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Supplemental Figure 1: Flow cytometry confirms the loss of microglia in FIRE mice and very few other
changes to immune cell populations. Related to Figure 1. (A) To further confirm that FIRE mice exhibit a loss of
microglia flow cytometry was performed. Initial gating for CD45 and CD11b double-labeled cells reveals two
distinct populations (ovals within boxed region). CD11b+/CD45int is commonly used to identify microglia and is
greatly reduced in both FIRE groups. Subsequent gating of cells for the homoeostatic microglia markers P2RY 12
and TMEM119 further confirmed that microglia are absent in FIRE mice, consistent with our histological and snSeq
findings. (B) As CSF1R is also expressed in some peripheral immune lineages we next examined the proportions of
major immune cell types using a panel of immunophenotyping markers. For each cell type examined we detected
no differences in the percentage of immune cells across all four genotypes within the Spleen (C), deep cervical
lymph nodes (D), and bone marrow (E), with one notable exception. Dendritic cells (CD45+/CD11b+/CD11c+)
exhibited a small but significant increase in 5x-WT, WT-FIRE, and 5x-FIRE groups in comparison to WT-WT mice
(C). All graphs presented as mean + s.e.m.



Figure S2
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Supplemental Figure 2: snRNA-seq data quality. Related to Figure 1. (A) Violin plots showing the distribution of
the number of UMIs captured in each biological for the 5x-FIRE, SXFAD, WT-FIRE, and WT-WT conditions. (B)
UMAP plots colored split by cells from each of the four genotypes and colored by sample of origin. (C) Bar plot
reporting the number of nuclei recovered in each sample in each genotype. (D) Violin plots showing the distribution
of the number of UMIs for each cluster. (E) Stacked bar plot showing the normalized proportion of nuclei from male
(n=4/genotype) and female (n=4/genotype) samples in each cell cluster. (F) UMAP plot colored by sex
demonstrated equivalent representation within each cluster. (G) Stacked bar plot showing the normalized proportion
of nuclei from each biological sample in each cluster. (H) Bar plot showing the number of nuclei for each cell
cluster. The dendrogram represents a hierarchical clustering of gene expression values averaged in each cluster for
the top 25 cluster marker genes in each cluster, ordering clusters based on transcriptional similarity. (I) Heatmap
showing additional enriched genes for each cluster. For box and whisker plots in panels (A) and (D), box
boundaries correspond to the interquartile range (IQR), the line represents the median, and the whiskers extend to
the lowest/highest points that are not further than 1.5 times the IQR from the box boundary.



Figure S3

Seurat Label Transfer with Rosenberg et al. 2018 SPLiT—seq data
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Supplemental Figure 3: Supervised label transfer analysis predicts snRNA-seq cell identity. Related to Figure
1. Seurat v3 Label Transfer algorithm was used to predict the cell-type identity of each cell in our snRNA-seq
dataset based on the annotations and transcriptomic profiles provided in the (Rosenberg et al., 2018) mouse brain
snRNA-seq dataset. We report the results in a dot plot where the color of the dot represents the average prediction
score in each of our snRNA-seq clusters, and the size of the dot represents the percent of nuclei in each cluster with
the predicted score for that cell-type. The horizontal axis shows the different cell annotations from the reference
dataset, while the vertical axis shows the cell clusters from the snRNA-seq dataset in the present study.
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Supplemental Figure 4: Additional analysis of Ab pathologies. Related to Figure 2 and 4 (A) Schematic of
IMARIS plaque and CAA classification. (B) Representative IMARIS 3D rendering of CAA morphology in 5x-
FIRE-PBS mice and a restoration of parenchymal plaques in 5x-FIRE-MG mice. (C) The area occupied by small
(<20mm) and large (>20mm and <40mm) parenchymal plaques remains unchanged in 5x-FIRE mice cortex and
hippocampus. However, small plaques within the thalamus are reduced in 5x-FIRE mice. (D) In contrast, the area
occupied by CAA (length >40mm) is significantly increased within the cortex and thalamus. (E) The area occupied
by small and large parenchymal plaques also remains unchanged between 5x-FIRE-PBS and 5x-FIRE-MG groups
following microglial transplantation. (F) However, microglial transplantation significantly reduced area of CAA in
5x-FIRE-MG mice. (G-J) Very similar results are obtained when plaques and CAA are classified in IMARIS based
on the area occupied by plaques (<1800mm?) versus CAA (>1800 mm?). Whereas no difference in plaque sphericity
is detected between 5x-WT and 5x-FIRE groups (K) a significant increase in sphericity is observed within the
hippocampus and thalamus following microglia transplantation (L). All data presented as mean + s.e.m.



Figure S5 Reduction of CAA plaques within 5x-FIRE-MG (Transplanted)
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Supplemental Figure 5: Analysis of beta-amyloid antibody immunoreactivity closely mimics results observed
with Amylo-Glo. Related to Figure 2 and 4. (A) As Amylo-Glo labels dense-core plaques more intensely than
diffuse plaques, additional analysis of Ab pathology was performed using a biotinylated antibody against human Ab
(82E1). (A) Confocal images reveal a similar shift in distribution of Ab pathology from parenchymal plaques to
CAA in 5x-FIRE mice and a subsequent reversal of these changes in 5x-FIRE-MG mice within the cortex,
hippocampus, and thalamus. IMARIS-based quantification of plaque and CAA numbers via either length-based (B)
or area-based (C) classification reveals few changes in plaque numbers but significant increases in CAA that are
largely reversed by microglia transplantation. (D) Sphericity of plaques is also largely unchanged except within the
thalamus where microglial transplantation increases plaque sphericity. (E) Co-labeling of 82E1 with Amylo-Glo
shows that whereas both approaches sufficiently label CAA, antibody-based labeling detects more diffuse amyloid
pathology that surrounds AmyloGlo+ fibrillar deposits. Scale Bars =50mm in A and 20mm in E. All data presented
as mean =+ s.e.m.



Figure S6
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Supplemental Figure 6: snRNA-seq analysis including the SXFIRE transplanted microglia condition. Related
to Figure 5. (A) UMAP plot colored by leiden cluster assignment for 43 clusters. Major cell lineages are annotated
directly on the plot. (B) Violin plots showing the distribution of the number of UMIs captured in each biological
sample for the SXFIRE-PBS and 5xFIRE-MG conditions. Box boundaries correspond to the interquartile range
(IQR), the line represents the median, and the whiskers extend to the lowest/highest points that are not further than
1.5 times the IQR from the box boundary. (C) UMAP plots as in (A) subset by nuclei with from 5XxFIRE-PBS (left)
and 5xFIRE-MG (right) conditions, colored by biological sample of origin. (D) Bar plot reporting the number of
nuclei recovered in each sample from the SXFIRE-PBS and 5XxFIRE-MG groups after quality-control filtering. (E)
Stacked bar plot showing the normalized proportion of nuclei from male and female samples in each cell cluster. (F)
UMAP plot as in (A) where cells are colored by sex. (G) Stacked bar plot showing the normalized proportion of
nuclei from each biological sample in each cluster.
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Supplemental Figure 7: Meningeal and perivascular macrophages remain unchanged in FIRE mice. Related
to Figure 1, 2, and 3. (A) Although previous studied detected no changes in meningeal and perivascular macrophage
populations in FIRE mice it is possible that the additional impact of beta-amyloid pathology could alter these
populations. Therefore, CD206 immunolabeling was used to detect and quantify these populations in each of the six
groups of mice. (A) Low power stiches from confocal Z-stack images were examined by IMARIS spot detection
and white dots placed to depict CD206+ cells. Co-labeling with DAPI (blue), CD206 (red), and IBA-1 (green)
illustrates the localization of CD206+ meningeal macrophages (B) and a lack of CD206 staining within parenchymal
microglia (C). CD206+ cells are also occasionally observed directly adjacent to CD31+ blood vessel endothelial
cells (D) demonstrating the detection of perivascular macrophages. (E) Quantification of total CD206+ cells within
the brains of each genotype reveal no significant differences. Scale Bars =300mm in A, 50mm in B and C, 20mm in
D. All data presented as mean + s.e.m.
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Supplemental Figure 8: Few changes in astrocyte numbers are detected in 5x-FIRE mice. Related to Figure 2
and 4. To determine whether the absence of microglia in FIRE mice impacts the number or responsiveness of
astrocytes to Ab plaques we examined GFAP immunoreactivity. (A) GFAP immunoreactivity within the cortex,
hippocampus, and thalamus of all six groups of mice is shown. Quantification revealed a significant increase in
GFAP+ astrocytes within the cortex and thalamus of 5x-WT mice versus WT-WT mice but few differences between
5x-WT and 5x-FIRE groups. However, astrocyte numbers within the thalamus were significantly reduced in 5x-
FIRE versus 5x-WT mice and partially restored following microglial transplantation. (B) To determine whether 5x-
FIRE mice exhibit an altered association between astrocytes and Ab pathology proximity of astrocytes to Ab
plaques were quantified but revealed no significant differences. Scale Bars =50mm in A and B. All data presented as
mean £ s.e.m.
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Supplemental Figure 9: Gene co-expression networks in endothelial cells and pericytes. Related to Figure 1, 3,
5,and 6. (A) scWGCNA dendrogram showing co-expression modules in endothelial cells and pericytes (END and
PER) with gene module assignments shown below. (B) Row-normalized heatmap of Seurat module scores by
SPLiT-seq clusters for all PER/END WGCNA modules as in (A). (C) Box and whisker plots with underlying data
points for END-M1 eigengene values split by experimental condition. Box boundaries correspond to the
interquartile range (IQR), the line represents the median, and the whiskers extend to the lowest/highest points that
are not further than 1.5 times the IQR from the box boundary. (D) Co-expression network plot showing the 25 most
connected genes for END-M1. (E) Bar plot showing GO term enrichment for END-M1 genes. (F) UMAP colored
by Seurat module score for END-M1 with END and PER clusters circled. (G-J): Eigengene box and whisker plot,
co-expression network plot, GO term enrichment, and module score UMAP as in (C-F) for END-M2. For box and
whisker plots, two-sided Wilcoxon test was used to compare selected groups; not significant, P > 0.05; *P < 0.05,
**P <0.01, ***P < 0.001, ****P <0.0001.
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Supplemental Figure 10: Gene co-expression networks in excitatory neurons. Related to Figure 1, 3, 5, and 6.
(A) scWGCNA dendrogram showing co-expression modules in excitatory neurons with gene module assignments
shown below. (B) Row-normalized heatmap of Seurat module scores by SPLiT-seq clusters for all EX WGCNA
modules as in (A,C): Box and whisker plots with underlying data points for EX-M2 eigengene values split by
experimental condition. Box boundaries correspond to the interquartile range (IQR), the line represents the median,
and the whiskers extend to the lowest/highest points that are not further than 1.5 times the IQR from the box
boundary. (D) Co-expression network plot showing the 25 most connected genes for EX-M2. (E) Bar plot showing
GO term enrichment for EX-M2 genes. (F) UMAP colored by Seurat module score for EX-M2 with astrocytes
circled. (G-J) Eigengene box and whisker plot, co-expression network plot, GO term enrichment, and module score
UMAP as in C-F for EX-M4. (K-N): Eigengene box and whisker plot, co-expression network plot, GO term
enrichment, and module score UMAP as in (C-F) for EX-M7. For box and whisker plots, two-sided Wilcoxon test
was used to compare selected groups; not significant, P > 0.05; *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001.
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Figure S11
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Supplemental Figure 11: Gene co-expression networks in the oligodendrocyte lineage. Related to Figure 1, 3, 5,
and 6. (A) scWGCNA dendrogram showing co-expression modules in oligodendrocyte lineage cells (ODCs and
OPCs) with gene module assignments shown below. (B)Row-normalized heatmap of Seurat module scores by
SPLiT-seq clusters for all ODC WGCNA modules as in (A, C) Box and whisker plots with underlying data points
for ODC-M1 eigengene values split by experimental condition. Box boundaries correspond to the interquartile range
(IQR), the line represents the median, and the whiskers extend to the lowest/highest points that are not further than
1.5 times the IQR from the box boundary. (D) Co-expression network plot showing the 25 most connected genes for
ODC-ML1. (E) Bar plot showing GO term enrichment for ODC-M1 genes. (F) UMAP colored by Seurat module
score for ODC-M1 with ODCs and OPCs circled. (G-J) Eigengene box and whisker plot, co-expression network
plot, GO term enrichment, and module score UMARP as in (C-F) for ODC-M3. For box and whisker plots, two-sided
Wilcoxon test was used to compare selected groups; not significant, P > 0.05; *P < 0.05, **P <0.01, ***P <0.001,
**E*P < 0.0001.
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Figure S12
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Supplemental Figure 12: Gene co-expression networks in inhibitory neurons. Related to Figure 1, 3, 5, and 6.
(A) scWGCNA dendrogram showing co-expression modules in inhibitory neurons with gene module assignments
shown below. (B) Row-normalized heatmap of Seurat module scores by SPLiT-seq clusters for all INH WGCNA
modules as in (A, C) Box and whisker plots with underlying data points for INH-M1 eigengene values split by
experimental condition. Box boundaries correspond to the interquartile range (IQR), the line represents the median,
and the whiskers extend to the lowest/highest points that are not further than 1.5 times the IQR from the box
boundary. (D) Co-expression network plot showing the 25 most connected genes for INH-M1. (E) Bar plot showing
GO term enrichment for INH-M1 genes. (F) UMAP colored by Seurat module score for INH-M1 with END and
PER clusters circled. (G-J) Eigengene box and whisker plot, co-expression network plot, GO term enrichment, and
module score UMAP as in (C-F) for INH-M6. For box and whisker plots, two-sided Wilcoxon test was used to
compare selected groups; not significant, P > 0.05; *P < 0.05, **P <0.01, ***P <0.001, ****P <(0.0001.
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Figure S13

A Astrocyte WGCNA Dendrogram B Gene module score for ASC co-expression modules in all SPLiT-seq clusters
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Supplemental Figure 13: Gene co-expression networks in astrocytes. Related to Figure 1, 3, 5, and 6. (A)
scWGCNA dendrogram showing co-expression modules in astrocytes with gene module assignments shown below.
(B) Row-normalized heatmap of Seurat module scores by SPLiT-seq clusters for all ASC WGCNA modules as in
(A, C) Box and whisker plots with underlying data points for ASC-M2 eigengene values split by experimental
condition. Box boundaries correspond to the interquartile range (IQR), the line represents the median, and the
whiskers extend to the lowest/highest points that are not further than 1.5 times the IQR from the box boundary. (D)
Co-expression network plot showing the 25 most connected genes for ASC-M2. (E) Bar plot showing GO term
enrichment for ASC-M2 genes. (F) UMAP colored by Seurat module score for ASC-M2 with astrocytes circled. (G-
J) Eigengene box and whisker plot, co-expression network plot, GO term enrichment, and module score UMAP as
in (C-F) for ASC-M5. (K-N) Eigengene box and whisker plot, co-expression network plot, GO term enrichment,
and module score UMAP as in (C-F) for ASC-M6. For box and whisker plots, two-sided Wilcoxon test was used to
compare selected groups; not significant, P > 0.05; *P < 0.05, **P <0.01, ***P <0.001, ****P <(0.0001.
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Figure S14
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Supplemental Figure 14: 2-month-old WT-FIRE and 5x-FIRE mice show no evidence of cerebral
hemorrhages or brain calcification. Related to Figure 5, 6 and 7. To determine whether the previously observed
effects of combined amyloid pathology and microglial absence on brain hemorrhages and calcification might arise
during development we examined young adult mice (2-month-old) from each of the four core genotypes. (A)
Prussian Blue labeling (thalamus shown) revealed no evidence of blood brain barrier dysfunction or cerebral
hemorrhages in either WT-WT, 5x-WT, WT-FIRE, or 5x-FIRE mice. (B) No evidence of Alizarin Red labeling was
detected within the thalamus (shown) or any other brain region of WT-WT, 5x-WT, WT-FIRE, or 5x-FIRE mice.
(C) Quantification of Prussian Blue and Alizarin Red labeling revealed no significant increase in signal intensity
above WT-WT background levels. Scale Bars =100mm in A and B. All data presented as mean + s.e.m.
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