Supplementary Table 1. Statistical tests used in Figure 1-6

Figure	Sample size	Statistic test	P value			
1c	20 each (10 males	Repeated-measure	Time x Treatment, $F(4, 152) = 1.398$	P=0.2374		
	+10 females)	two-way ANOVA	Time, $F(2.589, 98.39) = 2.209 P=0.1008$			
		Assume sphericity? No	Treatment, $F(1, 38) = 1.029$ P=0.	Ireatment, $F(1, 38) = 1.029$ P=0.3169 Subject $F(28, 152) = 2.175$ P=0.0005		
		Factor 1: 11me Factor 2: Treatment	Subject, $F(38, 152) = 2.175 P=0.0005$			
		(Ctrl, SD)				
1d	20 each (10 males	Repeated-measure	Time x Treatment, $F(4, 152) = 0.6330$	P=0.6397		
	+10 females)	two-way ANOVA	Time, $F(3.657, 139.0) = 16.83$ P=0.	.00000000000000000000000000000000000000	19916	
		Assume sphericity? No Factor 1: Time	Ireatment, $F(1, 38) = 0.2470$ P=0. Subject $F(38, 152) = 4.104$ P<0.0001	6221		
		Factor 2: Treatment	Subject, 1 (56, 152) = 4.104 1 < 0.0001			
		(Ctrl, SD)				
1e	20 each (10 males	Repeated-measure	Time x Treatment, $F(4, 152) = 1.243$	P=0.2953		
	+10 females)	two-way ANOVA	Time, $F(3.086, 117.3) = 3.978$ P=0.	.0091		
		Assume sphericity? No	Treatment, $F(1, 38) = 6.269$ P=0.	0167		
		Factor 1: Time Factor 2: Treatment	Subject, $F(38, 152) = 1.009 P=0.0101$			
		(Ctrl, SD)				
1f	20 each (10 males	Repeated-measure	Time x Treatment, $F(4, 152) = 0.1925$	P=0.9420		
	+ 10 females)	two-way ANOVA	Time, $F(3.544, 134.7) = 13.67$ P=0.	.0000000108	16056	
		Assume sphericity? No	Treatment, $F(1, 38) = 7.806$ P=0.0081			
		Factor 1: Time	Subject, $F(38, 152) = 2.906 P < 0.0001$			
		(Ctrl. SD)				
1g	20 each (10 males	Repeated-measure	Stimulus x Treatment, $F(3, 114) = 6.2$	226 P=0.00	006	
	+ 10 females)	two-way ANOVA	Stimulus, F (2.014, 76.52) = 83.36 P<0.	.0001		
		Assume sphericity? No	Treatment, $F(1, 38) = 0.9826$ P=0.3278			
		Factor 1: Stimulus	Subject, $F(38, 114) = 2.599 P<0.0001$			
		(111a + E, 111a + S1, Tria + 2S2)	Multiple comparisons P:	Ctul	SD	
		Factor 2: Treatment	T : 1 1 F T : 1 1 01		3D	
		(Ctrl, SD)	That I E vs. That I SI	0.0000023	0.0000001	
		Tukey's multiple	That I E vs. That 2 SI	0.1/203/1	0.1081043	
		comparisons test	Trial I E vs. Trial 2 S2	0.0000004	0.0059640	
			Trial I SI vs. Trial 2 SI	0.0000016	0.0000015	
			Trial I S1 vs. Trial 2 S2	0.0964569	0.0000191	
11.	20 aaah (10 malaa	Unnained t test with	Trial 2 S1 vs. Trial 2 S2 $t=0.4585$, df=25.00, True toiled $\mathbf{P} = 0.640$	0.0000008	0.5340232	
In	+ 10 females)	Welch's correction	t=0.4585, dt=55.99, t wo-tailed P = 0.649	15		
1i	20 each (10 males	Mann-Whitney test	Mann-Whitney $U = 30.50$, Two-tailed P =	= 0.0000004	12545753	
	+ 10 females)		-			
1j	12 each (Ctrl: 10	Repeated-measure	Stimulus x Treatment, $F(3, 66) = 0.1$	400 P=0.93	357	
	females: SD: 11	Assume sphericity? No	Sumulus, $F(2.193, 48.28) = 39.20$ P<0. Treatment $F(1, 22) = 0.9220$ P=0	3474		
	males +1 female)	Factor 1: Stimulus	Subject, $F(22, 66) = 1.791$ P=0.0363	5171		
	,	(Tria 1 E, Tria 1 S1,	Multiple comparisons P:			
		Tria 2 S1, Tria 2 S2)		Ctrl	Res	
		Factor 2: Treatment	Trial 1 E vs. Trial 1 S1	0.0000057	0.0002747	
		(Utrl, Kes)	Trial 1 E vs. Trial 2 S1	0.0104708	0.0048963	
		comparisons test	Trial 1 E vs. Trial 2 S2	0.0005546	0.0000610	
		I I I I I I I I I I I I I I I I I I I	Trial 1 S1 vs. Trial 2 S1	0.0000175	0.0040384	
			Trial 1 S1 vs. Trial 2 S2	0.4979571	0.2347252	
			Trial 2 S1 vs. Trial 2 S2	0.0030444	0.0007702	
1k	12 each (Ctrl: 10	Unpaired t test with	t = 0.1268, $df = 21.47$, Two-tailed $P = 0.9$	00281		
	males $+2$	Welch's correction				
1	females: SD: 11	1				

	males +1 female)				
11	12 each (Ctrl: 10	Unpaired t test with	t = 0.1054, df = 21.44, Two-tail	ed $P = 0.917062$	
	males $+2$	Welch's correction			
	males +1 female)				
1n	13 each (10 males + 3 females)	Repeated-measure two-way ANOVA Assume sphericity? No	Stimulus x Treatment, F (3, 5 Stimulus, F (2.327, 55.86) = 53 Treatment F (1, 24) = 0.265	72) = 10.76 P= .58 P<0.0001 87 P=0.6089	0.0000063
		Factor 1: Stimulus	Subject, $F(24, 72) = 7.082$	P<0.0001	
		(Tria 1 E, Tria 1 S1,	Multiple comparisons P:		
		Tria 2 S1, Tria 2 S2)		Ctrl	SD
		Factor 2: Treatment	Trial 1 E vs. Trial 1 S1	0.000001	0.0047030
		Tukey's multiple	Trial 1 E vs. Trial 2 S1	0.824862	22 0.1010195
		comparisons test	Trial 1 E vs. Trial 2 S2	0.000001	0.0461483
			Trial 1 S1 vs. Trial 2 S1	0.000001	15 0.1149412
			Trial 1 S1 vs. Trial 2 S2	0.003475	59 0.0874396
			Trial 2 S1 vs. Trial 2 S2	0.000769	0.9982539
10	13 each (10 males + 3 females)	Unpaired t test with Welch's correction	t = 3.774, df = 21.44, Two-taile	d P = 0.0011	
1p	13 each (10 males)	Unpaired t test with Welch's correction	t = 4.643, df = 16.44, Two-taile	d P = 0.0003	
1r	13 each (5 males	Repeated-measure	Stimulus x Treatment, F (3,	(72) = 0.7382 P=	0.5327
	+ 8 females)	two-way ANOVA	Stimulus, F (2.268, 54.43) = 46	.98 P<0.0001	
		Assume sphericity? No	Treatment, $F(1, 24) = 0.050$	691 P=0.8135	
		(Tria 1 E Tria 1 S1	Subject, $F(24, 72) = 3.277$ Multiple comparisons P:	P<0.0001	
		Tria 2 S1, Tria 2 S2)		Ctrl S	SD
		Factor 2: Treatment	Trial 1 E vs. Trial 1 S1	0.0003000 (0.0000935
		(Ctrl, SD)	Trial 1 E vs. Trial 2 S1	0.0167234 (0.1315173
		comparisons test	Trial 1 E vs. Trial 2 S2	0.0013789 (0.0008299
		·····	Trial 1 S1 vs. Trial 2 S1	0.0025357 (0.0002826
			Trial 1 S1 vs. Trial 2 S2	0.5348568 (0.0996259
			Trial 2 S1 vs. Trial 2 S2	0.0111133 (0.0007321
1s	13 each (5 males + 8 females)	Unpaired t test with Welch's correction	t=0.9233, df=16.97, Two-tailed	P = 0.3688	
1t	13 each (5 males	Unpaired t test with	t=0.2240, df=23.93, Two-tailed	P = 0.8247	
2	+ 8 females)	Welch's correction	· 0.7202 16 0.204 E · · ·	10 0 4705	
2c	6 each (all males)	Welch's correction	t = 0.7383, $df = 9.324$, 1 wo-tail	ed P = $0.4/85$	
2h	6 each (all males)	Non-linear regression	Best-fit values	Ctrl	SD
		model	Y0	4.946	5.633
			Plateau	0.2968	1.027
			К	0.2105	0.5490
			Half Life	3.292	1.262
			Tau	4.750	1.821
			Span	4.649	4.606
			Std. Error		
			Y0	1.578	2.263
			Plateau	2.025	0.4054
			К	0.2519	0.3608
			Span	1.478	2.091
			95% CI (profile likelihood)		
			Y0	2.775 to ???	2.698 to ???
L					

			Plateau	??? to 1.987	-397.2 to 1.703	
			ĸ	???	0.0006019 to ???	
			Half Life	???	??? to 1152	
			Tau	???	??? to 1661	
			Goodness of Fit			
			Degrees of Freedom	57	57	
			R squared	0.1754	0.1958	
			Sum of Squares	290.9	164.7	
			Sy.x	2.259	1.700	
			Null hypothesis			
			Alternative hypothesis	Different curve f	or each data set	
			P value		0.5867	
			Conclusion ($alpha = 0.05$)	Do not reject	null hypothesis	
			Preferred model	One curve for all data sets		
			F (DFn, DFd)		0.6466 (3, 114)	
2i	6 each (all males)	Non-linear regression	Best-fit values	Ctrl	SD	
		model	Y0	14.46	5.094	
			Plateau	2.664	1.580	
			К	0.7422	0.3688	
			Half Life	0.9339	1.880	
			Tau	1.347	2.712	
			Span	11.80	3.514	
			Std. Error			
			Y0	5.971	1.950	
			Plateau	0.5952	0.7657	
			К	0.4058	0.3826	
			Span	5.738	1.619	
			95% CI (profile likelihood)			
			Y0	7.264 to 95.86	2.725 to 21.88	
			Plateau	0.6041 to 3.716	??? to 2.470	
			K	0.1876 to 2.888	??? to 2.420	
			Half Life	0.2400 to 3.696	0.2864 to ???	
			Tau	0.3463 to 5.331	0.4132 to ???	
			Goodness of Fit			
			Degrees of Freedom	57	57	
			R squared	0.2470	0.1168	
			Guine of Courses	5262	245.5	
			Sum of Squares	536.3	245.5	
			Sy.x	3.067	243.5	

			Null hypothesis	One curve	e for all data sets
			Alternative hypothesis	Different curve	for each data set
			P value	Dalaa	0.0057
			Conclusion (alpha = 0.05) Preferred model	Different curve	for each data set
			F (DFn, DFd)	Different eurve	4.408 (3, 114)
2ј	6 each (all males)	Non-linear regression with one phase decay	Best-fit values	Ctrl	SD
		model	Y0	2.26	0.7416
			Plateau	1.91	.5 ~ 24.53
			К	0.283	³⁸ ~ 0.001642
			Half Life	2.44	~ 422.2
			Tau	3.52	~ 609.1
			Span	0.346	54 ~ -23.78
			Std. Error		
			Y0	1.86	0.6515
			Plateau	1.32	25 ~ 17836
			K	3.81	.6 ~ 1.242
			Span	1.43	~ 17835
			95% CI (profile likelihood)		
			Y0	1.406 to ??	??????
			Plateau	1.406 to 2.63	33 (Very wide)
			K	?:	?? (Very wide)
			Half Life	?:	?? (Very wide)
			Tau	?:	?? (Very wide)
			Goodness of Fit		
			Degrees of Freedom	5	53 57
			R squared	0.00115	0.007079
			Sum of Squares	282	.0 104.4
			Sy.x	2.30	1.353
			Null hypothesis	One curve	e for all data sets
			Alternative hypothesis	Different curve	for each data set
			P value		Can't calculate
			Conclusion (alpha = 0.05)	Both fit	s are ambiguous
			Preferred model	One curve	e for all data sets
			F (DFn, DFd)		Can't calculate
2k	6 each (all males)	Non-linear regression with one phase decay	Best-fit values	Ctrl	SD
		model	Y0	22.18	2.687
			Plateau	2.400	1.287
			K	1.511	0.4159
			Half Life	0.4586	1.667
			Tau	0.6616	2.404
			Span	19.78	1.400
			Std. Error		

			NO	24.00	2 100
			Distan	0.4366	0.6616
			r lateau	1 172	1.052
			K	1.173	1.053
			Span	23.90	1.807
			95% CI (profile likelihood)		
			<u>Y0</u>	6.889 to ???	1.110 to ???
			Plateau	1.495 to 3.231	1.110 to 2.007
			K	0.4608 to ???	???
			Half Life	??? to 1.504	???
			Tau	??? to 2.170	???
			Goodness of Fit		
			Degrees of Freedom	53	56
			R squared	0.2100	0.01998
			Sum of Squares	376.0	231.3
			Sy.x	2.664	2.032
			Null hypothesis	One curv	e for all data sets
			P value	Different eurve	0.0013
			Conclusion (alpha = 0.05)	Rejec	t null hypothesis
			Preferred model	Different curve	for each data set
			F (DFn, DFd)		5.630 (3, 109)
21	6 each (all males)	Repeated-measure two-way ANOVA Assume sphericity? Yes Factor 1: Stimulus (Tria 1 E, Tria 1 S1, Tria 2 S1, Tria 2 S2) Factor 2: Treatment (Ctrl, SD) Tukey's multiple comparisons test (for comparison within group) Bonferroni's multiple comparisons test (for Ctrl vs SD)	Treatment x Stimulus, F (3, 30) Treatment, F (1, 10) = 19.27 Stimulus, F (3, 30) = 3.451 Subject, F (10, 30) = 0.8019 Multiple comparisons P: Trial 1 E vs. Trial 1 S1 Trial 1 E vs. Trial 2 S1 Trial 1 S1 vs. Trial 2 S1 Trial 1 S1 vs. Trial 2 S2 Trial 1 S1 vs. Trial 2 S2 Trial 2 S1 vs. Trial 2 S2 Trial 1 S1 vs. Trial 2 S2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	SD 0.9966 0.7551 0.9016 0.6292 0.8059 0.9899 2, S1 Trial 2, S2
2n	6 each (all males)	Mann-Whitney test	Ctrl vs. SD >0.9999 Mann-Whitney II – 2 Two-tai	$\frac{1}{1} = \frac{1}{2} = \frac{1}$	0.0017
20	6 each (all males)	Mann-Whitney test	Mann-Whitney $U = 5$, Two-tai	led P = 0.0007	
2p	6 each (all males)	Unpaired t test with Welch's correction	t=2.471, df=7.766, Two-tailed	P = 0.0395	
2q	6 each (all males)	Unpaired t test with Welch's correction	t=1.432, df=7.818, Two-tailed	P = 0.1910	
3g	Ctrl: 7 (4 males +	Non-linear regression	Best-fit volues	Ctrl	D
_	3 females); SD: 6	with one phase decay		2.004	7.883
	(3 males + 3)	model		0.7600	0.4145
	iemaies)		Plateau	0.7079	1 200
	1		177	03351	1 789

			Half Life	2.069	0.5377
				2.984	0.7758
			l au	1.234	7.469
			Span		
			Std. Error	1 074	5 221
			YO	0.5364	0.2053
			Plateau	0.5304	0.2055
			К	0.0089	5.124
			Span	0.8570	5.124
			95% CI (profile likelihood)		
			Y0	"0.8934 to ???"	"2.751 to ???"
			Plateau	"??? to 1.283"	"-0.2298 to 0.8097"
				???	"0.3529 to ???"
			К		
			Half Life	???	"??? to 1.964"
			Tau	???	"??? to 2.834"
			Goodness of Fit		
			Degrees of Freedom	64	34
			R squared	0.04135	0.4466
			Sum of Squares	109.3	24.43
			Sy.x	1.307	0.8477
			Null hypothesis	"One curv	e for all data sets"
			Alternative hypothesis	"Different curve	for each data set"
			P value		0.1119
			Conclusion (alpha = 0.05)	"Do not rejec	ct null hypothesis"
			Preferred model	"One curv	re for all data sets"
			r (Drii, Dru)		2.030 (3, 98)
3h	Ctrl: 7 (4 males +	Non-linear regression	Best-fit values	Ctrl	SD
	3 females); SD: 6	with one phase decay	Y0	9.034	7.911
	(5 males)	moder	Plateau	1.101	2.076
	,		k	0.8362	0.4451
				0.8289	1.557
				1.196	2.247
			Lau Sucr	7,933	5.835
			Std. Error	"4 293 to 97 28"	"4 659 to
			YO	1.293 to 97.20	15.64"
			Plateau	"0.07981 to 1.623"	"??? to 2.971"
			К	"0.2298 to 3.383"	"??? to 1.264"
			Span	"0.2049 to 3.016"	"0.5484 to ???"
			95% CI (profile likelihood)	"0.2956 to 4.351"	"0.7912 to ???"
			Y0		

				67	56
			Plateau		
				0.2998	0.2454
			К		
			Half Life	177.8	239.3
			Tau	1.629	2.067
			Goodness of Fit	9.034	7.911
			Degrees of Freedom	1.101	2.076
			R squared	0.8362	0.4451
			Sum of Squares	0.8289	1.557
			Sv v	1.196	2.247
			Dy:A		
			Null hypothesis	"One curv	e for all data sets"
			Alternative hypothesis	"Different curve	for each data set"
			P value Conclusion (alpha $= 0.05$)	"Reiec	0.0004 et null hypothesis"
			Preferred model	"Different curve	for each data set"
			F (DFn, DFd)		"6.424 (3, 123)"
	<u> </u>				
31	Ctrl: $/ (4 \text{ males} + 3 \text{ females})$: SD: 6	Non-linear regression with one phase decay	Best-fit values	Ctrl	SD
	(3 males + 3)	model	Y0	1.126	3.456
	females)		Plateau	0.1894	0.6136
			К	-0.006347	0.9663
			Half Life	-109.2	0.7174
			Tau	-157.6	1.035
			Span	0.9370	2.843
			Std. Error		
				"0.9186 to	"0.9739 to ???"
			Y0	1.622"	"222 to 1 020"
			Plateau	? ? ?	/// to 1.020
			К		to ???"
				???	"??? to
			Span		+infinity"
			059/ CI (profile likelihood)	???	"??? to
			95 % CI (prome inkelinoou)		+IIIIIIty
			10	56	39
			Distant		
			Flateau	0.0003491	0.1320
			V	0100000171	0.110_0
				46.62	36.83
				0.9124	0.9718
			Coodness of Et	1.126	3.456
			Goodness of Fit	0 1894	0.6136
			Degrees of Freedom	_0 006347	0.0150
			K squared	-0.000347	0.9003
			Sum of Squares	-109.2	1.025
			Sy.x	-157.6	1.035

			F (DFn, DFa)		"2.010 (3, 108)"
			Preferred model	"One curv	e for all data sets"
			P value Conclusion (alpha = 0.05)	"Do not rejoc	0.1169 t null hypothesis"
			Alternative hypothesis	"Different curve	for each data set"
			Null hypothesis	"One curv	e for all data sets"
			Sy.x	1.151	2.798
			Sum of Squares	0.7975	1.939
			R squared	0.8691	0.3574
			Degrees of Freedom	1.197	0.7714
			Goodness of Fit	5.250	2.017
			Tau	1.133	1.261
			Half Life	82.23	70.00
			K		
				0.1818	0.04543
			Plateau		
			YO	64	44
			95% CI (profile likelihood)	1110 5.870	
			Span	"222 to 5 876"	222
			K	"999 to 4 072"	+infinity"
				"0.1702 to ???"	"??? to
			Plateau	"0.4634 to 1 557"	"??? to 1.372"
			Y0	"2.444 to ???"	"0.8561 to ???"
			Std. Error		
			Span	4.053	1.246
			Tau	1.151	2.798
			Half Life	0.7975	1.939
			K	0.8691	0.3574
	(3 males + 5 females)	model	Plateau	1.197	0.7714
	3 females); SD: 6	with one phase decay	Y0	5.250	2.017
3j	Ctrl: 7 (4 males +	Non-linear regression	Rest-fit values	Ctrl	2.403 (3, 73)
			Preferred model E (DEn DEd)	"One curv	e for all data sets" "2 463 (3, 95)"
			Conclusion (alpha = 0.05)	"Do not rejec	t null hypothesis"
			P value	Different curve	0.0672
			Null hypothesis	"One curv	e for all data sets"

		comparisons test (for	Trial 1 E vs. Trial 2 S2	0.2009	0.2475
		comparison within	Trial 1 S1 vs. Trial 2 S1	0.0363	0 2742
		group)	Trial 1 S1 vs. Trial 2 S1	0.4415	0.0748
		Bonferroni's multiple	That I SI vs. That 2.52	0.0021	0.0740
		comparisons test (for Ctrl vs SD)	Trial 2 S1 vs. Trial 2 S2	0.0021	0.5701
			Trial 1, E	Trial 1, S1 Trial	2, S1 Trial 2, S2
			Ctrl vs. SD 0.1580	>0.9999 0.264	3 0.1721
3m	7 (4 males + 3	Mann-Whitney test	Mann-Whitney $U = 6$, Two-ta	ailed $P = 0.0175$	
	females)				
3n	6 (3 males + 3 females)	Unpaired t test with Welch's correction	t=0.9233, df=16.97, Two-tail	ed $P = 0.0035$	
30	7 (4 males $+$ 3 females)	Unpaired t test with Welch's correction	t=2.425, df=6.594, Two-tailed	d P = 0.0479	
3р	6 (3 males + 3 females)	Unpaired t test with Welch's correction	t=0.7349, df=8.197, Two-tail	ed P = 0.4829	
4h	Ctrl: 43 neurons	Unpaired t test with	t =5.066, df=5.190, Two-taile	ed P = 0.0011	
	(4 mice, all males) SD: 35 neurons (4 mice, all males)	Welch's correction			
4i	Ctrl: 39 neurons (4 mice, all males) SD: 35 neurons (4	Mann-Whitney test	Mann-Whitney U = 608, Two	p-tailed P = 0.4248	
4;	Ctrl: 42 nourons	Unnaired t test with	t = 4.018 df = 76.08 Two to	ad P = 0.0001	
4)	(5 mice, all males) SD: 37 neurons (5 mice, all males)	Welch's correction	t = 4.016, ul = 70.96, 100-tal	1 = 0.0001	
4k	Ctrl: 42 neurons	Unpaired t test with	t=4.351. df=73.78. Two-tailed	d P = 0.0000429	
	(5 mice, all males)	Welch's correction			
	SD: 36 neurons (5				
	mice, all males)				
41	Ctrl: 38 neurons	Unpaired t test with	t=1.531, df=70.10, Two-tailed	d P = 0.1302	
	(5 mice, all males)	Welch's correction			
	SD: 44 neurons (5				
Лm	Ctrl: 38 neurons	Mann-Whitney test	Mann-Whitney $II = 485$ Two	ratiled P = 0.0015	
4111	(5 mice all males)	Wallin- w littley test	$\frac{1}{10000000000000000000000000000000000$	-tancu I = 0.0015	
	SD: 43 neurons (5				
	mice, all males)				
5c	Cre-: 8	Repeated-measure	Stimulus x Treatment, F (3, 45) = 3.930 P=	0.0142
	hM3Dq ^{DAT} : 9	two-way ANOVA	Stimulus, $F(3, 45) = 21.99$	P<0.0001	
	(all males)	Assume sphericity? No	Treatment, $F(1, 15) = 0.0$	07179 P=0.7924	
		(Tria 1 E Tria 1 S1	Subject, $F(15, 45) = 5.400$ Multiple comparisons P:	P=0.0007	
		(111a + 12, 111a + 31, 111a + 31, 111a + 131, 111a +	Wuitiple comparisons I.	Cro	hM3Da ^{DAT}
		Factor 2: Treatment	T.1.11 T. T.1.101		0.0100
		(Cre-, hM3Dq ^{DAT})	Irial I E vs. Trial I SI	0.0239	0.0190
		Tukey's multiple	Trial 1 E vs. Trial 2 S1	0.9747	0.3759
		comparisons test	Trial 1 E vs. Trial 2 S2	0.0130	0.0027
			Trial 1 S1 vs. Trial 2 S1	0.0232	0.0100
			Trial 1 S1 vs. Trial 2 S2	0.9998	0.1647
			Trial 2 S1 vs. Trial 2 S2	0.0194	0.9042
5d	Cre-: 8	One-way ANOVA	Treatment, $F(2, 18) = 1.743$	P=0.2033	
	mCherry ^{DAT} : 4	followed by	Sidak's multiple comparisons	3:	
	hM3Dq ^{DAT} : 9	Sıdak's multiple	Cre- vs. hM3Dq ^{DAT}	0.6815	
	(all males)	comparisons test	mCherryDAT vs. hM3Dq ^{DAT}	0.1511	
5e	Cre-: 8	One-way ANOVA	Treatment, $F(2, 18) = 10.58$	P=0.0009	
	hM3DaDAT, 0	Sidak's multiple	Crown hM3Da ^{DAT}	o. 	

	(all males)	comparisons test	mCherryDAT vs. hM3Dq ^{DAT} 0.0110		
5g	mCherry ^{DAT} : 8 (5 males + 3 females) $hM4Di^{DAT}$: 10 (8 males + 2	Repeated-measure two-way ANOVA Assume sphericity? No Factor 1: Stimulus (Tria 1 E, Tria 1 S1.	Stimulus x Treatment, $F(3, 48) = 1.950$ $P=0.1341$ Stimulus, $F(2.256, 36.10) = 28.85$ $P<0.0001$ Treatment, $F(1, 16) = 2.202$ $P=0.1573$ Subject, $F(16, 48) = 2.430$ $P=0.0091$		
5h	females) mCherry ^{DAT} : 8 (5	Tria 2 S1, Tria 2 S2) Factor 2: Treatment (mCherry ^{DAT} , hM4Di ^{DAT}) Tukey's multiple comparisons test	mCherrymCherryhM4DiTrial 1 E vs. Trial 1 S1 0.0069 0.0055 Trial 1 E vs. Trial 2 S1 0.6704 0.9513 Trial 1 E vs. Trial 2 S2 0.4371 0.0156 Trial 1 S1 vs. Trial 2 S1 0.0107 0.0003 Trial 1 S1 vs. Trial 2 S2 0.0912 0.4392 Trial 2 S1 vs. Trial 2 S2 0.4719 0.0038 t = 0.6081 , df = 14.60 , Two-tailed P = 0.5524		
	males + 3 females) hM4Di ^{DAT} : 10 (8 males + 2 females)	Welch's correction			
5i	mCherry ^{DAT} : 8 (5 males + 3 females) hM4Di ^{DAT} : 10 (8 males + 2 females)	Unpaired t test with Welch's correction	t = 3.585, df = 15.51, Two-tailed P = 0.0026		
5k	Control virus: 33 neurons (4 mice, all males) hM3Dq ^{DAT} : 35 neurons (4 mice, all males)	Unpaired t test with Welch's correction	t = 2.826, df = 61.07, Two-tailed P = 0.0064		
51	Control virus: 22 neurons (4 mice, all males) hM3Dq ^{DAT} : 33 neurons (4 mice, all males)	Mann-Whitney test	Mann-Whitney U = 277, Two-tailed P = 0.1400		
5n	SD + Control virus: 38 neurons (4 mice, all males) SD + hM4Di ^{DAT} : 42 neurons (4 mice, all males)	Mann-Whitney test	Mann-Whitney U = 525.5, Two-tailed P = 0.0080		
50	SD + Control virus: 37 neurons (4 mice, all males) SD + hM4Di ^{DAT} : 39 neurons (4 mice, all males)	Unpaired t test with Welch's correction	t = 1.311, df = 73.45, Two-tailed P = 0.1940		
бb	Veh: 7 (6 males + 1 female) Flup: 8 (all males)	Repeated-measure two-way ANOVA Assume sphericity? Yes Factor 1: Time (ZT) Factor 2: Treatment (Vehicle, Flup) Bonferroni's multiple comparisons test	Time x Treatment, F (23, 299) = 2.608 P=0.0001 Time, F (23, 299) = 8.225 P<0.0001 Treatment, F (1, 13) = 2.196 P=0.1622 Subject, F (13, 299) = 9.723 P<0.0001 Multiple comparisons P: Veh vs. Flup ZT0-1 > 0.9999 ZT1-2 > 0.9999 ZT2-3 0.0000220 ZT3-4 0.0055		

			ZT4-5 >0.9999
			ZT5-6 0.0393
			ZT6-7 >0.9999
			ZT7-8 >0.9999
			ZT8-9 >0.9999
			ZT9-10 >0.9999
			ZT10-11 >0.9999
			ZT11-12 >0.9999
			ZT12-13 >0.9999
			ZT13-14 >0.9999
			ZT14-15 >0.9999
			ZT15-16 >0.9999
			ZT16-17 >0.9999
			ZT17-18 >0.9999
			ZT18-19 >0.9999
			ZT19-20 >0.9999
			Z120-21 >0.9999
			Z121-22 >0.9999
			Z122-23 >0.99999 7T23 24 >0.0000
60	Vah: 7 (6 malas 1	Unnaired t test with	$L_{1}L_{3}-24 > 0.77777$ Wake $t = 2.000 df = 7.876$ Two toiled $D = 0.0152$
00	1 female	Welch's correction (for	Ware, $t = 3.070$, $ul = 7.070$, 100-tailed $r = 0.0132$ NREM $t = 3.331$ df = 8.847 Two tailed $D = 0.0000$
	Flup: 8 (all malac)	Wake & NDEM)	1000000000000000000000000000000000000
	Fup. 6 (all males)	Mann-Whitney test	RFM Mann-Whitney II - 16 Two-tailed P - 0 1803
		(for RFM)	$\mathbf{K} = 1 1 1 1 1 1 1 1$
6d	12 each (6 males	Repeated_measure	Stimulus x Treatment $E(3, 66) - 3.952$ P-0.0118
ou	± 6 females)	two-way ANOVA	Stimulus F (1.956 $A_3 0A$) = 31.66 P<0.0001
	1 0 Termates)	Assume sphericity? No	Treatment $F(1, 22) = 1510$ $P=0.2321$
		Factor 1: Stimulus	Subject $F(22, 66) = 1.741$ P=0.0438
		(Tria 1 E Tria 1 S1	Multiple comparisons P:
		Tria 2 S1, Tria 2 S2)	Vakiala Flup
		Factor 2: Treatment	venicle Plup
		(Vehicle, Flup)	Trial 1 E vs. Trial 1 S1 0.0005 0.0004
		Tukey's multiple	Trial 1 E vs. Trial 2 S1 0.0047 0.0619
		comparisons test	Trial 1 E vs. Trial 2 S2 0.0040 0.0007
			Trial 1 S1 vs. Trial 2 S1 0.0208 0.0021
			Trial 1 S1 vs Trial 2 S2 0.0221 0.7054
			That 1 St VS. That 2 S2 0.0221 0.7034
			Trial 2 S1 vs. Trial 2 S2 0.9874 0.0204
6e	12 each (6 males	Mann-Whitney test	Mann-Whitney $U = 45$, Two-tailed $P = 0.1277$
66	+ 6 females)		
61	12 each (6 males	Mann-Whitney test	Mann-Whitney $U = 8$, Two-tailed $P = 0.0000496$
6	+ 0 iemaies)	Kolmogener Carlant	$V_{\text{charge result}} = 0.1425 \text{ D} = 0.0001$
6]	11 each (8 males	Kolmogorov-Smirnov	Kolmogorov-Smirnov D = 0.1435 , P = 0.0001
	+3 females)	test (for cumulative	Deine dit teate (OFF and 1 H-):
		distributions of	Faired t lesis (UFF vs 1-HZ): $S(z(1)z) = 2.250$ df = 10.00 Two to $z_1 = 10.00$
		Deired t test (for total	$0 (<4\pi z), t = 2.530, dt = 10.00, two-tailed P = 0.0400$
		raireu i test (101 total	$v (4 - 7\pi Z), t = 5.020, ut = 10.00, 100-tailed P = 0.0128$ $a (7 - 12H_Z), t = 0.4240, df = 10.00$ Two tailed P = 0.6805
		frequency bands)	μ (1 - 12112), μ = 0.4240, μ = 10.00, 100-talled P = 0.0003 B (12 - 30Hz) t = 1.876 df = 10.00 Two tailed D = 0.0002
		nequency bands)	P(12 - 50112), t = 1.670, ut = 10.00, two-tailed P = 0.0902
6k	11 each (8 malac	Paired t test for each	Wake $t = 0.4480$ df = 10.00 Two_tailed P = 0.6637
UK	± 3 females)	state	NREM $t = 0.1850$ df $= 10.00$, 1 wo-tailed $P = 0.8570$
		state	REM $t = 0.6813$ df = 10.00, Two-tailed P = 0.5111
61	No stim: 9 (6	Repeated-measure	Stimulus x Treatment $F(3, 51) = 1.715$ D=0.1755
01	males ± 3	two -way $\Delta NOV\Delta$	Stimulus F (2.025 34.42) = 19.85 $P_{-0.001}$
	females)	Assume sphericity? No	Summards, $F(2.023, 54.42) = 17.03$ $F < 0.0001$ Treatment $F(1, 17) = 0.5817$ $D = 0.4561$
	1-Hz: 10 (8 males	Factor 1. Stimulus	Subject $F(17, 51) = 2.336$ P=0.0101
	± 3 females)	(Tria 1 F Tria 1 S1	Subject, $\Gamma(17, 51) = 2.550$, $\Gamma = 0.0101$ Multiple comparisons P:
		Tria 2 S1 Tria 2 S2)	матри сопратоло г. N ₂ -t ² 1 Ц ₇
1		$1110 \ge 51$, $1110 \ge 52$	No stim 1-HZ
		Factor 2. Treatment	0.0071 0.0057

		Tukey's multiple	Trial 1 E vs. Trial 2 S1	0.0126	0.1409	
		comparisons test	Trial 1 E vs. Trial 2 S2	0.0261	0.0063	
			Trial 1 S1 vs. Trial 2 S1	0.0614	0.0159	
			Trial 1 S1 vs. Trial 2 S2	0.2303	0.9992	
			Trial 2 S1 vs. Trial 2 S2	0.6220	0.0496	
6m	No stim: 9 (6 males + 3 females) 1-Hz: 10 (8 males + 3 females)	Unpaired t test with Welch's correction	t = 0.3058, df = 11.51, Two-tailed	P = 0.7652		
бn	No stim: 9 (6 males + 3 females) 1-Hz: 10 (8 males + 3 females)	Unpaired t test with Welch's correction	t = 2.209, df = 14.52, Two-tailed P = 0.0437			
бр	9 each (Cre-: 4 males + 5 females; hM4Di ^{DAT} : 2 males + 7 females)	Repeated-measure two-way ANOVA Assume sphericity? No Factor 1: Stimulus (Tria 1 E, Tria 1 S1, Tria 2 S1, Tria 2 S2) Factor 2: Treatment (Cre–, hM4Di ^{DAT}) Tukey's multiple	Stimulus x Treatment, F (3, 48 Stimulus, F (2.354, 37.66) = 18 Treatment, F (1, 16) = 0.5765 Subject, F (16, 48) = 2.298 P= Multiple comparisons P: Trial 1 E vs. Trial 1 S1 Trial 1 E vs. Trial 2 S1	E) = 1.846 .01 P<0.0 P=0.4587 =0.0135 Cre- 0.0077 0.0362 0.0088	P=0.1514 0001 hM4Di ^{DAT} 0.0139 0.2745 0.0017	
		comparisons test	Trial 1 E vs. Trial 2 S2 Trial 1 S1 vs. Trial 2 S1 Trial 1 S1 vs. Trial 2 S2 Trial 2 S1 vs. Trial 2 S2	0.0988 0.2550 0.1048 0.8012	0.0017 0.0340 0.4508 0.0484	
6q	9 each (Cre-: 4 males + 5 females; hM4Di ^{DAT} : 2 males + 7 females)	Mann-Whitney test	Mann-Whitney U = 38, Two-tailed	d P = 0.8633		
6r	9 each (Cre-: 4 males + 5 females; hM4Di ^{DAT} : 2 males + 7 females)	Unpaired t test with Welch's correction	t = 3.601, df = 15.20, Two-tailed	P = 0.0026		