Supporting Information for "Urban water storage capacity inferred from observed evapotranspiration recession"

H.J. Jongen^{1,2}, G-J. Steeneveld², J. Beringer³, A. Christen⁴, N.

Chrysoulakis⁵, K. Fortuniak⁶, J. Hong⁷, J-W. Hong⁸, C.M.J. Jacobs^{9,10}, L.

Järvi^{11,12}, F. Meier¹³, W. Pawlak⁶, M. Roth¹⁴, N.E. Theeuwes^{5,16}, E.

Velasco¹⁷, R. Vogt¹⁸ and A.J. Teuling¹

 $^1\mathrm{Hydrology}$ and Quantitative Water Management, Wageningen University, Wageningen, The Netherlands.

²Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands.

³School of Agriculture and Environment, University of Western Australia, Crawley, Australia.

⁴Chair of Environmental Meteorology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany

⁵Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, The Remote Sensing Lab,

Heraklion, Crete, Greece

⁶Department of Meteorology and Climatology, Faculty of Geographical Sciences, University of Łódź, Łódź, Poland.

⁷Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea.

⁸Korea Environment Institute, Sejong, South Korea.

⁹Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands.

¹⁰National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

¹¹Institute for Atmospheric and Earth System Research / Physics, University of Helsinki, Helsinki, Finland.

¹²Helsinki Institute of Sustainability Science, University of Helsinki, Hesinki, Finland.

¹³Chair of Climatology, Technische Universität Berlin, Berlin, Germany.

¹⁴Department of Geography, National University of Singapore, Singapore.

JONGEN ET AL.: INFERRING URBAN WATER STORAGE CAPACITY

 $^{15}\mathrm{Department}$ of Meteorology, University of Reading, Reading, United Kingdom.

¹⁶Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands.

¹⁷Independent Research Scientist, Singapore.

¹⁸Atmospheric Sciences, Department of Environmental Sciences, University of Basel, Basel, Switzerland

Contents of this file

- 1. Figures S1 to S5
- 2. Table S1

Introduction This supplementary information contains additional figures and one table further visualizing the analyses that we present in the paper. We include the results of the urban water storage capacity estimation approach with a correction for the amount of available solar energy (Figure S1 and S2 and Table S1). We also present the comparison of the site characteristics with the estimated parameters related to the water storage capacity (Figures S3 and S4), and a more detailed comparison of the vegetation fraction with the estimated parameters (Figure S5).

Corresponding author: H.J. Jongen, Hydrology and Quantitative Water Management Group, Wageningen University, Droevendaalsesteeg 3, Wageningen, 6708PB, The Netherlands. (harro.jongen@wur.nl)

Table S1. Same as last part of Table 1, but with results from the analysis with ET corrected

for the amount of available solar energy.

City	Drydowns	Days	$ET_0 (mm d^{-1})$	λ (day)	$t\frac{1}{2}$ (day)	$S_0 (\mathrm{mm})$	\mathbb{R}^2
Amsterdam	16	61	0.6 - 2.1 (1.5)	2.8 - 7.6 (5.2)	1.9 - 5.2 (3.6)	3.9 - 14.8 (6.6)	0.60
Arnhem	39	148	0.9 - 1.3(1.1)	1.6 - 2.9(2.2)	1.1 - 2.0(1.6)	2.1 - 3.2 (2.6)	0.80
Basel (AESC)	109	445	0.9 - 1.2(1.1)	4.1 - 5.2(4.7)	2.8 - 3.6(3.3)	3.9-5.4(4.7)	0.75
Basel (KLIN)	150	623	1.2 - 1.4(1.3)	5.5 - 7.2(6.3)	3.8 - 5.0(4.4)	6.4 - 9.3 (7.4)	0.66
Berlin (ROTH)	9	36	0.6 - 1.9(0.8)	4.8 - 13.7(11.9)	3.3 - 9.5(8.2)	4.2 - 22.1(11.5)	0.79
Berlin (TUCC)	30	122	0.4 - 0.9(0.6)	2.4 - 4.0 (2.8)	1.7 - 2.8(2.0)	1.2 - 3.1 (1.8)	0.68
Helsinki	41	177	1.7 - 2.0(1.8)	3.4 - 7.8(5.0)	2.4 - 5.0(3.5)	6.6 - 11.9(8.6)	0.80
Heraklion (HECKOR)	3	13	0.9 - 3.4(2.9)	0.8 - 5.0(1.7)	0.6 - 3.5(1.2)	1.5 - 14.3 (2.9)	0.86
Lodz	55	249	1.3 - 1.8(1.6)	3.2 - 4.8(3.9)	2.2 - 3.3(2.7)	4.2 - 7.6 (5.5)	0.70
Melbourne	2	9	0.7 - 1.8(1.2)	1.6 - 10.2(5.9)	1.1 - 7.1 (4.1)	1.1 - 17.9(9.5)	0.65
Mexico City	9	52	0.8 - 1.5(1.4)	4.8 - 14.6(9.5)	3.3 - 10.1(6.6)	5.6 - 19.1 (11.4)	0.60
Seoul	7	39	1.1 - 2.7(1.7)	1.7 - 8.2 (4.3)	1.2 - 5.7 (3.0)	5.5 - 9.7 (8.9)	0.53
Singapore	8	43	1.3 - 1.6 (1.4)	6.2 - 17.7 (8.8)	4.3 - 12.3 (6.1)	9.3 - 24.6 (12.5)	0.76
Vancouver	61	282	1.3 - 1.7 (1.4)	4.9 - 7.8 (6.1)	3.4 - 5.4 (4.2)	6.7 - 10.0 (7.7)	0.60

drydown. energy. This correction is performed by multiplying the evaporative fraction by the average available energy over the

January 10, 2022, 9:20am

Figure S2. Same as Figure 3, but with results from the analysis with ET corrected for the amount of available solar energy. This correction is performed by multiplying the evaporative fraction by the average available energy over the drydown.

Figure S3. Estimated model parameters as function of climatological and urban form site characteristics.

Figure S4. Estimated model parameters as function of climatological and urban form site characteristics. The size of the dots indicates the number of drydowns. Between brackets the correlation coefficient is displayed based on a weighted linear regression (based on the number of drydowns per city) for the quantitative site characteristics.

Figure S5. Boxplots of estimated model parameters as function of vegetation fraction. Only locations with at least 20 drydowns are taken into account.