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S1. SAMPLE SYNTHESIS AND
CHARACTERIZATION

Polycrystalline samples of MnNiGa with a target com-
position of (Mn0.5Ni0.5)0.65Ga0.35 were prepared by arc-
melting pellets of stoichiometric amounts of manganese
(99.99%, Sigma-Adrich) and nickel (99.9%, Alfa Aesar)
powders and gallium shots (99.99%, Alfa Aesar) in an arc
furnace under a high-purity (5N) argon atmosphere. A
2 mol% excess of Mn was added to compensate for losses
during the arc-melting procedure. The sample buttons
were melted and flipped several times to ensure homo-
geneity. As-prepared buttons were annealed in vacuum
at 800◦C for 1 week to stabilise the structure by removing
strains and potential disorder and to enlarge the grains
before being quenched in water to retain the high tem-
perature structure.

The phase-purity was determined by x-ray diffraction
using a Panalytical X-Pert Pro powder x-ray diffractome-
ter operating in Bragg-Brentano geometry. This showed
that the crystal was hexagonal P63/mmc (space group
194) with lattice parameters a = b = 4.15125(3) Å and
c = 5.32774(8) Å which is in good agreement with the
structure reported in refs. 1 and 2. According to both
references, Ga atoms occupy the 2c sites with Mn prefer-
entially occupying the 2a and Ni preferentially occupying
the 2d sites (see Figure S1).

The composition was determined to be
Mn0.325(1)Ni0.324(1)Ga0.350(1) by energy dispersive
x-ray spectroscopy conducted using a Zeiss SUPRA
55-VP scanning electron microscope equipped with large
area SDD EDX detector. (The number in brackets
indicates the error in the last decimal place.)

A Quantum Design Magnetic Property Measurement
System, MPMS-5S, superconducting quantum interfer-
ence device (SQUID) magnetometer was used to investi-
gate the magnetic properties of the polycrystalline sam-
ples. The Curie temperature was TC = 340±5 K and the
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saturation magnetization at 5 K under an applied field
of 5 T was 1.66± 0.02 µB per formula unit, both in good
agreement with previously reported values [2].

S2. SAMPLE PREPARATION

MnNiGa samples were prepared for electron mi-
croscopy and x-ray holography using an FEI NanoLab-
600 Helios Dual-Beam focused ion beam (FIB) micro-
scope equipped with an Omniprobe-200 micromanipula-
tor. Samples of approximate size 10 × 5 µm were cut
from a single grain using gallium ion milling, lifted out
with the micromanipulator and mounted on Omniprobe
grids. As the orientation of the grain was unknown, two
initial samples were cut parallel to the grain boundaries
of the material and their orientation found ex-situ using
the transmission electron microscope. The first sample
was close to the [100] zone axis and showed no magnetic
contrast, the second was close to the [011] and showed
only striped magnetic contrast. From these, the tilting
angles required to cut a sample in the [001] zone axis
were calculated and the final samples were cut within 7◦

of the [001] zone axis. Two samples were cut from the
same grain and thinned to about 200 nm. One sample

FIG. S1. Crystal structure of Mn1/3Ni1/3Ga1/3.
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was used for x-ray holography and the other for trans-
mission electron microscopy. Both striped magnetic do-
mains and bubbles were observed in this orientation in
agreement with the findings of Wang et al. [2].

S3. X-RAY HOLOGRAPHY

MnNiGa samples were prepared as described above
and mounted on 3 µm diameter circular apertures pat-
terned on Si3Ni4 membranes which had been coated with
a 600 nm thick gold mask. Reference slits were cut along-
side these holes, 6000 × 10 nm in size. The membranes
were mounted in a vacuum chamber, containing an Hal-
bach array, capable of applying a magnetic field of up to
0.5 T in any direction. A thermal resistor in contact with
the sample was used to control the temperature.

X-ray holography was undertaken on the COMET in-
strument at the SEXTANTS beamline at SOLEIL, using
holography with extended reference by autocorrelation
linear differential operator (HERALDO) [3]. In this tech-
nique, a reference wave is produced using an extended slit
instead of the more common pinhole aperture, leading
to an improved signal-to-noise ratio and spatial resolu-
tion [4]. Magnetic contrast was generated by exploiting
x-ray magnetic circular dichroism (XMCD) at the L3 ab-
sorption edge of Mn at 637.5 eV. Far field diffraction pat-
terns formed via the interference of the sample and ref-
erence aperture were recorded using a 2048× 2048 pixel
charge-coupled device (CCD). By taking the difference
between patterns recorded with opposite x-ray helicity
then applying a linear differential filter and a Fourier
transform, reconstructed images of the local magnetiza-
tion in the samples were obtained. The x-ray polarization
was controlled with an HU44 APPLE II undulator [5].

S4. ELECTRON MICROSCOPY

Electron microscopy was undertaken using an FEI
Titan3 80-300 transmission electron microscope operated
at an acceleration voltage of 300 kV and equipped with a
high-brightness XFEG electron gun which increased the
electron count in our images by a factor of about ten
times compared with microscopes equipped with conven-
tional field-emission guns. This allowed us to acquire
meaningful images at low defocus despite the low con-
trast.

In normal operation, the electromagnetic objective lens
applies a 2 T field to the specimen which would force it
into the saturated state. Images were instead acquired in
low-magnification mode where the image is formed using
the diffraction lens and the objective lens was weakly
excited to apply a small magnetic field parallel to the
electron beam. The applied field corresponding a given
objective lens current had been calibrated to within 1 mT
using an FEI Hall probe holder.

Images were filtered using a Gatan 865 Tridiem energy-
filter so that only electrons which had lost between 0
and 10 eV on passing through the specimen contributed
to the image and an aperture subtending a half-angle of
0.14 mrad was used to ensure that only the 000 beam and
those associated with magnetic scattering contributed to
the image. Images were recorded on a 2048× 2048 pixel
charge-coupled device (CCD).

The defocus and magnification were calibrated by ac-
quiring images with the same lens settings from Agar
Scientific’s S106 calibration specimen which consists of
lines spaced by 463 nm ruled on an amorphous film. The
defocus was found by taking digital Fourier transforms
of these images and measuring the radii of the dark rings
that result from the contrast transfer function of the lens
using the method described in ref. 6 (ch. 28).

The specimen thickness was measured by taking in-
focus images of the same area with and without energy
filtering. Dividing the unfiltered image by the filtered
image and taking the natural logarithm gives the thick-
ness as a multiple of the inelastic mean free path of the
electrons – a ‘t-over-lambda’ map [6] (ch. 39.5). The ab-
solute specimen thickness was measured at 15 positions
using the two-beam convergent-beam electron diffraction
technique described in ref. [6] (ch. 21.2) and the inelastic
mean free path calibrated from this, giving a map of the
absolute thickness across the whole specimen to within
10 nm accuracy.

S5. MICROMAGNETIC SIMULATIONS

We performed micromagnetic simulations using the
Object Oriented Micro-Magnetic Framework (OOMMF)
code [7, 8]. From the domain wall width of δ ≈ 47 nm we
estimate a ratio between the exchange constant and uni-
axial anisotropy of the system as A/Ku = 2.3×10−16 m2.
In a recent study, Zuo et al. [9] reported a magnitude for
the saturation magnetization of µ0Ms = 0.547 T. In or-
der to specify a exchange constant magnitude A, we did a
parameter sweep starting with a hexagonal array of bub-
bles in 1 µm × 1 µm × 200 nm samples and varying Ms,
A and the applied field. From the results, we observed
the stabilization of bubbles around fields of 0.2 T for
µ0Ms = 0.550T and for A between 10 and 20pJm−1. By
decreasing Ms, bubbles are observed when decreasing the
exchange constant but at very weak fields. In addition,
setting µ0Ms ≤ 0.550 T, it was not possible to stabilize
an isolated bubble at fields close to 0.2 T. From the sim-
ulations, a larger Ms magnitude allows the stabilization
of both bubble arrays and isolated bubbles around 0.2 T.
Thus, we chose an exchange field of of 20 pJm−1, and a
saturation magnetization of µ0Ms = 0.648 T. Any mag-
nitude of A and Ms around these values should also be
valid for the stabilization of the bubbles. An optimal
choice of micromagnetic parameters is beyond the scope
of this work, since the observed experimental structures
are in agreement with our simulations. With our choice
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of parameters, we estimate a quality factor Q of about
0.52.

Using the magnetic parameters discussed previously,
we analyzed the possibility of generating bi-skyrmion
configurations through simulated hysteresis-like pro-
cesses. We defined cuboid samples of 1 µm × 1 µm ×
100 nm size considering exchange, dipolar and uniaxial
anisotropy interactions. We discretized the system using
cells of 4nm×4nm×4nm volume, whose dimensions are
well below the exchange length constant of the material
lex =

√
2A(µ0M2

s )−1 of 10.94 nm magnitude. The sys-
tems are initialized at zero field with randomly oriented
spins. After energy minimization we found spiral con-
figurations with varying chirality, as shown in Figure S2
and Video S1.

Across the thickness of the sample the helicities of the
domain walls change from a Bloch-like profile at the cen-
ter of the sample to a Néel-like profile towards the sur-
faces like that shown in Figure 4(a) (main text). In-
terestingly, we notice the presence of adjacent domain
walls with the same chirality. Increasing the field up to
0.2 T, we observe the formation of the elongated spi-
ral domains. Among them we notice elongated spiral
domains surrounded by domain walls of equal chirality.
This occurs by the presence of Bloch lines at the ex-
tremes of the longest domain dimension. Furthermore,
we observe the emergence of different types of bubbles
which coexist with the spiral domains: ordinary bubbles,
which are of Néel type at the top and bottom surfaces of
the sample and Bloch type at the sample center (across
the thickness). We also find type-II bubbles of ellipsoidal
shape, which are characterized by two Bloch lines at the
extremes of the bubble long axis, that propagate through
the sample thickness. Above fields of 0.2 T, only isolated
bubbles remain in the system. Type-II bubbles are ob-
served for fields below 0.26 T. From these simulations we
did not directly find a magnetic ordering resembling a
bi-skyrmion, however we noticed that the type-II bub-
bles have a profile that, averaged through the sample
thickness, can generate a bi-skyrmionic state. Hence we
focused our attention to isolated bubbles.

Simulations of isolated type-II bubbles were performed
in samples of L µm × L µm × 200 nm volume, with L
varying from 600 nm up to 1.2 µm. As a initial state
we specified a Bloch-like bubble propagating through the
thickness of the sample, with the upper and lower half of
the bubble (along the y-direction) with opposite chirali-
ties. After energy minimization, at applied fields below
0.9 T we find elongated domains surrounded by domain
walls of the same chirality. At the surfaces of the sam-
ple the helicity of the domain wall defining the stripe
domains vary as in the hysteresis-like simulations. At
sufficiently strong applied fields we find isolated type-II
bubbles of ellipsoidal shape with the same varying he-
licity profile of the stripe domains across the thickness.
With increasing fields the bubble profile becomes more
spherical and decreases in size, as shown in Figure S3.
This figure also indicates that the stability of these bub-

FIG. S2. Micromagnetic simulation of a field sweep process
on a MnNiGa sample of 1µm size and 100 nm thickness. The
initial state was generated from randomly oriented spins. The
hysteresis-like process was simulated using steps of 20 mT.
Snapshots are taken from a slice at the center of the sample,
perpendicular to the z-direction. Video S1 shows the same
process as a movie.

bles is affected by varying the side lengths of the sample,
thus isolated type-II bubbles are not observed in infinite
systems. Moreover, they are only observed up to a field
of 0.26 T, which might change by varying the satura-
tion magnetization or the exchange constant values. In
contrast, in Figure S2 we observe that type-I bubble ar-
rays survive in a larger field range. When decreasing the
system thickness, we saw from simulations that type-II
bubbles are stable in a more restricted range of applied
field magnitudes.

Figure S4 shows the effect on a simulated magnetic
bubble of changing the specimen thickness. It can be
seen that the bubbles in thinner specimens are smaller
and more elliptical with their major axis following a line
connecting the internal domain walls. All the bubbles
share the feature that the magnetization points radially
at the top and the bottom layers and the magnetization
twists throughout the specimen thickness, showing the
classic type-II configuration only in the middle layer.

All the simulation data can be reproduced from the
repository given in Ref. [10].
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FIG. S3. Size of an isolated Type-II bubble in cuboid samples
of varying width and a thickness of 200 nm. The bubble size
is measured as the length between spins with mz = 0 in a
line across the bubble center. The plot shows both when the
line is in the x and y direction, thus indicating an ellipsoidal
shape of the bubble when the distances have different length.

S6. MAGNETIC BUBBLES FROM DIFFERENT
SPECIMEN THICKNESSES

Figure S5(a) shows an image from a defocus series with
stripe domains and magnetic bubbles coexisting. The
sample was cut to two different thicknesses with a thick-
ness step running nearly vertically down the middle. The
thickness was measured as described in section S4. The
thinner region on the left appears lighter and has a grad-
ual increase in thickness from 110 nm at the top of the
image to 180 nm at the bottom. The thicker region on
the right is 200 nm thick at the top and increases to
230 nm at the bottom. The straight lines parallel to the
thickness step in the thinner region are slight thickness
undulations of about 1 nm caused by the focused ion
beam milling used to prepare the specimen.

The bubbles have a mean spacing of 220 nm in the
thinner region and 310 nm in the thicker region, both
with a standard deviation of 25 nm. They have a mean
diameter of 72 nm in the thinner region with a standard
deviation of 13 nm and a mean diameter of 117 nm with
a standard deviation of 6 nm in the thicker region. This
follows the trend shown by the simulations that the bub-
bles in thicker specimens tend to be larger.

The bubbles in both regions exhibit a similar Yin-Yang

FIG. S4. Simulated magnetic bubbles for different specimen
thicknesses for an out-of-plane applied field of 240 mT. Each
column shows the magnetization of a single bubble with the
specimen thickness given at the top. Each panel in the col-
umn shows the magnetization at equally spaced layers parallel
to the specimen surfaces from the top to the bottom of the
specimen. The direction and strength of the magnetization is
indicated by arrows and colors using the same color scheme
as figure S2. Note that for specimens thinner than 80 nm,
bubbles could not be stabilized and the saturated state was
obtained.

appearance although the black-white contrast of the bub-
bles in the thinner region is rotated with respect to those
in the thick region. Simulations show that this rota-
tion reflects the positions of the internal domain walls.
A closer inspection shows that within the same region,
neighboring bubbles show small rotations with respect to
one another.

The transport of intensity equation was used to recon-
struct the projected B-field. The B-field from the bubble
in the thinner region outlined in blue is shown in (b) and
the B-field from a bubble in the thicker region outlined
in red is shown in (c). The bubble from the thinner re-
gion is from a thickness of 180 nm and has a diameter of
87 nm while the bubble from the thicker region is from a
thickness of 220 nm and has a diameter of 117 nm. It can
be seen that the pattern of B-field lines is very similar
in both cases and closely resembles the B-field in figure
3 of the main paper. This indicates that although the
thickness of the specimen and the size and spacing of the
bubbles varies, all the bubbles shown in the image are
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FIG. S5. (a) Electron micrograph showing magnetic bub-
bles and stripe domains in MnNiGa in regions of specimen
with different thickness at room temperature in an out-of-
plane applied field of 233 mT. The image has a defocus
∆f = −1.410 mm and is a member of a defocus series taken
under conditions identical to figure 3 of the main paper. (b)
Projected B-field for a bubble from the thinner region in (a)
indicated by the blue square reconstructed from the transport
of intensity equation. (c) Projected B-field for a bubble from
the thicker region in (a) indicated by the red square and re-
constructed in the same way. The directions of the B-field are
shown by the color wheel and the B-field lines correspond to
the cosine of 100 times the phase of the exit wavefunction of
the electron beam.

type-II.

S7. SIMULATION OF ELECTRON
MICROGRAPHS

A. Simulation of Defocused Images

Once a model for the magnetization in a specimen has
been obtained, electron micrographs can be simulated as
follows. The first step is to find the magnetic vector po-
tential. This can be done by splitting the specimen into
an infinite number of magnetic dipoles and summing the

vector potentials from each. Thus the vector potential
A(r) can be related to the magnetization M(r) via:

A(r) =
µ0

4π

∫
M(R)×

(
r−R

|r−R|3

)
d3R. (1)

where r and R are 3 dimensional position vectors and µ0

is the permeability of free space. As this is a convolution,
it is treated most simply as a multiplication in Fourier
space [11]. Taking the 3-dimensional Fourier transform
gives:

Ã(k) = − iµ0

2π

M̃(k)× k

k2
, (2)

Taking Cartesian coordinates in which the initial elec-
tron beam direction is parallel to z, the phase shift the
electron beam has experienced when it exits the specimen
is related to the vector potential via the Aharanov-Bohm
formula [12]:

φ(x, y) = −2πe

h

∫ ∞
−∞

Az(x, y, z)dz. (3)

In Fourier space, this becomes:

φ̃(kx, ky) = −2πe

h
Ãz(kx, ky, 0). (4)

and so the phase can be calculated directly from the
magnetization using the formula given by Beleggia and
Zhu [11]:

φ̃(kx, ky) =
iedµ0

h

[
M̃⊥(kx, ky)× k⊥

]
z

k2
⊥

, (5)

where d is the specimen thickness, k⊥ ≡ (kx, ky, 0) and

M̃⊥(kx, ky) is the two-dimensional Fourier transform of
the magnetization averaged along z through the thickness
of the sample.

The in-focus wavefunction is then ψ0 = exp[iφ] and
it can be seen immediately that an in-focus image of
a purely magnetic specimen will be featureless as I0 =
|ψ0|2 = 1. One way to obtain an image showing magnetic
contrast is to take images out of focus. This technique is
called defocused or Fresnel imaging and is often referred
to as Lorentz imaging or LTEM although the latter term
should encompass all the magnetic imaging techniques
available with an electron microscope rather than this
specific method. The wavefunction for a defocused im-
age ψ∆f can be calculated using the Fresnel-Kirchoff in-
tegral [13, 14] which describes the propagation of waves
through free space and can be written as a convolution:

ψ∆f = ψ0 ∗

(
eiπr

2/λ∆f

λ|∆f |

)
(6)



6

where r2 = x2 + y2 and ∗ indicates a convolution. The
calculation of the defocused image is usually performed
in Fourier space as the convolution becomes a multipli-
cation. Thus

ψ̃∆f = ψ̃0e
−iπλ∆fk2 (7)

The defocused image is then I∆f = |ψ∆f |2.

B. Projected B-field

It is often of interest to calculate the projected B-field,
B⊥. This is the component of the magnetic flux density
normal to the electron beam averaged along the trajec-
tory of an unscattered electron beam. If Stokes’ theorem
is applied to the Aharanov-Bohm equation (Eqn. 3) and
the magnetic flux density substituted for the curl of the
vector potential, the resulting integral can be inverted to
give the projected B-field as:

B⊥(x, y) =
h

2πed

(
−∂/∂y
∂/∂x

)
φ (8)

C. Analytic Model for a Type-I Magnetic Bubble

Thus, if we know the magnetization, the method de-
scribed above allows us to simulate images that would
be acquired using transmission electron microscopy. Here
we describe the analytic model for the magnetization of a
magnetic bubble used for comparison with experimental
images. In this model, it is assumed the magnetization
does not to vary through the specimen thickness and so
represents the magnetization averaged through the thick-
ness along the electron beam direction. Using a Cartesian
coordinate system in which the axis of the bubble is par-
allel to the z-axis, a standard model [11, 15] for a circular
magnetic domain wall has in-plane magnetization:

Mxy = Ms sech

(
r −R
δ/π

)(
− sin θ
cos θ

)
(9)

and z-component

Mz = Ms tanh

(
r −R
δ/π

)
(10)

where r is the distance from the bubble’s axis and θ is the
azimuthal angle. The constants are: Ms the saturation
magnetization, R the radius of the magnetic bubble and
δ the domain wall width. The domain wall width is given
by δ = π

√
A/K with A being the exchange energy con-

stant and K the uniaxial magnetocrystalline anisotropy.
If the magnetization direction does not follow the do-

main wall but deviates from it by a constant angle θd,

the z-component remains the same whereas the in-plane
component becomes:

Mxy = Ms sech

(
r −R
δ/π

)(
− sin(θ + θd)
cos(θ + θd)

)
(11)

A purely Bloch bubble is produced when θd = 0 and a
Néel bubble is produced when θd = 90◦.

D. Field Lines for a Magnetic Bubble

It is beneficial to calculate the shape of the field lines
for the magnetization of a magnetic bubble as an internal
domain wall will likely follow a field line of M to avoid
generating magnetic poles. Coey [16] (p 28 eqn. 2.11)
defines a field line as a line which solves

dr

rdθ
=
Mr

Mθ
(12)

Expressing Eqn. 11 in polar coordinates gives

Mxy = Ms sech

(
r −R
δ/π

)[
− sin θd r̂ + cos θd θ̂

]
(13)

So the magnetic field lines are the solution to

dr

rdθ
=
Mr

Mθ
= − tan θd (14)

Solving this differential equation gives the equation of
a logarithmic spiral [17] so that a field line going through
a point (R, θi) has equation:

θ = θi + cot(θd) ln(R/r) (15)

E. Model for a Modified Type-II Magnetic Bubble

A type-II bubble can be modeled by adding a reversing
function θrev to Eqn. 11:

Mxy = Ms sech

(
r −R
δ/π

)(
− sin(θ + θd + θrev)
cos(θ + θd + θrev)

)
(16)

The reversing function adds π to the angle the magne-
tization makes with the radius between the two internal
domain walls which occur at angles θ1, θ2. If the internal
domain walls run radially, the reversing function can be
written as:

θrev = ± atan

(
sinh

(
πr

δi
(θ − θ1)

))
± atan

(
sinh

(
πr

δi
(θ − θ2)

))
(17)
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where the arctangent of the hyperbolic sine is the func-
tion describing the magnetization direction in a domain
wall given by Coey [16] and δi is the internal domain wall
width.

The magnetization of each of the internal domain walls
can point towards or away from the center of the bub-
ble. In combination with this, the magnetization of the
bubble can circulate in one of two directions leading to
eight possible domain wall arrangements. Each of these
can be selected by reversing the sign of Ms in Eqn. 16
in combination with choosing the sign of the arctangent
functions in Eqn. 17.

When θd = 0, this model represents a conventional
type-II bubble. When θd is non-zero, it may be that
the internal domain wall follows a field line of magneti-
zation to avoid generating magnetic poles and thereby
minimize stray field energy. The equation for the field
lines (Eqn. 15) can be used so that if the walls go through
the points (R, θ1) and (R, θ2), the reversing function be-
comes:

θrev= ± atan

(
sinh

(
πr

δi
(θ − θ1 − cot(θd) ln(R/r))

))
± atan

(
sinh

(
πr

δi
(θ − θ2 − cot(θd) ln(R/r))

))
(18)

F. Modified Type-II Magnetic Bubble with an
Outer Domain Wall

A comparison with experimental images indicated that
the bubble had an outer domain wall. To accommodate
this, we allowed the deviation angle θd to vary between
two limits: θi near the center and θo far from the center
with a domain wall at radius Ro and width δo. Thus we
have the following model for a magnetic bubble which is
the analytic model used in the main text for comparison
with the experimental images:

Mxy = Ms sech

(
r −R
δ/π

)(
− sin(θ + θd + θrev)
cos(θ + θd + θrev)

)
(19)

where

θrev= ± atan

(
sinh

(
πr

δi
(θ − θ1 − cot(θd) ln(R/r))

))
± atan

(
sinh

(
πr

δi
(θ − θ2 − cot(θd) ln(R/r))

))
(20)

and

θd = θi +

(
atan

(
sinh

(
π

δo
(r −Ro)

))
+
π

2

)
×
(
θo − θi
π

)
(21)

This model was compared with the experimental im-
ages of 19 bubbles as described in the main text, yielding
the parameters given in Table S1.

TABLE S1. Parameters Used in the Analytic Model of a
Magnetic Bubble.

Saturation magnetization µ0Ms 0.0551 ± 0.0006 T
Domain wall width δ 47 ± 1 nm
Internal domain wall width δi 55 ± 1 nm
Outer domain wall width δo 31 ± 1 nm
Major axis of bubble R 56.6 ± 0.7 nm
Major axis of outer domain wall Ro 90 ± 1 nm
Internal domain wall 1 θ1 32.8 ± 1.6◦

Internal domain wall 2 θ2 214.9 ± 0.9◦

Inner deviation angle θi 131 ± 1◦

Outer deviation angle θo 32 ± 2◦

Major-axis tilt θt −11.4 ± 0.8◦

Major to minor axis ratio 1.25 ± 0.02
χ2 7.3
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