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S1. Determination of effective anisotropy field with bias dependent ferromagnetic 

resonance (FMR) 

To determine the anisotropy field with bias voltage 𝑉 , we measure the bias-dependent FMR in the MTJ 

by utilizing the circuit shown in Fig. 2a. Rf power with −15 dBm is applied to MTJ through the rf port 

of the bias-tee, and the rectified signal is measured through its dc port. We modulate the rf power with 

273 Hz, and the homodyne detected signal 𝑉dc is collected at the lock-in amplifier1. Figure S1a shows 

the homodyne-detected voltage 𝑉dc  spectra dependence on perpendicular magnetic field 𝐻𝑧  with 

zero bias voltage 𝑉   under various rf frequencies 𝑓   for device B. The spectrum shows dominant 

contribution of the anti-symmetric Lorentz function, indicating FMR is mainly induced by an electric-

field effect on magnetic anisotropy and/or field-like torque2,3. We fit the anti-symmetric Lorentz 

function to experimental data and obtain the resonance field 𝐻r. The open circle plot in Fig. S1b shows 

(𝐻r − 𝐻S) vs. 𝑓  at 𝑉 = 0 (𝐻S is the stray field from the reference layer determined by the random-
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telegraph-noise measurement), showing a clear linear relationship between them. The magnetic energy 

density ℰ with Zeeman energy and uniaxial magnetic anisotropy energy is3,4  

ℰ = −𝑀S(𝐻𝑧 − 𝐻S) cos 𝜃 + 𝐾1eff sin2 𝜃 + 𝐾2 sin4 𝜃 

= −𝑀S(𝐻𝑧 − 𝐻S) cos 𝜃 + (𝐾1 − 𝑀S22𝜇0) sin2 𝜃 + 𝐾2 sin4 𝜃 

= −𝑀S(𝐻𝑧 − 𝐻S) cos 𝜃 − (− 𝑀S22𝜇0
+ 𝐾1 + 2𝐾2) cos2 𝜃 + 𝐾2 cos4 𝜃 + 𝐾1 + 𝐾2 

= −𝑀S(𝐻𝑧 − 𝐻S) cos 𝜃 − 𝑀S𝐻𝐾1eff
2 cos2 𝜃 + 𝑀S𝐻𝐾24 cos4 𝜃 + 𝐾1 + 𝐾2, 

(S1) 

where 𝜇0 , 𝜃 , 𝑀S , 𝐾1 , 𝐾2 , 𝐻𝐾1eff  , and 𝐻𝐾2  are permeability of vacuum, the angle between 

magnetization and film normal, spontaneous magnetization, first-order magnetic anisotropy constant, 

second-order magnetic anisotropy constant, first-order effective anisotropy field, and second-order 

anisotropy field, respectively. The resonance frequency around 𝜃 = 0 is  

𝑓 = 𝛾𝜇02π (𝐻r − 𝐻S + 𝐻𝐾1eff − 𝐻𝐾2), (S2) 

where 𝛾  is the gyromagnetic ratio. From equation (S2) and intercept of the (𝐻r − 𝐻S)  vs. 𝑓  , 

𝜇0(𝐻𝐾1eff − 𝐻𝐾2)  is determined to be 108.51.6  mT. Effective anisotropy field 𝐻𝐾eff   defined as 

ℰ(π2) − ℰ(0) = 12 𝑀S𝐻𝐾eff   is 𝐻𝐾eff = 𝐻𝐾1eff − 𝐻𝐾22  . According to previous reports3-5, in CoFeB/MgO 

systems, 𝜇0𝐻𝐾2 is 45 mT and does not vary with electric field nor CoFeB thickness. Thus, assuming 

this 𝐻𝐾2  value, 𝐻𝐾eff   is determined from 𝐻𝐾1eff − 𝐻𝐾2  obtained from FMR; 𝜇0𝐻𝐾eff   at 𝑉 = 0  is 

determined to be 131.01.6  mT. Figure S1c shows the bias dependence of the FMR spectra at a 

frequency of 4 GHz. The bias voltage induces a clear variation of the spectra from the anti-symmetric 

Lorentz function to the symmetric Lorentz function, which is explained by the bias-dependent reflection 

coefficient spectra3. With the same procedure as 𝑉 = 0, the resonance field vs. rf frequency is measured 

for various 𝑉  [Fig. S1b], and 𝐻𝐾eff  as a function of 𝑉  is shown in Fig. S1d. As shown in the main 

body, 𝐻𝐾eff  changes non-linearly with 𝑉 . We fit a quadratic equation to the obtained dependence and 
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determine the coefficients for constant, linear, and quadratic terms as 𝜇0𝐻𝐾eff (0) = 129.00.7  mT, 

𝜇0 d𝐻𝐾eff
d𝑉 = −61.72.3 mT/V, 𝜇0 d2𝐻𝐾eff

d𝑉 2 = −5813 mT/V2. 

 

  

Fig. S1 | Homodyne detected ferromagnetic resonance. a, homodyne-detected voltage 

𝑉dc spectra on a perpendicular magnetic field 𝐻𝑧 with zero bias voltage 𝑉  under various rf 

frequencies 𝑓 . b, Peak frequency 𝑓  as a function of resonance frequency 𝐻r subtracted by 

stray field from the reference layer 𝐻S  with various 𝑉 . c, 𝑉dc spectra on 𝐻𝑧 at 4 GHz with 

various 𝑉 . d, Effective anisotropy field 𝐻𝐾eff  as a function of 𝑉 .   
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S2. Types of local bifurcations and their switching exponents 

In this section, we summarise the typical local bifurcations and investigate their corresponding 

energy landscape and switching exponents for the external input. First, we start from a general 

dynamical equation, which is expressed as 

d𝛩
d𝑡 = 𝑓(𝛩, 𝑥), (S3) 

where 𝛩  is a state variable (magnetisation direction, position of the particle, unreacted chemical 

amount, etc…), 𝑥 is external input 6. We assume the 𝛩 changes according to the potential gradient, 

namely, 𝑓(𝛩, 𝑥) = − ∂𝜙
∂𝛩 . Here, we investigate energy barrier 𝐸  of the potential landscape 𝜙  with 

several types of the local bifurcations relating to magnetic systems used in the main text. 

 

(I) Subcritical pitchfork bifurcation 

A dynamical equation 

d𝛩
d𝑡 = 𝑓(𝛩, 𝑥) = 𝛩3 + (𝑥 − 𝑥0)𝛩 (S4) 

gives a bifurcation shown in Fig. S2a, where the 𝑥0 is the threshold input. The condition d𝛩d𝑡 = 0 is 

shown by the lines: stable and unstable conditions are shown by the blue solid lines and the red dashed 

lines, respectively. This type of bifurcation is called subcritical pitchfork bifurcation. From 𝑓(𝛩, 𝑥) =
− ∂𝑈∂𝛩, potential landscape 𝜙 = − 14 𝛩4 − 12 (𝑥 − 𝑥0)𝛩2. At 𝑥 > 𝑥0, 𝜙 is convex upwards with 𝛩 and 

has one unstable point with d𝛩d𝑡 = 0 at 𝛩 = 0 as shown in Fig. S2b. At 𝑥 < 𝑥0, on the other hand, the 

potential landscape has stable point at 𝛩 = 0, and two unstable points with d𝛩d𝑡 = 0 at 𝑥 = 𝑥0 − 𝛩2 

as shown in Fig. S2c. Energy barrier 𝐸(𝑥)  is calculated to be 𝐸(𝑥) = 𝜙(𝛩 = √𝑥0 − 𝑥) −

𝜙(𝛩 = 0) = 14 (𝑥0 − 𝑥)2 , and proportional to (1 − 𝑥𝑥0)
2
 , indicating the switching exponent to the 

external field 𝑥 is 𝑛𝑥 = 2. 
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(II) Supercritical pitchfork bifurcation 

Another example of the typical dynamical equation 

d𝛩
d𝑡 = 𝑓(𝛩, 𝑥) = −𝛩3 + (𝑥 − 𝑥0)𝛩 (S5) 

gives a local bifurcation structure shown in Fig. S2d, which is called supercritical pitchfork bifurcation. 

The structure is similar to the subcritical pitchfork bifurcation, but stable and unstable positions are 

exchanged with each other. The potential can be expressed as 𝜙 = 14 𝛩4 − 12 (𝑥 − 𝑥0)𝛩2. At 𝑥 > 𝑥0, 

𝜙 has an unstable point at 𝛩 = 0, and two stable points at 𝑥 = 𝑥0 − 𝛩2 as shown in Fig. S2e. At 𝑥 <
𝑥0, 𝜙 is convex upwards and has one unstable point at 𝛩 = 0 as shown in Fig. S2f. The energy barrier 

at 𝑥 > 𝑥0 is calculated in the same manner as the case for the subcritical pitchfork bifurcation; 𝐸 ∝
(1 − 𝑥𝑥0)

2
 offers the switching exponent 𝑛𝑥 = 2. 

  

(III) Saddle-node bifurcation 

The last example of the dynamical equation here is  

d𝛩
d𝑡 = 𝑓(𝛩, 𝑥) = 𝛩2 + (𝑥 − 𝑥0), (S6) 

which gives a bifurcation shown in Fig. S2g, which is called saddle-node bifurcation. This offers the 

potential landscape of 𝜙 = − 13 𝛩3 − (𝑥 − 𝑥0)𝛩 . At 𝑥 > 𝑥0 , the potential landscape monotonically 

decreases with the increase of 𝛩 (Fig. S2h). At 𝑥 < 𝑥0, the potential landscape has a stable point at 

𝛩 = −√𝑥0 − 𝑥 , and an unstable point at 𝛩 = √𝑥0 − 𝑥 . The barrier height is 𝐸(𝑥) = 𝜙(𝛩 =

√𝑥0 − 𝑥) − 𝜙(𝛩 = −√𝑥0 − 𝑥) = 43 (𝑥0 − 𝑥)32 , and 𝐸 ∝ (1 − 𝑥𝑥0)
32 . Thus, the switching exponent 

for saddle-node bifurcation is 𝑛𝑥 = 32. 
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Fig. S2 | Types of local bifurcations and their switching exponents. a, An example of subcritical 

pitchfork bifurcation; the sign of time derivative of state variable 𝛩̇ as functions of external 
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input 𝑥  and 𝛩  for 𝛩̇ = 𝛩3 + (𝑥 − 𝑥0)𝛩 , where 𝑥0  is the threshold input. Stable and 

unstable points are shown by the lines with blue solid lines and red dashed lines, respectively. 

The corresponding potential 𝜙  as a function of 𝛩  b, at 𝑥 > 𝑥0  and c, at 𝑥 < 𝑥0 . d, 

Supercritical pitchfork bifurcation; 𝛩̇  as functions of 𝑥  and 𝛩  for 𝛩̇ = −𝛩3 + (𝑥 − 𝑥0)𝛩 . 

The corresponding 𝜙  as a function of 𝛩  e, at 𝑥 > 𝑥0  and f, at 𝑥 < 𝑥0 . g, Saddle-node 

bifurcatoin; 𝛩̇  as functions of 𝑥  and 𝛩  for 𝛩̇ = 𝛩2 + (𝑥 − 𝑥0) . The corresponding 𝜙  as a 

function of 𝛩 h, at 𝑥 > 𝑥0 and i, at 𝑥 < 𝑥0. 
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S3. Local bifurcation of magnetization dynamics with uniaxial magnetic anisotropy 

under the macrospin limit 

The Landau-Lifshitz-Gilbert (LLG) equation under thermal agitation is  

d𝑚⃗⃗⃗⃗⃗⃗
d𝑡 = −𝛾𝑚⃗⃗⃗⃗⃗⃗ × 𝜇0 ( 1

𝑀S
𝜕ℰ
𝜕𝑚⃗⃗⃗⃗⃗⃗ + ℎ⃗T) + 𝜏STT𝑚⃗⃗⃗⃗⃗⃗ × (𝑚⃗⃗⃗⃗⃗⃗ × 𝑚⃗⃗⃗⃗⃗⃗R) + 𝛼𝑚⃗⃗⃗⃗⃗⃗ × d𝑚⃗⃗⃗⃗⃗⃗

d𝑡 , (S7) 

where 𝑚⃗⃗⃗⃗⃗⃗  is a normalised magnetisation vector defined by polar and azimuthal angles (𝜃, 𝜑)  as 

(sin 𝜃 cos 𝜑 , sin 𝜃 sin 𝜑 , cos 𝜃), t the time, 𝛾 the gyromagnetic ratio, 𝜇0 the permeability of vacuum, 

ℰ(𝜃, 𝜑)  the magnetic energy density, ℎ⃗T  the thermal field vector defined by ⟨ℎ⃗T⟩ = 0 ⃗ and 

⟨ℎT,𝑖ℎT,𝑗⟩ = 2𝛼𝑘B𝑇
𝛾𝜇0𝑀S𝑉Δ𝑡 𝛿(𝑖, 𝑗), with 𝑘B𝑇  being the thermal energy, 𝑀S𝑉  the magnetic moment of 

the free layer, 𝛿(𝑖, 𝑗) the Kronecker’s delta with {𝑖, 𝑗} = {𝜃, 𝜑}, Δ𝑡 the time step, 𝜏STT the spin-

transfer torque proportional to 𝑉 , 𝑚⃗⃗⃗⃗⃗⃗R the normalised magnetisation vector of the reference layer, and 

𝛼 the damping constant. For the magnetic potential with uniaxial symmetry with ℰ(𝜃) and 𝑚⃗⃗⃗⃗⃗⃗R = 𝑧 ⃗,̂ 
the LLG equation without thermal agitation is reduced to  

d𝜃
d𝑡 = (𝛼𝛾𝜇0𝑀S

𝜕ℰ
𝜕𝑚𝑧

+ 𝜏STT) sin 𝜃 ≡ 𝑓(𝜃, 𝐻𝑧, 𝜏STT) (S8) 

because of the symmetry. This section aims to investigate the local bifurcations of the Eq. (S8). 

We assume ℰ is composed of first and second-order magnetic anisotropy and external magnetic 

field along z-direction as ℰ(𝜃) = 𝐾1eff sin2 𝜃 + 𝐾2 sin4 𝜃 − 𝑀S𝐻𝑧 cos 𝜃  (Eq. (S1) with 𝐻S = 0 ). 

Then,  

d𝜃
d𝑡 = 𝑓(𝜃, 𝑥) 

= [−𝛼𝛾𝜇0(𝐻𝐾1eff cos 𝜃 − 𝐻𝐾2 cos3 𝜃 + 𝐻𝑧) + 𝜏STT]sin𝜃 
≡ (−𝑘1 cos 𝜃 + 𝑘2 cos3 𝜃 + 𝑥)sin𝜃. 

(S9) 

𝑥 is the external input from the field and current defined as 𝑥 = −𝛼𝛾𝜇0𝐻𝑧 + 𝜏STT. 𝑓(𝜃, 𝑥) is not as 

simple as those shown in the previous section and its resultant global bifurcation is more complicated 



 

9 

than those shown in Fig. S2. However, we show that at around a critical point relating to the 

magnetisation switching, it can be classified by three local bifurcations shown in the previous section. 

At 𝜃 ≈ 0, 𝑓(𝜃, 𝑥) is expanded as 

d𝜃
d𝑡 = 𝑓(𝜃, 𝑥) ≈ 1

2 (𝑘1 − 3𝑘2)𝜃3 + (𝑥 − 𝑥0)𝜃, (S10) 

indicating that the sign of the 𝑘1 − 3𝑘2 determines the types of the bifurcations between the subcritical 

pitchfork bifurcation and the supercritical pitchfork bifurcation with 𝑥0 = 𝑘1 − 𝑘2 = 𝛼𝛾𝜇0(𝐻𝐾1eff −
𝐻𝐾2 ) being the threshold input. 

 

(i) For 𝑘1 > 3𝑘2 (⟺ 𝐻𝐾1eff > 3𝐻𝐾2 ⟺ 𝐾2𝐾1eff < 14): subcritical pitchfork bifurcation (𝜃, 𝑥) =
(0, 𝑥0) 

The local bifurcation of the 𝑓(𝜃, 𝑥) is shown in Fig. S3a. At around (𝜃, 𝑥) = (0, 𝑥0) (point A in 

Fig. S3a: around P state and threshold input), it shows the subcritical pitchfork bifurcation. As shown 

in Fig. S3c, at 𝑥 > 𝑥0, there are no potential barriers and magnetisation stabilises to 𝜃 = 𝜋 (AP state). 

At 𝑥 > 𝑥0, the switching occurs within this bifurcation and stabilises to 𝜃 = 𝜋 (AP state). There is an 

unstable point between P and AP states at 𝜃 = 𝜃0, and the barrier height of magnetic potential is, 𝐸 =
ℰ(𝜃 = 𝜃0, 𝑥) − ℰ(𝜃 = 0, 𝑥), which is proportional to (1 − 𝑥𝑥0)

2
 and whose exponent is 𝑛𝑥 = 2 from 

the discussion in the previous section. 

 

(ii) For 𝑘1 < 3𝑘2 (⟺ 𝐻𝐾1eff < 3𝐻𝐾2 ⟺ 𝐾2𝐾1eff > 14) : supercritical pitchfork bifurcation at 

(𝜃, 𝑥) = (0, 𝑥0), saddle-node bifurcation at (𝜃, 𝑥) = (𝜃1, 𝑥1) 
The local bifurcation of the 𝑓(𝜃, 𝑥) is shown in Fig. S3b. From Eq. (S10), the supercritical pitchfork 

bifurcation is obtained at around (𝜃, 𝑥) = (0, 𝑥0) shown as A’ point in Fig. S3b. In addition, Eq. (S9) 

gives another characteristic structure relating to the switching; at around B point ( (𝜃, 𝑥) =
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(𝜃1 ≡ acos √ 𝑘13𝑘2 , 𝑥1 ≡ 2√39 𝑘1
32𝑘2

−12)), a saddle-node bifurcation emerges as shown in the figure. Eq. 

(S9) is expanded at around 𝜃 = 𝜃1 as  

d𝜃
d𝑡 = 𝑓(𝜃, 𝑥) ≈ 1

2 (3𝑘2 − 1) sin 2𝜃1 (𝜃 − 𝜃1)2 + (𝑥 − 𝑥1) sin 𝜃1, (S11) 

and thus, the local bifurcation coincides with the Eq. (S6). Especially at 𝑥0(= 𝑘1 − 𝑘2) < 𝑥 <

𝑥1 (≡ 2√39 𝑘1
32𝑘2

−12), the switching takes place within saddle-node bifurcation, 𝐸 ∝ (1 − 𝑥𝑥1)
32 gives the 

switching exponent to be 𝑛𝑥 = 32.  

 

At 𝐾1eff > 0, 𝐾2 = 0 , switching exponent is calculated to be 2 , and at 𝐾1eff = 0, 𝐾2 > 0 , the 

exponent is calculated to be 32. Matsumoto et al. have calculated that the exponent of Eq. (S1) changes 

with the ratio 𝐾2/𝐾1eff  of the magnetic anisotropy constants; 𝑛𝑥 = 2 at 𝐾2𝐾1eff = 0, and 𝑛𝑥 decreases 

with the increase of the ratio, and 𝑛𝑥 = 32  at 𝐾2𝐾1eff = 14  7. Further increase of the ratio gives an 

undershoot of 𝑛𝑥 down to 1.4, and gives the 𝑛𝑥 = 32 at 𝐾2𝐾1eff = 0.5. Our experimental result in the 

main text shows the transition of the exponent from 2  to 32  between 0.43 < 𝐾2𝐾1eff < 0.45 . The 

discrepancy between experimental result and numerical calculation is most probably due to some 

realistic factors in the nanoscale magnetic tunnel junctions, e.g., micromagnetic effects from the 

distribution of the stray field from the reference layer in the free layer, distribution of the demagnetising 

field, and the distribution of the magnetisation itself. 
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Fig. S3 | Types of the bifurcations and corresponding potential landscape for Landau-

Lifshitz-Gilbert equation with uniaxial magnetic anisotropy and magnetic field. a,b, 𝜃 ̇

as functions of external input 𝑥  (field and/or current) and polar angle 𝜃  of magnetisation 

direction calculated by Eq. (S9) at the ratio 𝐾2/𝐾1eff  of the first and second-order uniaxial 

anisotropy field constants (a) to be smaller than 1/4 and (b) to be larger than 1/4. c-e, potential 

landscape and the magnetisation dynamics for different external input. 
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