#### **Supplementary Materials**

#### **Materials and Methods**

**Study design**: Other eligibility criteria for the study included measurable disease by Response Evaluation Criteria in Solid Tumors 1.1, an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1 and normal organ and marrow function. Patients were required to have at least one prior platinum-based therapeutic regimen, but those with more than three prior platinum-based regimens, or more than two non-platinum cytotoxic chemotherapy regimens were excluded. There was no limit on use of prior biological therapies, but prior immunotherapy was not allowed. Patients were also excluded if they had a diagnosis of immunodeficiency or were receiving systemic steroids or immunosuppressive therapy within 7 days of enrollment. An initial safety run-in cohort of 6 patients was used to confirm combination treatment safety, and the study was allowed to continue if <=1 dose-limiting toxicity (DLT) events occurred within 5 weeks of treatment start (cycle 1 and 2 additional weeks). DLTs were defined as any treatment-related grade >3 non-hematological toxicity occurring despite the use of adequate medical intervention and/or prophylaxis, grade 4 neutropenia lasting  $\geq$  7 days, grade 4 febrile neutropenia, grade 3 thrombocytopenia lasting  $\geq$  7 days, or grade 4 thrombocytopenia lasting  $\geq$  4 days, or any treatmentrelated toxicity that results in > 14 days delay in cycle 2 Day 1 dosing.

**Procedures:** Imaging-guided tumor biopsies, ascites, or blood for determining cytokine response and collection of PBMCs were obtained from consenting patients at baseline (cycle 1, day 1, C1D1) on day 5 of cycle 1 (C1D5), before the second cycle (C2D1), on day 5 of cycle 2 (C2D5), on day 8 of cycle 2 (C2D8), before cycle 3 (C3D1), and 30 days and 6 months after the end of

treatment, as shown in Figure 1A. Three 18-gauge tumor cores were obtained on C1D1 and C2D8 and the material was immediately snap frozen (~25-50mg/specimen) after pathological verification. When available, ascites or pleural fluid was centrifuged, and fluid and cell pellets were separated prior to cryo-preservation.

Outcomes: The primary outcome of the trial was objective response rate (ORR), equivalent to the total rate of complete response (CR) and partial response (PR). Secondary objectives included progression-free survival (PFS), clinical benefit rate (CBR) defined as the sum between ORR and total rate of stable disease (SD) at 3 months, and toxicity profiles. After a baseline scan, imaging modality remained constant per-patient throughout the study, and subsequent surveillance studies were obtained during treatment with every odd-numbered cycle starting with cycle 3. Response was assessed in measurable and non-measurable lesions using immune-related response criteria (irRC) and RECIST v1.1; progression was determined only by RECIST v1.1. Any patient who received at least two cycles of treatment was evaluable for ORR. Toxicity was monitored at each cycle by history, physical examination, measurement of serum electrolytes and indicators of renal, liver and marrow function. Beginning at cycle 3 and each subsequent cycle, thyroid function was also monitored. A safety follow-up visit occurred at 30 days after the last dose of study drug, or before the initiation of a new drug regimen. Adverse events related to study drugs were managed with dose withholding or delay; a delay of more than 28 days that was possibly, probably or definitely related to a study drug would result in withdrawal from study treatment.

**Statistical design**: The trial employed a Simon's two-stage design to test the null hypothesis that RR<=0.10 versus the alternative that RR>=0.30 (where RR is calculated via RECIST v1.1). The

design has an expected sample size of 22.5 and a probability of early termination of 0.71 when RR=0.10. If the drug combination was actually not effective, there was a 0.047 probability of concluding that it is (the target for this value was 0.050). If the regimen was actually effective, there was a 0.098 probability of concluding that it is not (the target for this value was 0.100). If three patients experienced clinical benefit in stage I [n = 18], enrollment proceeded to stage II with a total target enrollment of 35 evaluable patients.

**Methylome analysis**: DNA (500 ng) was bisulfite converted and used for methylation profiling at the NUSeq Core Facility, Northwestern University, according to the Illumina's protocol. BeadChips were scanned with an Illumina iScan and then analyzed using the Illumina GenomeStudio software. Probes were filtered based on quality of detection, bead count (< 3 in at least 5% of samples), lack of CpGs, SNP presence, and alignment to multiple locations. Sex chromosome probes were included, as all patients in the study were female. The resultant 742,725 probes were analyzed for differential methylation between post-treatment (C2D8) and baseline (C1D1) paired groups. Methylation analysis was performed using the ChAMP package. Methylation beta values were normalized by Beta MIxture Quantile dilation (BMIQ) (1). Batch effect correction was performed on Sentrix ID, via the ComBat package (2). Finally, a linear model was fitted for statistical testing between the two groups, using limma (via ChAMP) and associated t-test. The p-values were adjusted using the Benjamini-Hochberg procedure. Pathway analysis was performed using EnrichR.

Transcriptome analyses: RNA-seq libraries were prepared with a NEBNext Ultra II RNA library prep kit from Illumina (New England Biolabs Inc., Ipswich, MA). In brief, mRNA isolated from

1 mg of total RNA was used for first-strand cDNA synthesis, which was followed by secondstrand cDNA synthesis, end-repair of cDNA library, dA-tailing of cDNA library, adaptor ligation, PCR enrichment, and verification of library quality with a BioAnalyzer. Libraries were sequenced at the NUSeq Core Facility of Northwestern University on an Illumina NextSeq500 instrument with single-end and 75-bp read length settings. Each group was sequenced in triplicate. For quality control, raw fastq files were pre-processed using TrimGalore (version 0.4.4) and cutadapt (version 1.14) with single-end trimming mode, Phred score cutoff of 20 and minimum sequence length cutoff of 20 bp (3) which trimmed off low-quality base calls. This was followed by adapter removal from the 3' end of the reads, resulting in filtered reads with average read depth of 24.1 million reads. Trimmed reads were aligned to the ENSEMBL human genome version GRCh38 using STAR (2.5.2) (4) and SAMtools (5). Expression quantification and count matrix generation were performed using rsem. Pre-filtering was done to keep only those genes with row totals (counts across all samples) > 10. Additional filtering was conducted to remove genes for which 70% of samples had no reads. Differential expression was performed using DESeq2, which utilizes a negative binomial distribution to model RNA-seq counts. Statistical differences were determined using Wald test. The p-values were adjusted using the Benjamini-Hochberg procedure. The differentially expressed genes included had an FDR-adjusted p-value < 0.10. Telescope was used to identify transposable elements (TE) across the genome (6). A count matrix was produced for each sample and differential expression of TEs was conducted between the pre- and post-treatment groups using DESeq2.

### References

1. Teschendorff AE, Lee SH, Jones A, et al. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med 2015;7:108.

2. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform 2020;2:1qaa078.

3. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 2011;17:3.

4. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:7.

5. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-9.

6. Bendall ML, de Mulder M, Iñiguez LP, Lecanda-Sánchez A, Pérez-Losada M, Ostrowski MA, et al. (2019) Telescope: Characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput Biol 15(9): e1006453.

## Supplementary Tables:

|                               | Overall $(n = 45)$  |
|-------------------------------|---------------------|
| Age at Registration in Years  |                     |
| Median (Range)                | 61 (34 - 88)        |
| Race                          |                     |
| Asian                         | 2 (4.4)             |
| Black                         | 5 (11.)             |
| Not Reported/Refused          | 1 (2.2)             |
| Unknown                       | 1 (2.2)             |
| White                         | 36 (80.0)           |
| Ethnicity                     |                     |
| Hispanic or Latino            | 1 (2.2)             |
| Non-Hispanic                  | 43 (95.6)           |
| Not Reported                  | 2 (2.2)             |
| Platinum resistant            | 45 (100)            |
| Prior treatment regimens      |                     |
| Median (Range)                | 5 (1 – 11)          |
| Prior platinum-based regimens |                     |
| Median (Range)                | 2 (1 – 4)           |
| Data are n (%) unle           | ess otherwise noted |

## Supplementary Table S1 – Patient characteristics

Supplementary Table S2 – Summary of adverse events and attributed drug.

|                                    |               |               | n=43           |
|------------------------------------|---------------|---------------|----------------|
|                                    | Guadecitabine | Pembrolizumab | Either Drug    |
| Adverse Events                     | 40 (93.0)     | 32 (74.4)     | 41 (95.3)      |
| Adverse Events (Grade 1-2)         | 39 (90.7)     | 31 (72.1)     | 40 (93.0)      |
| Adverse Events (Grade 3-4)         | 21 (48.8)     | 8 (18.6)      | 24 (55.8)      |
| Serious Adverse Events             | 3 (7.0)       | 6 (14.0)      | 7 (16.3)       |
| Serious Adverse Events (Grade 1-2) | 1 (2.3)       | 1 (2.3)       | 2 (4.7)        |
| Serious Adverse Events (Grade 3-4) | 3 (7.0)       | 5 (11.6)      | 6 (14.0)       |
|                                    |               |               | Data are n (%) |

| Adverse Event*          | Grade 1-2  | Grade 3-4          | Total**                                                  |
|-------------------------|------------|--------------------|----------------------------------------------------------|
| Lymphocytopenia         | 20 (46.5%) | 6 (14.0%)          | 26 (60.5%)                                               |
| Leukopenia              | 13 (30.2%) | 12 (27.9%)         | 25 (58.1%)                                               |
| Neutropenia             | 5 (11.6%)  | 16 (37.2%)         | 21 (48.8%)                                               |
| Anemia                  | 19 (44.2%) |                    | 19 (44.2%)                                               |
| Fatigue                 | 14 (32.6%) | 1 (2.3%)           | 15 (34.9%)                                               |
| Injection site reaction | 12 (27.9%) |                    | 12 (27.9%)                                               |
| Investigations - Other  | 9 (20.9%)  |                    | 9 (20.9%)                                                |
| Nausea                  | 6 (14.0%)  |                    | 6 (14.0%)                                                |
| Anorexia                | 5 (11.6%)  |                    | 5 (11.6%)                                                |
| Arthralgia              | 5 (11.6%)  |                    | 5 (11.6%)                                                |
| Thrombocytopenia        | 5 (11.6%)  |                    | 5 (11.6%)                                                |
| Diarrhea                | 3 (7.0%)   |                    | 3 (7.0%)                                                 |
| Serious Adverse         | Grade 1-2  | Grade 3-4          | Total**                                                  |
| Event                   |            |                    |                                                          |
| Febrile neutropenia     |            | 1 (2.3%)           | 1 (2.3%)                                                 |
| Neutropenia             |            | 1 (2.3%)           | 1 (2.3%)                                                 |
| Otitis media            |            | 1 (2.3%)           | 1 (2.3%)                                                 |
| Sinusitis               | 1 (2.3%)   |                    | 1 (2.3%)                                                 |
| Skin infection          |            | 1 (2.3%)           | 1 (2.3%)                                                 |
|                         |            | *Adverse events oc | curring in >5% of patients listed<br>**No grade 5 events |

Supplementary Table S3A. Adverse events and serious adverse events related to guadecitabine.

**Supplementary Table S3B**. Adverse events and serious adverse events related to pembrolizumab.

| Adverse Event*                                                             | Grade 1-2  | Grade 3-4 | Total**    |
|----------------------------------------------------------------------------|------------|-----------|------------|
| Fatigue                                                                    | 10 (23.3%) | 1 (2.3%)  | 11 (25.6%) |
| Transaminitis (ALT)                                                        | 7 (16.3%)  |           | 7 (16.3%)  |
| Diarrhea                                                                   | 7 (16.3%)  |           | 7 (16.3%)  |
| Dry skin                                                                   | 6 (14.0%)  |           | 6 (14.0%)  |
| Nausea                                                                     | 6 (14.0%)  |           | 6 (14.0%)  |
| Arthralgia                                                                 | 5 (11.6%)  |           | 5 (11.6%)  |
| Pruritis                                                                   | 5 (11.6%)  |           | 5 (11.6%)  |
| Abdominal pain                                                             | 4 (9.3%)   |           | 4 (9.3%)   |
| Transaminitis (AST)                                                        | 4 (9.3%)   |           | 4 (9.3%)   |
| Colitis                                                                    | 3 (7.0%)   | 1 (2.3%)  | 4 (9.3%)   |
| Lymphocytopenia                                                            | 4 (9.3%)   |           | 4 (9.3%)   |
| Maculo-papular rash                                                        | 3 (7.0%)   | 1 (2.3%)  | 4 (9.3%)   |
| Leukopenia                                                                 | 2 (4.7%)   | 2 (4.7%)  | 4 (9.3%)   |
| Anorexia                                                                   | 3 (7.0%)   |           | 3 (7.0%)   |
| Chills                                                                     | 3 (7.0%)   |           | 3 (7.0%)   |
| Vomiting                                                                   | 3 (7.0%)   |           | 3 (7.0%)   |
| Weight loss                                                                | 3 (7.0%)   |           | 3 (7.0%)   |
| Serious Adverse                                                            | Grade 1-2  | Grade 3-4 | Total**    |
| Event                                                                      |            |           |            |
| Colitis                                                                    | 1 (2.3%)   | 1 (2.3%)  | 2 (4.7%)   |
| Arthritis                                                                  |            | 1 (2.3%)  | 1 (2.3%)   |
| Febrile neutropenia                                                        |            | 1 (2.3%)  | 1 (2.3%)   |
| Neutropenia                                                                |            | 1 (2.3%)  | 1 (2.3%)   |
| Thromboembolic event                                                       |            | 1 (2.3%)  | 1 (2.3%)   |
| *Adverse events occurring in >5% of patients listed<br>**No grade 5 events |            |           |            |

**Supplementary Table S4.** Top 50 differentially upregulated genes after guadecitabine + pembrolizumab treatment of ovarian cancer patients (n=9 paired samples). mRNA levels were measured by RNAseq.

| Gene Name    | log2 Fold Change | FDR-adjusted p-value |
|--------------|------------------|----------------------|
| IFNG         | 3.021943597      | 0.000807             |
| PNMA5        | 2.911491263      | 0.013305             |
| CXCL9        | 2.611062621      | 2.05E-07             |
| ACOD1        | 2.574988025      | 0.084935             |
| IL21         | 2.443231297      | 0.017989             |
| CT45A5       | 2.436280294      | 0.023332             |
| IDO1         | 2.423100365      | 2.54E-06             |
| FPR2         | 2.422398678      | 0.045380             |
| PLA2G2D      | 2.412921216      | 2.18E-05             |
| GZMH         | 2.268437744      | 2.79E-06             |
| GZMK         | 2.244753795      | 0.001769             |
| GZMA         | 2.160537063      | 9.83E-05             |
| CD8A         | 2.157331338      | 7.06E-06             |
| CALHM6       | 2.124869018      | 8.27E-07             |
| CXCR6        | 2.118103195      | 2.18E-05             |
| HTRA4        | 2.094718796      | 0.000315             |
| PDCD1        | 2.076223387      | 1.27E-06             |
| CASP5        | 2.061952936      | 0.025993             |
| SIGLEC8      | 2.046599027      | 0.002471             |
| IGF2BP1      | 1.972021776      | 0.013133             |
| CD8B         | 1.966866185      | 0.01815              |
| LAG3         | 1.961054573      | 0.002136             |
| GPR171       | 1.950795401      | 0.002130             |
| CCL18        | 1.940577946      | 1.87E-05             |
| GBP5         | 1.93054707       | 5.67E-07             |
| ADAMDEC1     | 1.953034707      | 2.83E-07             |
| TLR8         | 1.884197324      | 0.001496             |
| TMIGD3       | 1.869853443      | 0.001490             |
| PRR5-ARHGAP8 | 1.828943358      | 0.089720             |
| PRF1         | 1.827549639      | 0.000189             |
| KCNJ10       |                  | 7.63E-05             |
| GZMB         | 1.818239279      | 0.070990             |
|              | 1.800743139      |                      |
| SLAMF7       | 1.795691466      | 0.000108             |
| CD2          | 1.773541842      | 2.41E-05             |
| NKG7         | 1.758246502      | 0.005008             |
| <u>CHITI</u> | 1.755242023      | 0.004425             |
| CXCL11       | 1.739105067      | 0.001274             |
| FCGRICP      | 1.73851812       | 0.000838             |
| CIQB         | 1.733936177      | 1.13E-09             |
| GPR84        | 1.728380317      | 0.001041             |
| CLEC4E       | 1.719569177      | 6.54E-05             |
| SIGLEC10     | 1.715704444      | 8.27E-07             |
| PDCD1LG2     | 1.713103785      | 0.000145             |
| FCGR1A       | 1.708495598      | 6.78E-06             |
| TIFAB        | 1.702393538      | 0.025508             |
| TIGIT        | 1.696611575      | 0.000677             |
| LINC02446    | 1.694817585      | 0.050489             |
| PLA2G7       | 1.682182086      | 0.002040             |
| CCL5         | 1.68198303       | 0.001796             |
| DLGAP1       | 1.671422442      | 0.045647             |

**Supplementary Table S5.** Differentially downregulated genes (41 total) after guadecitabine + pembrolizumab treatment of ovarian cancer patients (n=9 paired samples). mRNA levels were measured by RNAseq.

| Gene Name   | log2 Fold Change | FDR-adjusted p-value |
|-------------|------------------|----------------------|
| PGAP2       | -0.345407592     | 0.035958496          |
| NKIRASI     | -0.367687668     | 0.081703089          |
| SRSF5       | -0.380340907     | 0.028366191          |
| ZNF655      | -0.398602078     | 0.003168626          |
| SDHAP1      | -0.410338197     | 0.074571972          |
| HSD17B8     | -0.421765695     | 0.098659091          |
| CREBZF      | -0.45580986      | 0.077839995          |
| NREP        | -0.456134357     | 0.000669948          |
| L3HYPDH     | -0.458217421     | 0.017157476          |
| SGSM2       | -0.506855608     | 0.034421708          |
| SNHG14      | -0.528938406     | 0.03754422           |
| RNF208      | -0.57986596      | 0.080460579          |
| ZNF321P     | -0.601373661     | 0.010497706          |
| NSUN5P1     | -0.662756505     | 0.094221581          |
| TIMP3       | -0.676978243     | 0.083678637          |
| MIRLET7A1HG | -0.746668684     | 0.095702681          |
| DNMI        | -0.748204932     | 0.016338599          |
| VAMPI       | -0.759141863     | 0.007033378          |
| CPLXI       | -0.866386115     | 0.016158171          |
| RPL10P9     | -1.07217148      | 0.08247558           |
| GABRD       | -1.141079875     | 0.052367756          |
| CARMN       | -1.153806166     | 0.081926728          |
| CIQTNF3     | -1.161311733     | 0.07190082           |
| AC135050.2  | -1.168996494     | 0.067990322          |
| NALTI       | -1.296956295     | 0.048926277          |
| LINC01238   | -1.363348944     | 0.07190082           |
| AC131649.2  | -1.474638517     | 0.035958496          |
| FLG         | -1.485695252     | 0.032600299          |
| AC092535.5  | -1.643213806     | 0.050448743          |
| FGF14       | -1.748033355     | 0.084152885          |
| KCNJ13      | -1.776394198     | 0.014155277          |
| AC027601.3  | -1.797433312     | 0.060255252          |
| COX6A2      | -2.020299371     | 0.07190082           |
| HMCN2       | -2.194654715     | 0.042789583          |
| SNORD3D     | -2.430748836     | 0.089551416          |
| RELN        | -2.591988519     | 0.070144361          |
| ACADL       | -2.748984955     | 0.002128598          |
| AC087164.2  | -2.944168458     | 0.011618544          |
| MYH1        | -3.092287617     | 0.018818117          |
| AC090517.4  | -3.424373847     | 0.041357655          |
| FGB         | -3.533332606     | 0.001274024          |

**Supplementary Table S6.** Top 50 differentially upregulated genes measured before guadecitabine + pembrolizumab treatment in durable CBR patients (n=9) compared with non-responders (n=7). mRNA levels were measured by RNAseq.

| Gene Name                | log2 Fold Change | FDR-adjusted p-value |
|--------------------------|------------------|----------------------|
| ALPG                     | 8.85098489       | 0.000691701          |
| COX8C                    | 8.566262493      | 0.042625388          |
| ALPP                     | 8.278134784      | 0.00252245           |
| GPR1-AS                  | 7.533349103      | 0.009387357          |
| PRSS41                   | 7.409782478      | 0.001119237          |
| IGKV1D-17                | 5.969474335      | 0.022648315          |
| PKHD1L1                  | 5.832515885      | 0.000260587          |
| RAG2                     | 5.826777943      | 0.022786167          |
| LTF                      | 5.769440902      | 0.000401743          |
| CCL21                    | 5.452005367      | 0.012875747          |
| IGKV6-21                 | 5.399432873      | 0.034681608          |
| MS4A8                    | 5.355262404      | 0.052538535          |
| ZNF716                   | 5.311466305      | 0.058541591          |
| CLEC2L                   | 5.181111018      | 0.018998875          |
| NR5A1                    | 4.966615821      | 0.055338403          |
| OR56A3                   | 4.885062642      | 0.054268007          |
| RPL23AP60                | 4.815864593      | 0.05917125           |
| PGC                      | 4.700403267      | 0.049572273          |
| CEACAM6                  | 4.603132218      | 0.009387357          |
| CD1B                     | 4.478789883      | 0.098557991          |
| AKR1B15                  | 4.456120318      | 0.037946087          |
| AC013457.1               | 4.436407013      | 0.037946087          |
| AC015457.1<br>AC096656.1 | 4.389959555      | 0.059428475          |
| PTCRA                    | 4.315932565      |                      |
|                          |                  | 0.021976816          |
| <u>AC073612.1</u>        | 4.261104874      | 0.034681608          |
| RRN3P4                   | 4.184449796      | 0.052538535          |
| LINC02257                | 4.171797184      | 0.00667502           |
| TACSTD2                  | 4.15290248       | 0.000260587          |
| <u>AL022342.1</u>        | 4.150202265      | 0.052538535          |
| C8orf34-AS1              | 3.962821145      | 0.057504971          |
| LINC01133                | 3.886653558      | 0.083309771          |
| DDX43                    | 3.879218215      | 0.046217468          |
| TRDC                     | 3.867880253      | 0.031582847          |
| MUC5B                    | 3.840106316      | 0.015982214          |
| AC091544.2               | 3.77761556       | 0.087473287          |
| AC019131.3               | 3.74758465       | 0.063639948          |
| TEX41                    | 3.676142164      | 0.063110924          |
| SLC25A48                 | 3.658013778      | 0.025467258          |
| UPK3B                    | 3.648086999      | 0.023356137          |
| ELAPORI                  | 3.553423218      | 0.044374432          |
| CSF2                     | 3.530921675      | 0.048742093          |
| KRT15                    | 3.490924213      | 0.064784806          |
| PCDHGB5                  | 3.475700344      | 0.00127941           |
| HBB                      | 3.445634317      | 0.033830493          |
| GCNT1P3                  | 3.430001058      | 0.083545384          |
| LINC01226                | 3.422868569      | 0.079177409          |
| RAGI                     | 3.417070941      | 0.001119237          |
| STOML3                   | 3.412825384      | 0.091567883          |
| EYA2                     | 3.408922836      | 0.015982214          |

**Supplementary Table S7.** Top 50 differentially dowregulated genes measured before guadecitabine + pembrolizumab treatment in durable CBR patients (n=9) compared with non-responders (n=7). mRNA levels were measured by RNAseq.

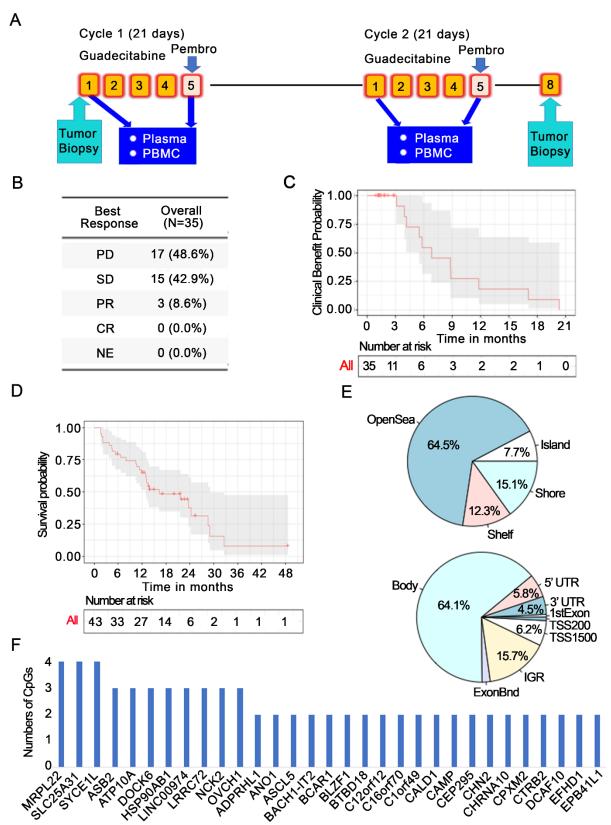
| Gene Name   | log2 Fold Change | FDR-adjusted p-value |
|-------------|------------------|----------------------|
| ZG16        | -9.159804931     | 0.055338403          |
| NXF2        | -8.420283058     | 0.002484651          |
| TTR         | -8.326617288     | 0.054268007          |
| СҮР2В6      | -8.190694444     | 0.042634455          |
| ALB         | -8.110597445     | 0.016759077          |
| ADH1A       | -8.088131576     | 0.006332901          |
| PIK3C2G     | -7.776423252     | 0.073433344          |
| BAAT        | -7.643517215     | 0.016759077          |
| SERPIND1    | -7.337692859     | 0.016759077          |
| CYP4F2      | -7.266118759     | 0.092045328          |
| ADHIC       | -7.249112267     | 0.015982214          |
| AHSG        | -7.211869541     | 0.095277598          |
| UGT2B4      | -7.203896338     | 0.09862059           |
| HRG         | -7.130767014     | 0.026889926          |
| UROC1       | -7.116128569     | 0.016759077          |
| AKR1C4      | -6.894481198     | 0.031582847          |
| AC061961.1  | -6.425141361     | 0.061646249          |
| HNF4A       | -6.272416001     | 0.068086988          |
| APOC4-APOC2 | -6.270267031     | 0.065612319          |
| CLRN1-AS1   | -6.265758468     | 0.061991483          |
| PONI        | -6.26474166      | 0.016759077          |
| CLRN3       | -6.221788263     | 0.02729617           |
| CA5A        | -6.188333223     | 0.049006108          |
| UPB1        | -6.184798914     | 0.083169573          |
| C2CD4A      | -6.16705116      | 0.002189684          |
| COL2A1      | -6.141009492     | 0.006541502          |
| PLPPR1      | -6.068353441     | 0.019060092          |
| ADH1B       | -6.028003518     | 0.029903832          |
| AL583836.1  | -6.018234934     | 0.071747497          |
| CES5A       | -5.945791283     | 0.06606444           |
| ABCB11      | -5.86816446      | 0.05536931           |
| GSTA1       | -5.821804649     | 0.015982214          |
| UGT2A1      | -5.802276023     | 0.058048503          |
| HABP2       | -5.776185063     | 0.058048503          |
| ETNPPL      | -5.774276708     | 0.019396141          |
| RIPPLY1     | -5.773658431     | 0.052687211          |
| NR0B2       | -5.616172643     | 0.033830493          |
| IYD         | -5.604883809     | 0.031582847          |
| RHBG        | -5.517500627     | 0.016759077          |
| NAT8        | -5.498378041     | 0.033830493          |
| LINC01564   | -5.492564017     | 0.035708906          |
| FTCD        | -5.461714653     | 0.044249469          |
| SLC38A3     | -5.429165211     | 0.016759077          |
| TM4SF4      | -5.332323078     | 0.070812194          |
| GPX2        | -5.240872035     | 0.034681608          |
| TREH        | -5.219195809     | 0.068122133          |
| AC063919.1  | -5.200234276     | 0.052766685          |
| NPCILI      | -5.195610435     | 0.021976816          |
| LINC01554   | -5.166978616     | 0.022786167          |
| LINCOIJJ4   | -5.1007/0010     | 0.022/8010/          |

**Supplementary Table S8:** List of transposable elements (TE) differentially expressed (upregulated and downregulated) between pre- and post-treatment tumor specimens (FDR<0.05).

| TE                | FDR pvalue  | Fold-Change (post vs. pre) |
|-------------------|-------------|----------------------------|
| HERVW_11p14.2     | 0.077155907 | 8.788342658                |
| HML6_12p11.21     | 0.084432576 | 8.416017928                |
| HERVH_Xq23b       | 0.056078697 | 8.251313234                |
| HERVL40_4q22.2    | 0.065079534 | 7.408100996                |
| HERVH_11q22.2     | 0.021983366 | 6.009709729                |
| HERVFH19_12p11.21 | 0.084040231 | 5.221384318                |
| ERV316A3_14q21.1c | 0.035369708 | 4.915629252                |
| MER34B_11p15.5    | 0.043686343 | 4.51033525                 |
| HERVE_8p23.1e     | 0.063799393 | 4.281101183                |
| HML5_18q21.2      | 0.05227583  | 3.602453103                |
| HERVL_10p15.1     | 6.29E-09    | 0.018576868                |
| HERVH_17q24.2     | 3.88E-05    | 0.044694473                |
| MER4_14q11.2a     | 0.080517989 | 0.064412481                |
| HML3_4q22.1a      | 0.098489402 | 0.126179919                |
| HUERSP2_3q26.33   | 0.09896083  | 0.13634798                 |
| HML5_12q15        | 0.095837113 | 0.136470291                |
| HERVH_21q21.1b    | 0.065524387 | 0.160529814                |
| HERVH_3q11.1      | 0.061353986 | 0.17240441                 |
| ERVLE_15q21.2     | 0.060836837 | 0.177612811                |
| MER4_3q29e        | 0.062841848 | 0.179679473                |
| HERVK11_22q11.21  | 0.070394985 | 0.279846533                |

| Target        | Metal-conjugate | Clone    |
|---------------|-----------------|----------|
| Live and Dead | In115           |          |
| CD57          | In113           | HCD57    |
| CD19          | Nd142           | SJ25C1   |
| CD4           | Nd143           | SK3      |
| CD8           | Nd144           | SK1      |
| IgD           | Nd146           | IA6-2    |
| CD85j         | Sm147           | 292319   |
| CD11c         | Nd148           | Bu15     |
| CD16          | Sm149           | 3G8      |
| CD3           | Nd150           | UCHT1    |
| CD38          | Eu151           | HB-7     |
| CD27          | Sm152           | L128     |
| CD11b         | Eu153           | ICRF44   |
| CD14          | Sm154           | M5E2     |
| CCR6          | Gd155           | G034E3   |
| CD94          | Gd156           | HP-3D9   |
| CD86          | Gd157           | IT2.2    |
| CXCR5         | Gd158           | RF8B2    |
| CXCR3         | Tb159           | G025H7   |
| CCR7          | Gd160           | 150503   |
| CD45RA        | Dy162           | HI100    |
| CD20          | Dy164           | 2H7      |
| CD127         | Ho165           | A019D5   |
| CD33          | Er166           | P67.8    |
| CD28          | Er167           | L293     |
| CD24          | Er168           | ML5      |
| ICOS          | Tm169           | DX29     |
| CD161         | Er170           | DX12     |
| TCRgd         | Yb171           | B1       |
| PD-1          | Yb172           | EH12.1   |
| CD123         | Yb173           | 9F5      |
| CD56          | Yb174           | NCAM16.2 |
| HLA-DR        | Lu175           | G46-6    |
| CD25          | Yb176           | M-A251   |

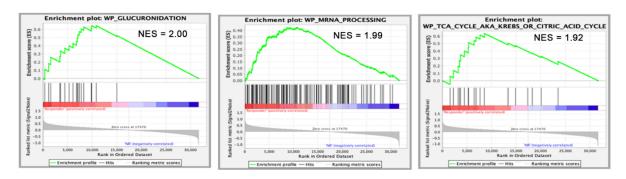
Supplementary Table S9. Antibodies used for CyTOF analysis.


| Target         | Conjugate                   | Clone    | Cat#   | Vendor         |
|----------------|-----------------------------|----------|--------|----------------|
| Live and Dead  | Zombie yellow               |          | 423104 | BioLegend      |
| CD14           | Alexa Fluor 647             | ΜφΡ9     | 562690 | BD Biosciences |
| CD8a           | Alexa Fluor 700             | RPA-T8   | 301028 | BioLegend      |
| CD3            | Spark Blue <sup>™</sup> 550 | SK7      | 344852 | BioLegend      |
| CD19           | APC                         | HIB19    | 302212 | BioLegend      |
| CD38           | PerCP                       | HIT2     | 303520 | BioLegend      |
| CD4            | PE                          | RPA-T4   | 300539 | BioLegend      |
| CD11c          | BV480                       | B-ly6    | 566184 | BD Biosciences |
| CD16           | BV785                       | 3G8      | 302046 | BioLegend      |
| CD127 (IL-7Ra) | PE/CY7                      | A019D5   | 351320 | BioLegend      |
| TCRgd          | PerCP5.5                    | B1       | 331224 | BioLegend      |
| CD27           | APC/Fire <sup>TM</sup> 810  | L128     | 393214 | BioLegend      |
| CD274 (PD-L1)  | BV711                       | 29E.2A3  | 329722 | BioLegend      |
| CD28           | BV650                       | CD28.2   | 302946 | BioLegend      |
| CD33           | BV570                       | WM53     | 303417 | BioLegend      |
| CD197 (CCR7)   | BV421                       | G043H7   | 353208 | BioLegend      |
| CD45RA         | BV510                       | HI100    | 304142 | BioLegend      |
| CD25 (IL-2R)   | PE/Dazzle 594               | M-A251   | 356126 | BioLegend      |
| HLA-DR         | BV750                       | L243     | 307672 | BioLegend      |
| CD279 (PD-1)   | Alexa Fluor 488             | EH12.2H7 | 329936 | BioLegend      |
| CD56 (NCAM)    | APC/CY7                     | 5.1H11   | 362512 | BioLegend      |
| CD11b (Mac-1)  | Pacific Blue                | M1/70    | 101224 | BioLegend      |
| CD45           | Spark NIR <sup>™</sup> 685  | 2D1      | 368552 | BioLegend      |

Supplementary Table S10. Antibodies used for CyTEK analysis.

| _       | Antigen Primary antibodies |          | Fluorophore            |           |          |
|---------|----------------------------|----------|------------------------|-----------|----------|
| Panel 1 |                            | Dilution | Vendor                 | Catalog # |          |
|         | CD3                        | 1:1      | <b>Biocare</b> medical | PP215AA   | Opal 520 |
|         | CD8                        | 1:200    | Cell Signaling         | 70306S    | Opal 540 |
|         | CD20                       | 1:1      | Biocare medical        | PM004AA   | Opal 570 |
|         | CD68                       | 1:1      | <b>Biocare</b> medical | PM033AA   | Opal 620 |
|         | Foxp3                      | 1:100    | BioLegend              | 320102    | Opal 650 |
|         | PanCK                      | 1:200    | Abcam                  | Ab27988   | Opal 690 |
| Panel 2 |                            |          |                        |           | 1        |
|         | A2AR                       | 1:200    | Sigma                  | HPA075997 | Opal 520 |
|         | CD8                        | 1:200    | Cell Signaling         | 70306S    | Opal 620 |
|         | PD-L1                      | 1:200    | Cell Signaling         | 13684S    | Opal 570 |
|         | NY-ESO-1                   | 1:200    | Invitrogen             | 35-6200   | Opal 650 |
|         | PanCK                      | 1:200    | Abcam                  | Ab27988   | Opal 690 |

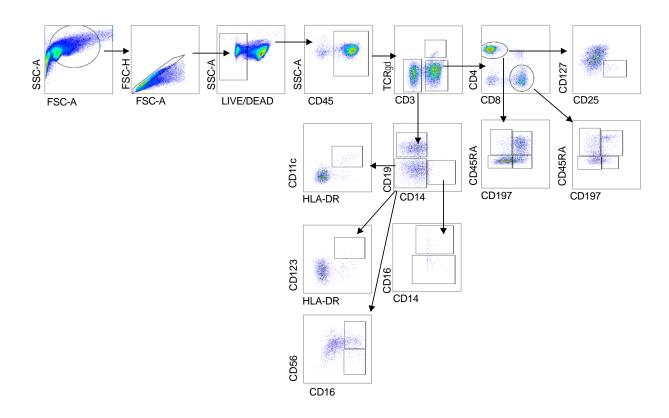
# Supplementary Table S11. Antibodies used for mIHC.


### **Supplementary Figures:**



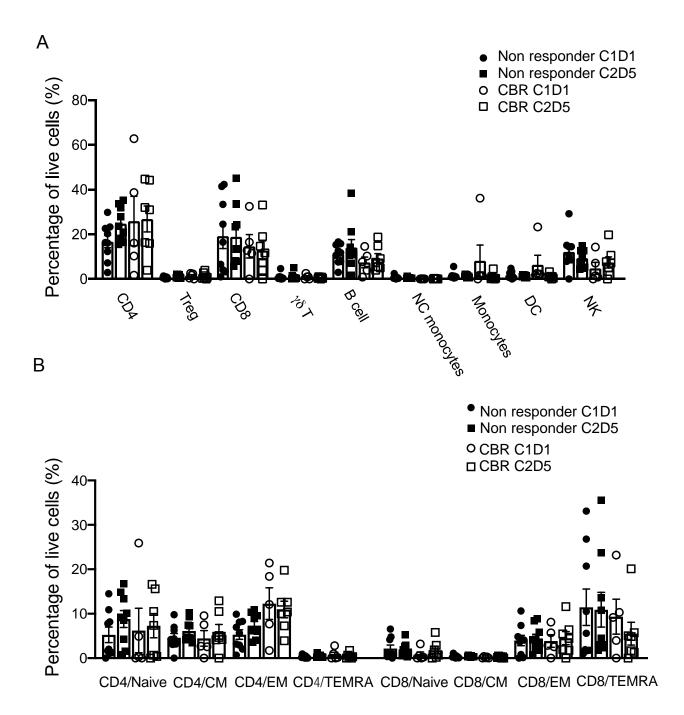
**Supplementary Figure S1. Results of clinical trial: A**, Treatment schema. **B**. Summary of clinical responses. **C.** Duration of clinical benefit (months). **D.** Kaplan Meier curve illustrates overall survival (n=43). **E**, Distribution of differentially methylated CpGs in patient samples after guadecitabine+prembrolizumab treatment (C2D8) vs. before treatment (C1D1). **F**, Genes with highest number of differentially methylated CpGs in the promoter-associated region (TSS200+TSS1500) in C2D8 compared with C1D1 tumor biopsies (n=11 pairs). Pembro, pembrolizumab.

| PATHWAY                                                | FDR q-value |
|--------------------------------------------------------|-------------|
| GLUCURONIDATION                                        | 0.027482174 |
| MRNA_PROCESSING                                        | 0.01865597  |
| STRIATED_MUSCLE_CONTRACTION_PATHWAY                    | 0.013170967 |
| TCA_CYCLE_AKA_KREBS_OR_CITRIC_ACID_CYCLE               | 0.022824746 |
| METABOLIC_REPROGRAMMING_IN_COLON_CANCER                | 0.022776695 |
| ELECTRON_TRANSPORT_CHAIN_OXPHOS_SYSTEM_IN_MITOCHONDRIA | 0.028358208 |
| OXIDATIVE_PHOSPHORYLATION                              | 0.032652568 |
| PPAR_SIGNALING_PATHWAY                                 | 0.029365905 |
| MITOCHONDRIAL_COMPLEX_1_ASSEMBLY_MODEL_OXPHOX_SYSTEM   | 0.033290487 |

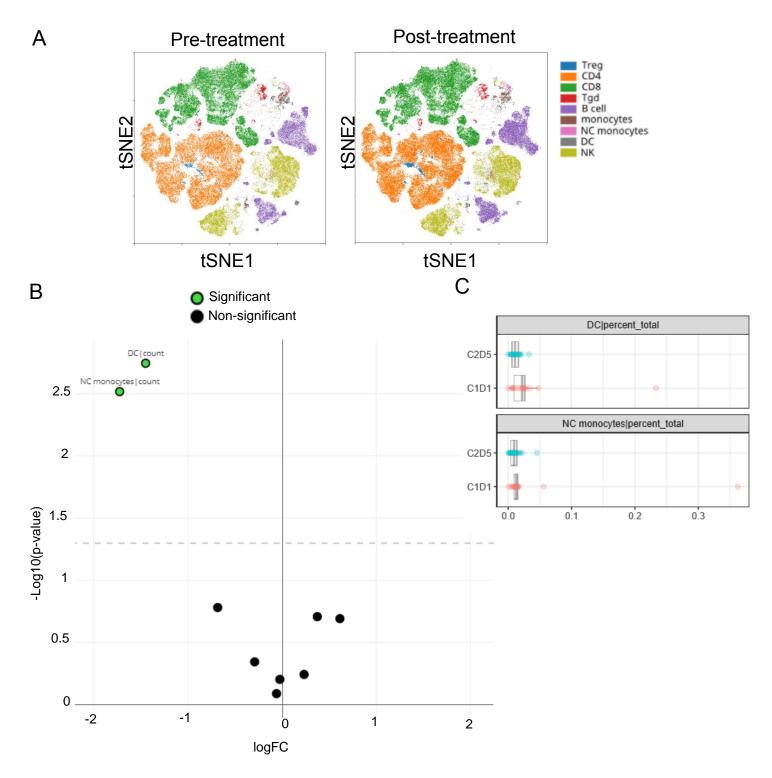

В



**Supplementary Figure S2. Differences in gene expression between durable CBR and non-responders. A.** Top ten enriched biological pathways by statistical significance (FDR q-value)

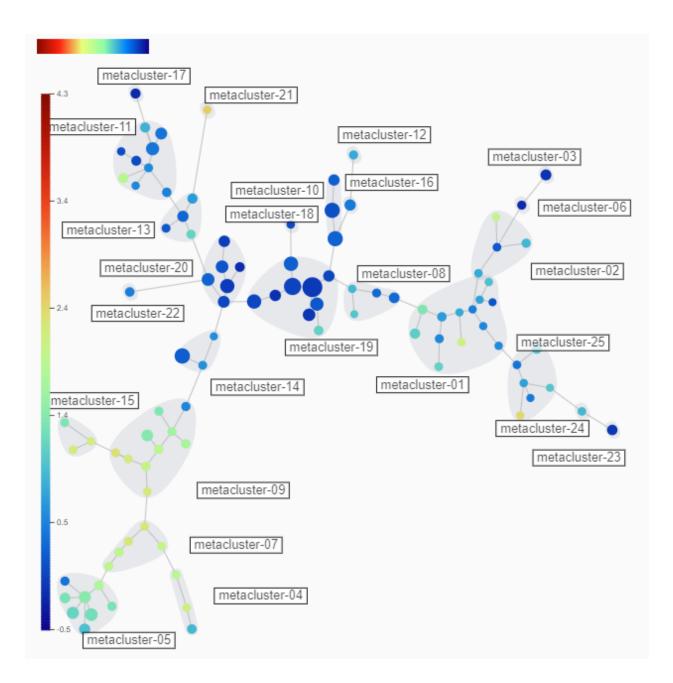

identified by GSEA of gene expression in C1D1 tumors from durable CBR vs. non-responder patients. **B.** GSEA enrichment plots for the pathways "Glucuronidation", "mRNA processing", and "TCA cycle aka Krebs or citric acid cycle".

А

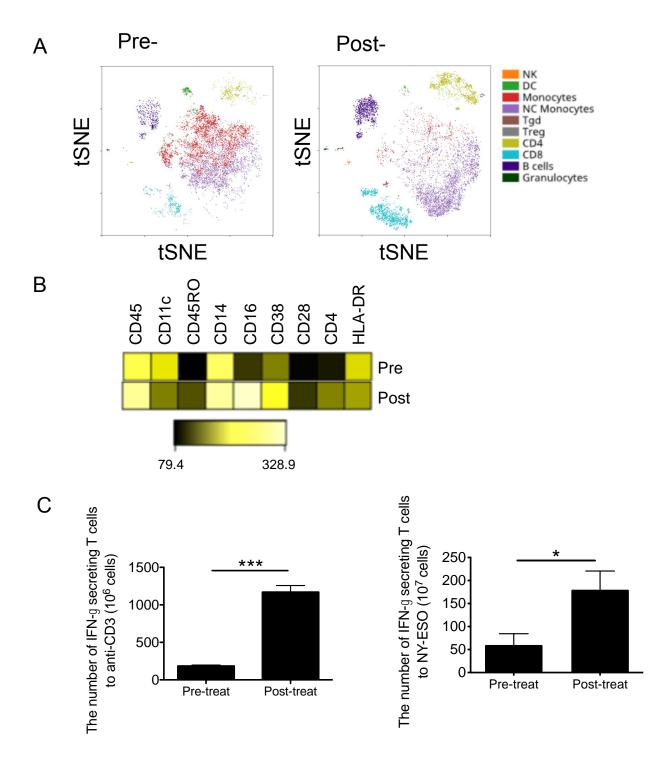



### Supplementary Figure S3. Gating strategies for the main immune populations in PBMC.

Single cell suspensions of PBMC were stained and analyzed by CyTEK for measuring CD4+ T cells (CD3+CD4+), CD8+T cells (CD3+CD8+), B cells (CD19+CD20+), classic monocytes (Lin-CD14+CD16-), non-classical (NC) monocytes (Lin-CD14<sup>low</sup>CD16+), monocytic dendritic cells (mDC), plasmacytoid dendritic cells (pDC), CD56<sup>hi</sup> and CD56<sup>dim</sup> NK cells.

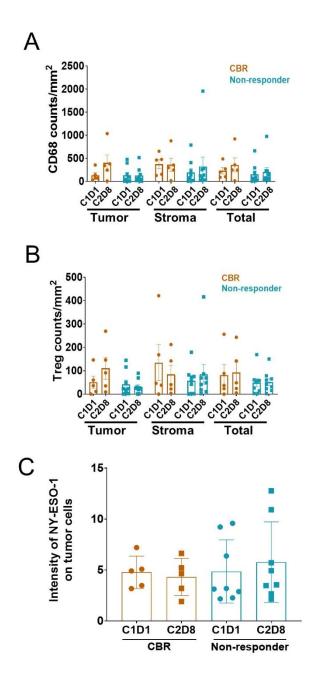



**Supplementary Figure S4. The immune profiling of PBMCs from C1D1 and C2D5. A**. Frequencies of different immune populations in the PBMC from the extended cohort of non-responders (n=9) and durable CBR (n=6) at C1D1 and C2D5 analyzed by CyTEK. **B**. Frequencies of different T cell subsets indicated from PBMC of non-responders (n=9) and durable CBR (n=6) at C1D1 and C2D5 analyzed by CyTEK.

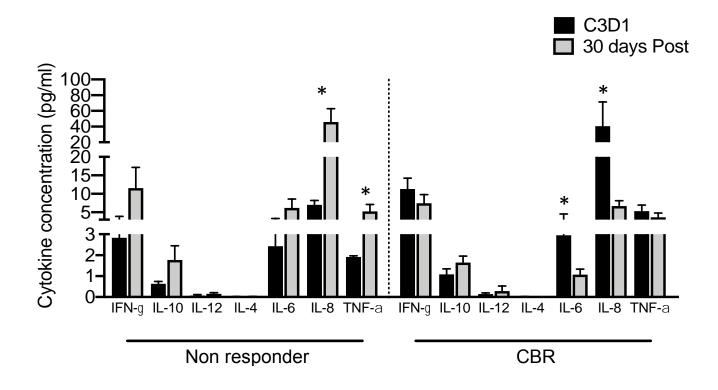



**Supplementary Figure S5. Identification of populations with significant differences between pre- and post-treatment with guadecitabine + pembrolizumab. A,** Exemplified tSNE visualization of overlaid cell population composition in the PBMCs of durable CBR (n=6) between C1D1 and C2D5. **B.** EdgeR analysis identified PBMC populations in durable CBR (n=6) with significant differences in relative abundance between C1D1 and C2D5. EdgeR

analysis identified population that show significant difference between C1D1 and C2D5. C. Abundance plots for significant clusters of DC and NC monocytes from PBMCs of durable CBR (n=6) between C1D1 and C2D5 by SAM CITRUS analysis.




Supplementary Figure S6. The FlowSOM tree for the PBMC of patients at C1D1 showing the unsupervised metaclustering. The background coloring indicates the relative abundance of each metacluster.




Supplementary Figure S7. Identification of differences in ascites from patient with durable CBR before and after treatment with guadecitabine + pembrolizumab. A. Exemplified tSNE visualization of overlaid immune cell population composition in the ascites from a durable CBR before and after treatment. B. The heat map represents the median expression levels of indicated markers within CD45<sup>+</sup> cells from the ascites. C. ELISPOT analysis of IFN- $\gamma$  secreting T cells from tumor cell depleted ascites treated as indicated in the presence of anti-CD3 or NY-ESO-1

peptides. The total number of IFN- $\gamma$  secreting T cells was counted. Error bars represent mean with SD. \*p < 0.05, \*\*\*p < 0.001. The p-values were calculated using two-sided t-tests.



**Supplementary Figure S8. A, B.** Density of tumor infiltrating CD68+ macrophages (A) and Treg cells (B) in the compartments of tumor-nest and stroma from durable CBR (n=5) and non-responders (n=9) determined by mIHC analysis. **C.** Expression levels of NY-ESO-1 on PanCK<sup>+</sup> tumor cells at C1D1 and C2D8 between durable CBR (n=5) and non-responders (n=9).



Supplementary Figure S9. Plasma levels of proinflammatory cytokines between non-responders and durable CBR after treatment with guadecitabine + pembrolizumab. The levels of plasma cytokines as indicated were measured by ELISA from non-responders (n=12) and durable CBR (n=5). Values are presented as means  $\pm$  SD. \* p < 0.05, \*\* p < 0.01. The p-values were calculated using two-sided t-tests.