⁡((
1

𝑠𝑐𝑎𝑙𝑒𝑑𝑠𝑐𝑜𝑟𝑒
) − 1) 

 

An alternative approach to this issue is to specify an alternative link function for the 

filter. In the next section we describe such a link function and show that it produces 

equivalent results. 

 

The filter was implemented as a five dimensional matrix in matlab (R2020). The filter's 

code is available at:  https://osf.io/j7md3/ 

 

 

Supplementary Results 

The demographic details of participants in both studies is summarized in Table S1 below.   

 

Table S1. Demographic details of patients included in the two studies. 

Cohort Study 

 
Bipolar 

Disorder 

Borderline 
Personality 

Disorder 
Control 

p value for group 
difference 

n 51 33 51 
 

Sex (F/M)a 32/19 30/2 32/18 0.004* 

Age (mean(SD)) 
39.47 

(13.03) 33.72 (10.42) 
38.18 

(12.98) 0.12 

Educational 
Achievement 
(mean(SD))b 4.81 (0.96) 4.1 (0.88) 

5.1 
(1.02) <0.001* 

Previous 
Hospitalisation (Y/N) 21/28 14/17 0/48 

 

https://osf.io/j7md3/
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Subtype of Bipolar 
Disorder (I/II) 30/17 N/A N/A 

 
On Any Psychoactive 

Medication (Y/N) 48/3 24/8 1/50 
 

On Lithium (Y/N) 22/29 0/32 0/51 
 

On Anticonvulsant 
(Y/N) 19/32 1/31 0/51 

 
On Antipsychotic (Y/N) 34/17 6/26 0/51 

 
On Antidepressant 

(Y/N) 16/34 23/9 1/50d 
 

On Anxiolytic (Y/N) 2/48 8/24 0/51 
 

On Hypnotic (Y/N) 4/46 2/29 0/51 
 

Current or Previous 
Psychotherapy (Y/N)e 42/7 31/1 11/33 

 
Current or Previous 

Recreational Drug Use 
(Y/N) 29/18 21/10 12/38 

 
 

Experimental Medicine Study 

 Lithium Group Placebo Group 

N 19 16 

Sex (F/M) 8/11 7/9 

Age in years 

(mean(SD)) 
28.84 (9.81) 35.14 (13.79) 

Diagnosis (BP I/BP 

II/BP NoS) 
3/16/0 3/11/2 

* Borderline group differed significantly from both other groups. Bipolar and control groups did not differ. a 

Demographic data was missing from some participants: one patient in the borderline group did not provide 

any demographic data, data on educational and employment level was missing from 3 patients in the 

bipolar group, and 2 patients in the borderline group. Binary outcomes (e.g. sex, medications taken etc) are 

reported for all participants who provided the relevant data.  b Educational achievement was rated on a six-

point scale from primary school to post graduate level. SD= Standard deviation, BP I/II/NoS = Bipolar 

disorder type 1, type 2, not otherwise specified. d One participant in the control group was taking low dose 

amitriptyline for pain. e Including any form of therapy or counselling. Note participants were excluded from 

the experimental medicine study if they were taking other psychoactive medications. 
 

 

 

An Alternative Link Function 
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While the filter described above acts on data points from the infinite real line, the 

affective ratings collected from participants are constrained between the upper and lower 

bounds of the scale used (e.g. the individual items from the MoodZoom Scale require 

discrete responses between 1-7, which are averaged into positive or negative scores). A 

logit transform of the data is therefore used before it is presented to the filter. An 

alternative approach to this issue is to specify a link function which explicitly describes 

how the ratings are generated. For ordered, discrete responses, one such link is the 

ordered-probit function (2). In brief, this assumes that a gaussian latent process underlies 

the (discrete, ordinal) data, but that the data are generated using a set of cut points of this 

function (e.g. if data take the form 1:n, then n-1 cut points are defined with samples 

below cut point one producing a data value of “1”, between cut points 1-2 producing a 

value of “2” etc). We incorporated a version of the ordered-probit link function to the 

Bayesian filter (details of function provided below). In figure S1, we show that the results 

using this link function on untransformed data (Figure S1 c-d) is similar to the filter 

described in the paper on the transformed data (Figure S1a-b).  As can be seen, using the 

ordinal probit link function resulted in the same pattern of diagnostic specificity for 

affective variability (Figure S1c-d; Group x Type of Variability F(2,122)=7.84, p<0.001) 

as that reported in the main paper (data reproduced in Figure S1a-b), with the estimates of 

the two versions of the filter correlating at r>0.8 for volatility and at r>0.75 for noise. 

This suggests that the results reported in the main paper are not sensitive to the specific 

approach used to transform the data. 

 

Details of Ordinal Probit Link Function: Ordinal probit functions have a number of 

different parameters that may be varied (e.g. the position of the cut points, the position 

and variance of the latent process). If all of these are allowed to vary simultaneously, the 

function is not identifiable (e.g. increasing the SD of the latent process is equivalent to 

moving the cut points closer together). This requires some of the parameters to be set to 

specific values. For example, for analyses of stationery processes the value of the lower 

cut point is often set to 0, and the SD of the latent process is set to 1. In the current 

analyses we are interested in how the SD and the variability of the mean of the latent 

process differ between groups and therefore cannot fix these. We therefore fix the 

positions of the cut points to the set values of 1,2,3,...n-1. This is implemented in the 

filter by adjusting the calculation of the likelihood (Equation 7), with the likelihood of a 

data point between two cut points (e.g. lying in the range 1-2) being the total probability 

density of the latent process between these two values.      
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Figure S1: Estimated types of affective variability from the cohort study when the 

Bayesian filter is applied to transformed ratings data (panels a-b, reproduced from the 

main paper) and when an ordinal probit link function is used, so that the filter may be 

applied to untransformed data (panels c-d). As previously, the volatility and noise for the 

positive and negative ratings are presented separately. Both versions of the filter estimate 

volatility to be raised in patients with a diagnosis of bipolar disorder, with noise raised in 

patients with a diagnosis of borderline personality disorder. Data from the bipolar group 

is summarized with red, the borderline group with blue and the control group with green 

bars. Bars reporting volatility have dotted edges, those reporting noise have dashed 

edges. 

 

Analysis of Female Participants 

As described in the main text, the groups from the cohort study were not matched for 

gender, with all but two participants in the borderline personality group being female. In 

order to assess whether this might account for the reported group differences in affective 

variability, a sensitivity analysis was run in which only female participants were 

included. This analysis was identical to that reported in the main paper, with the 

exception that gender was not included as an explanatory variable. The analysis included 

29 participants from the bipolar group, 28 from the borderline group and 32 from the 

control group. The same relationship between participant group and type of affective 

variability was found [group x type of variability; F(2,84) = 3.1, p = 0.05] in this smaller 

sample.    

 

 



 

 

8 

 

Analysis of the influence of zero scores on the reported results 

“Zero-inflation” is defined as an excess of zero values, over that which would be 

expected given the range of scores recorded from a participant (3). By this definition, 

zero-inflation is produced by the behavior of the participant, who returns a rating of 0, 

when a higher rating is expected. A related but distinct issue is that, when a participant 

frequently provides an answer at the bound of a scale (e.g. 0), then the apparent 

variability of the scores is reduced, which may skew measures such as those provided by 

the filter. Note that this second process is a function of the scale rather than the 

participant and is true whether or not the 0 scores are “inflated” relative to the 

participant’s other answers. In the following section we assess these two issues 

separately. 

 

As a point of clarification, the data analyzed in the paper consist of summary positive and 

negative scores derived by averaging a number of different positive and negative ordinal 

questions. A first question is therefore to define what a zero-score is on this scale. In the 

following analysis all data are rounded to the nearest integer (having subtracted 1, so that 

the minimum score is 0) and thus a zero score is defined as any score that is closer to 0 

than to 1. We believe that this approach provides the most conservative estimate (as it 

treats all low scores as zero, rather than just those scores on which a participant answered 

0 for every sub-question) and also allows a formal test of the deviation from the expected 

rate of zero scores relative to a Poisson distribution. 

 

Do participants show formal zero-inflation and how does this impact the study results? 

We derived a measure of zero inflation using the score statistic described by van den 

Broeck et al. (3). The logic of this test is that counts of scores are assumed to follow a 

stationery Poisson distribution, with a lambda parameter set to the observed mean of the 

scores. This generates an expected number of 0 scores, which can be compared to the 

observed value of 0 scores in a test statistic (described in van den Broeck (3)) with a chi-

squared distribution. Applying this test to the 135 participants from the current study, 

indicated significant 0 inflation (i.e an excess of observed 0s with an uncorrected p value 

of <0.05 at the participant level) for 10 participants for the positive ratings (4 in bipolar 

group, 4 in borderline group and 2 in control group) and 7 participants for negative 

ratings (2 in bipolar group, 2 in borderline group and 3 in control group). Rerunning the 

main analysis excluding any participant who had inflation in either positive or negative 

scores (14 participants were excluded as 3 had inflation of both positive and negative 

scores) did not change the observed pattern of results from the study [group x type of 

variability; F(2,108) = 7.61, p < 0.001].   

 

In summary, there was no strong evidence for zero-inflation in participant scores, and 

excluding those participants who did show evidence for this did not change the pattern of 

results reported. 

 

What proportion of scores are 0, how is this related to the filter metrics and can it account 

for the study results? 

Whether or not a participant’s responses contain more zeros than expected, the bounded 

nature of the rating scales used mean that the apparent variability is likely to be reduced 
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when ratings are frequently zero (this was a motivation for assessing the probit model 

described above). In order to further investigate the impact of zero scores, we summarise 

their frequency in the three groups, assess their relationship with the filter derived metrics 

and their impact on the reported results. 

 

Table S2 reports the proportion of the 50 days in which a zero rating was returned in the 

three cohorts (note, if participants were equally likely to give a rating at the 7 different 

levels of the scale, the expected proportion of zero responses would be 0.14). As can be 

seen, control participants were much more likely to give 0 ratings on the negative scale 

than other participants or for positive ratings in any group. 

 

Table S2: Proportion of zero scores across the 50 days of the study by diagnostic group  

 
Average proportion of 0 

scores for positive ratings 

Average proportion of 0 

scores for negative ratings 

Bipolar group 0.15 0.22 

Borderline group 0.16 0.06 

Control group 0.09 0.57 

  

Table S3 reports the within group correlations between the proportion of zero scores 

returned and the filter derived metrics. A general pattern of negative association is 

observed (i.e. the more zero answers present, the lower the estimated variability), with a 

stronger effect for measures of noise than volatility. As expected from Table S2, negative 

ratings in the control group show a particularly strong association, including with 

negative volatility. 

 

Table S3: Pearson correlation coefficients between the proportion of zero responses from 

a rating and the filter derived metrics from the same ratings 

 
Positive 

volatility 

Negative 

volatility 
Positive noise Negative noise 

Bipolar group -0.26 -0.04 -0.35 -0.23 

Borderline 

group 
-0.15 0.14 -0.68 0.34 

Control group 0.1 -0.6 -0.22 -0.64 

Numbers in bold are statistically significant at p<0.05 (with no correction for multiple 

comparisons) 

 

The above results indicate that, as expected, a high proportion of zero scores will tend to 

result in reduced estimates of variability, particularly for noise. This effect is more 

pronounced for negative ratings in the control group. As a final step we assessed whether 

adding a participant’s proportion of zero ratings as covariates to the study analysis 

influenced the reported pattern of results. The same pattern of results reported in the main 

paper were obtained when these additional covariates were added [group x type of 

variability; F(2,120) = 6.34, p = 0.002], with the expected effect of the covariates 

themselves apparent as main effects [main effect of proportion of positive zero responses; 

F(1,120) = 4.35, p = 0.04, main effect of proportion of negative zero responses; F(1,120) 

= 10.4, p = 0.002]. 
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In summary, the bounded nature of the rating scale used had the expected effect on filter 

derived measures of affective variability. This was particularly prominent for measures of 

noise and for negative ratings in the control group. Consistent with the results obtained 

from the probit link function, we did not find evidence that the reported results from the 

paper were related to the frequency with which participants returned zero responses. 
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Performance of the Filter 

The ability of the filter to recover parameters, when those parameters are drifting across 

time, was assessed using a generate recover procedure. The generative model described 

in main Figure 1 was used to produce 90 sets of artificial data. This was achieved by 

selecting a starting state of the generative model by randomly sampling the state of each 

model node from a Gaussian distribution with mean and SD set to those of the cohort 

sample of participants. The generative model was then allowed to run for fifty time points 

(“days”), with the values of the mean, volatility and noise drifting between time points as 

described by the generative model (note that the other nodes do not drift). Synthetic 

affective ratings were sampled at each time point from the model’s mean and SD on that 

day. These data were then fed back to the Bayesian filter. The performance of the filter 

was assessed at day fifty (i.e. the same timepoint used in the study), by correlating the 

actual value of each drifting parameter with that recovered by the filter. The results of 

this process are illustrated in Figure S2. As can be seen, all three parameters are generally 

well recovered, with very low levels of volatility being the least accurately reproduced. 

This suggests that the filter is able to estimate these dynamic processes with a reasonable 

precision. 
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Figure S2: Results of a generate recover process. 50 days of artificial data were created 

for 90 pseudo-participants using the generative model described in Figure 1. The starting 

state of the model was set using the values from study participants, with the values of the 

mean (𝑚𝑢), noise (𝑆𝐷) and volatility (𝑣𝑚𝑢) nodes allowed to drift over time as specified 

by the generative model. The filter was applied to the data generated using this process, 

with the filter-based estimates of mean, noise and volatility on day 50 correlated with the 

actual values of these parameters. As can be seen, the recovered values for the three 

parameters track the true underlying values. Black lines on each plot are y=x, that is, the 

line of perfect recovery. 
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Comparison of the filter with other measures of affective variability 

A range of other measures of affective variability have been described (4). The measures 

which are most closely linked to those described in the current paper are affective inertia, 

commonly defined as the slope of an AR1 model, which is similar to the volatility term 

of the filter, and the standard deviation of the residual data, having fit the AR1 model, 

which is similar to the noise of the filter. Deriving the individual slopes from an AR1 

model applied to data from the cohort study, as well as the standard deviation of the 

residuals, confirmed the overall results from Bayesian Filter with a significant group x 

variability type interaction (F(2,114)=13.3, p<0.01; note that missing data, or low levels 

of variability on one of the scales prevented fitting of the AR1 model in 8 participants, 

and so reduced the size of the groups by 2 in the group of patients with bipolar disorder, 1 

in the group of patients with borderline personality disorder and 5 in the control 

participants). Post hoc tests found a significant difference in AR1 slope between the 

bipolar and control groups (pbonf<0.009), although the difference between the bipolar and 

borderline groups found for volatility was not replicated (whether corrected or not for 

multiple comparisons). Similar to the volatility results, the AR1 slope did not differ 

between borderline and control groups. Group differences for the standard deviation of 

the residuals were consistent with those of noise from the filter, with all group differences 

being significant at pbonf<0.045. 

Analysis of metrics from the AR1 model for the experimental study was limited as 

missing rating data prevented the AR1 model being applied in five participants. The 

overall group x type of variability x valence effect here was not significant F(1,28)=2.17, 

p=0.15. 

Overall these results indicate a degree of similarity between the filter derived measures 

and those obtained using an AR1 model, although there are differences, particularly in 

how the two approaches deal with missing data (see below for further analysis of 

missingness).  

A second model, that bears some similarity to the filter reported here, is the DynAffect 

model reported by Kuppens and colleagues (5), which considers changes in affect from a 

dynamical systems perspective. The DynAffect model incorporates a number of 

sophisticated features, such as treating time as continuous (rather than as discrete, as done 

here), capturing the interaction between the valence of emotion and its intensity and 

modelling the effect of time varying covariates, which make it difficult to directly 

compare to the filter used in this paper. However, the DynAffect model conceptualizes 

changes in affect as arising from two main processes; first perturbations occur which 

move affect away from a set point, with the size of these perturbations being controlled 

by the parameter gamma; and second, an attractive influence pulls affect back to the set 

point and is controlled by the parameter beta. This framing is conceptually similar to that 

used for the Bayesian filter, with the gamma parameter being somewhat similar to noise 

and the beta parameter being somewhat similar to (inverse) volatility. It would therefore 

be of interest to assess whether the effects reported in the current paper are apparent in 

data appropriate to the DynAffect model.  

Missing data 

Treatment of Missing Data by the Filter: When the filter encounters missing data it omits 

the Bayesian update defined in equation 7 but does apply the shift in parameter values 

defined by the generative model, as described by the remaining terms in equation 9. The 
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effect of missing data is therefore to cause the filter to become progressively less certain 

about the values of the generative parameters. The rate at which this reduction of 

certainty occurs is rationally influenced by the model's belief about how changeable the 

parameters are. This process is illustrated with synthetic data in Figure S3 panels a and b 

for the 𝑚𝑢𝑡 parameter. The solid black lines in these plots are the data fed to the filter, 

which is either volatile (panel a) or stable (panel b). The data from time point 50 onwards 

is missing. Superimposed on the line is the marginal distribution of the filter's belief 

about 𝑚𝑢𝑡. As can be seen, this belief is concentrated around the observed data. The key 

aspect of these figures is what happens to the filter's belief when it encounters missing 

data. In panel a, where the filter has learned that the data is volatile, its belief quickly 

disperses so it becomes rapidly uncertain about the likely value of 𝑚𝑢𝑡. In contrast, when 

the filter has learned that the data is stable, it maintains its belief about the value of 𝑚𝑢𝑡 
for a longer period. Thus the filter appropriately adapts its belief about the generative 

parameters of the data it observes as a function of its estimates about the changeability of 

these parameters. 

 

Missing Data Sensitivity Analysis: In the cohort study there was no overall group 

difference in the amount of missing data [F(2,132)=1.49, p=0.23]. With an average (SD) 

of 7.5 (9.9) missing observations for the bipolar group, 6.2 (8.7) for the borderline group 

and 4.5 (7.1) for the control group). We conducted an additional sensitivity analysis to 

investigate whether the group differences in types of affective variability might be caused 

by some difference in the distribution of data missingness. This analysis simply censored 

a participant's data as soon as that participant misses a day's rating. The results of this 

analysis are illustrated in Figure S3 panels c and d. As can be seen, while the removal of 

participants increases the estimated error of the mean (the number of participants 

remaining in the three groups by day 50 are: Bipolar group, 10; Borderline group, 13; 

Control group, 19), the same overall pattern of group differences remains apparent. In 

other words, the group differences in cause of affective variability cannot be attributed to 

differences in data missingness.   
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Figure S3: Effect of missing data on the estimated type of affective variability. The filter 

adapts rationally to missing data, dispersing its belief more quickly about parameters it 

believes to be changeable e.g. the 𝑚𝑢𝑡 parameter when it has been volatile as shown in 

panel a compared to when it is stable as shown in panel b. See text for detailed 

explanation. Solid black lines indicate synthetic data fed to the filter, dotted lines are 

missing data. The background colour illustrates the filter's marginal belief about 𝑚𝑢𝑡 
which disperses more quickly in the volatile than stable example. Data missingness does 

not account for group differences in the cohort study. Panels c and d show the evolution 

of the filter's belief about the causes of affective variability as previously shown in Figure 

2. In the current figure a participant's data is censored as soon as a single day's data is 

missing. The same pattern of group differences are apparent indicating that this effect is 

not related to differences in data missingness. Data from the bipolar group is summarized 

with red, the borderline group with blue and the control group with green lines. Lines 

reporting volatility are dotted, those reporting noise are dashed. 
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Duration of affective responses 

The filter attributes change in affect that persist across ratings to volatility and change 

that do not to noise. This process is illustrated, using synthetic data, in Figure S4 panels a 

and b. Synthetic timeseries of affect ratings were generated by applying a series of 

perturbations that caused the affect rating to change, with this change gradually wearing 

off over time. These perturbations were intended to mimic the effect of events occurring 

in a patient's life that induced a change in affect. We varied both the frequency with 

which the perturbations occurred and the rate at which their effect wore off. 

Characteristic time courses of events at the four extremes (i.e. rare vs. frequent events, 

brief effect on ratings vs. sustained effect) are illustrated at the appropriate corners of 

Figure S4 panels a and b. The synthetic data was then passed to the filter which estimated 

the volatility (panel a) and noise (panel b) of the timeseries. As can be seen, estimates of 

both volatility and noise increase as the frequency of perturbations increase, whereas the 

duration of the perturbation influences the attribution of the variability, with long lasting 

perturbations being attributed to volatility and short lasting perturbations being attributed 

to noise.  

 

This suggests that patients with bipolar disorder may have a longer duration of affective 

response than patients with borderline personality disorder (at least for negative affect) 

and that lithium acts to increase the duration of positive affective responses. In the main 

study we analysed daily affect ratings and therefore cannot assess timescales shorter than 

this. However, a significant proportion of participants in the cohort study provided daily 

ratings for longer than a year, allowing us to assess whether the observed group 

differences in affective variability are limited to data sampled once a day or whether they 

are also apparent at longer timescales. The results of these analyses are illustrated in 

Figure S4 panels c-f. In these analyses the first rating returned every week (panels c-d) or 

every three weeks (panels e-f) were passed to the filter. As can be seen the group 

differences in cause of affective variability remains apparent at the longer time periods. 

These results suggest that the duration of shifts of negative affective in the bipolar group 

have a duration of at least three weeks. An outstanding question concerns the duration of 

shifts in the borderline group, assessing this would require collecting affect ratings at a 

frequency greater than once daily. 
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Figure S4: The relationship between the half-life of affective perturbations and the filter 

derived metrics.  Panels a and b illustrate the effect of the frequency of affective 

perturbations (x axis) and the duration of their effect (y axis) on estimates of volatility a 

and noise b from synthetic data. High levels of volatility and noise are represented by 

yellow colors and low levels by blue colors. As can be seen, both volatility and noise 

increase as the frequency of affective perturbations increase (a similar effect on both 

volatility and noise is seen if the magnitude of affective perturbations increase), whereas 

the duration of the perturbations influences whether affective variability is attributed to 

volatility (for longer lasting perturbations) or noise (for shorter perturbations). Illustrative 

timecourses of the synthetic data are shown in the corner of each panel. Panels c-f. Group 
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differences in the cause of affective variability in the cohort study are apparent when a 

lower sampling frequency of one (panels c and d) or three (panels e and f) weeks is used. 

The x-axis reports the number of time points (i.e. for the three week data time point 2 

occurs three weeks after time point 1). Mean (SEM) of filter derived estimates are 

displayed as per the figures in the main paper, lines are censored when fewer than 10 

participants are left in a group (i.e. participants remained in the study for variable lengths 

of time). Data from the bipolar group is summarized with red, the borderline group with 

blue and the control group with green lines. Lines reporting volatility are dotted, those 

reporting noise are dashed. 

 

 

Effect of other medications on affective volatility and noise 

In the cohort study of the main paper, receipt of lithium was found to account for the 

increased volatility of positive affect seen in the bipolar group, but not for the increase in 

negative volatility. It was not associated with affective noise (which was raised in both 

patient groups). As the groups differ on a range of other medications received, we ran 

additional sensitivity analyses in which we added explanatory variables for each class of 

medication to assess a) whether that class of medication competed with lithium in terms 

of accounting for positive volatility (i.e. was receipt of the medication significantly 

associated with positive volatility, or when including it as an explanatory term was 

lithium no longer significantly associated with positive volatility), b) whether the class of 

medication could account for group differences in negative volatility (i.e. was receipt of 

the medication significantly associated with negative volatility, or when including it as an 

explanatory term was diagnostic group no longer significantly associated with negative 

volatility) and c) whether the class of medication could account for group differences in 

either positive or negative noise (i.e. was receipt of the medication significantly 

associated with positive or negative noise, or when including it as an explanatory term 

was diagnostic group no longer significantly associated with positive or negative noise). 

None of the different forms of medication were significantly associated with either 

positive or negative volatility or noise. Similarly, as summarized in table S4 below, none 

influenced the effect of lithium on positive volatility or diagnostic group on negative 

volatility, or on positive or negative noise.  

 

Table S4: Association of lithium treatment and positive volatility, and group membership 

with negative volatility, when the effects of different classes of medication are added to 

the analysis. 

 

Medication 

type 

Main Effect of 

Lithium on 

Positive 

Volatility 

Main Effect of 

Group on 

Negative 

Volatility 

Main Effect of 

Group on 

Positive Noise 

Main Effect of 

Group on 

Negative Noise 

Anticonvulsants F(1,120)=5.28, 

p=0.02 

F(2,120)=4.04, 

p=0.02 

F(2,120)=7.6, 

p=0.001 

F(2,120)=27.2, 

p<0.001 

Antipsychotics F(1,120)=4.97, 

p=0.03 

F(2,120)=4.4, 

p=0.01 

F(2,120)=9.7, 

p<0.001 

F(2,120)=28.1, 

p<0.001 
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Antidepressants F(1,119)=5.71, 

p=0.02 

F(2,119)=5.35, 

p<0.01 

F(2,119)=7.7, 

p=0.001 

F(2,119)=23.9, 

p<0.001 

Anxiolytics F(1,119)=5.12, 

p=0.02 

F(2,119)=6.6, 

p<0.01 

F(2,119)=8, 

p=0.001 

F(2,119)=27.6, 

p<0.001 

Hypnotics F(1,118)=5.1, 

p=0.03 

F(2,118)=7.14, 

p<0.01 

F(2,118)=7.5, 

p=0.001 

F(2,118)=29.3, 

p<0.001 

 

As a final sensitivity analysis, we tested whether, within the group of patients with 

bipolar disorder in the cohort study, the pattern of affective volatility and noise differed 

between the groups of patients with Bipolar Disorder type I versus type II. No difference 

between these groups was found for any interaction including bipolar disorder sub-type 

(all p>0.3).   
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