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Appendix S3: Review of the literature on warming-induced changes in intra- and 

interspecific size structure of competitive zooplankton communities. 

Overview 

The purpose of this review was to collect and qualitatively summarize results from published 

studies on temperature-driven changes in size structure of competitive zooplankton 

communities, both within and between species. 

Shifts in population or community body size can occur at three different levels 

(Daufresne et al. 2009, Ohlberger at al. 2013): (1) change in individual size (size-at-age 

shift), (2) change in juvenile vs. adult proportion (population structure shift), and (3) change 

in species proportions (species composition shift). The mechanisms responsible for changes 

in level (1) are tackled by the so-called temperature-size rule (Atkinson 1994, Ohlberger 

2013) and are not dealt with in this study. Instead, we focus on levels (2) and (3), and try to 
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find qualitative patterns in the existing literature on how warming influences the stage 

(intraspecific) and species (interspecific) structure of zooplankton grazers. We focus on 

exploitation (resource) competition – that is, relative competitive ability of species and stages 

– as the main factor shaping community size structure. 

 Our aim was not to exhaustively and quantitatively find, analyse and describe all 

existing literature studies on the subject. Instead, our purpose was to get a solid qualitative 

overview of the relevant results present in ecological literature. 

 

Methods 

 We have searched the published literature (years 1945 – May 2020) using Web of 

Science, with search words zooplankton AND (temperature OR warming) AND (size OR 

juvenile OR nauplii OR adult). After the initial search, the total number of potentially 

relevant articles reached > 540. 

 For a study to be included in the final list, the following conditions had to be met 

(assessed by screening entire articles): 

1. Zooplankton as the study subject. Specifically, we were interested in all protist and 

metazoan heterotrophs, spanning the size from single-celled protists to oceanic salps, krill 

and jellyfish, from every kind of aquatic pelagic environment. The majority of the studies in 

the final list focused on crustacean zooplankton. 

2. Zooplankton consumers had to be engaged in resource competition. We included 

only studies in which plankton consumers inhabited the same experimental or natural area, so 

that they can compete for shared resources. For instance, studies that looked at zooplankton 
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performance across temperature for different species (stages) kept in separate experimental 

tanks were not included. 

3. Body size of zooplankton individuals needed to be explicitly reported, either in units

of length or weight, or in relative terms (i.e. smaller/larger). We found several studies that 

describe changes in zooplankton communities with warming, but without explicit reporting of 

species body sizes or stage structure. These studies were excluded. 

4. Temperature change as the factor (the only one, or one of several that were studied)

behind size structure changes. We included all studies describing the effects of at least two 

ambient/experimental temperatures. We assumed that temperature drives the changes in vital 

rates and life history parameters (even if they have not been explicitly identified), thus 

influencing relative competitive ability of zooplankton species and stages. However, in many 

cases, temperature was not the only factor that could potentially influence zooplankton size 

structure. Other factors included, for instance, food availability, nutrient or light enrichment, 

predation pressure, physical factors, etc. 

5. We included both experimental and observational studies. An experimental study is

defined as one that involves a manipulation of either study subjects or conditions (i.e., 

treatments). This includes laboratory and mesocosm experiments (indoors and outdoors/in 

situ), and intentional lake manipulations. An observational study is defined as one that does 

not manipulate the study subjects and conditions, but instead passively observes them. This 

includes lake and sea sampling/monitoring (including monitoring of areas that were 

anthropogenically altered for purposes other than research, for instance cooling reservoirs of 

power plants), across-latitude/geographical area comparisons, as well as studies using 

subfossil material. 
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6. We included studies that span all potential spatial scales (i.e., from microcosm to 

mesocosm to field studies) as well as temporal scales (few days to weeks/months to studies 

across one or many seasons/years). 

From each study in the final list of articles, we noted which of the following three types 

of observations a given study had made: (1) shift from larger to smaller stages/species with 

warming, (2) shift from smaller to larger stages/species with warming, and (3) no significant 

effect observed. Note that one study (i.e., article) can make more than one observation. We 

divided all observations into four groups, which are combinations of experimental vs. 

observational studies at the intraspecific (stage or clone structure) vs. interspecific (species 

composition) level. 

 

Results 

 In total, the final list included 136 studies (articles) that deal with warming effects on 

competitive zooplankton communities and report responses in body size. The full list of 

studies, together with short descriptions of observed effects, is found in the reference section 

at the end of this Appendix. These studies have reported 164 observations. Fig. 5 in the main 

text contains a summary of all observations across the four categories. The detailed list of 

studies which report given observations is found in Table S1 below. For detailed description 

of results, see the main text (Discussion). 

We would like to note that the observed effects in some cases could not be clearly 

identified as driven solely by temperature. For instance, in short mesocosm studies, 

observations might be the result of specific initial conditions and transient dynamics, e.g. an 

increase in juvenile abundance if an experiment has been inoculated with adult individuals 

only. Other examples include potential effects of other factors, such as fish predation 
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pressure, food quality limitation, or presence of cyanobacteria (see the reference list 

description below where we comment on all such ambiguous cases). 
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Table S1. The published 136 literature studies included in the review, divided into the considered categories, and identified by a number between 

1 and 136 as listed in the reference list below. Note that a few numbers (articles) appear in more than one category if they reported more than a 

single observation. 

Observation 
Studies reporting the observation 

at intraspecific level 
Studies reporting the observation at interspecific level 

E
x
p
er

im
en

ta
l 

st
u
d
ie

s 

Shift to smaller stages/species 

with warming 
16, 17, 48, 49, 116 

7, 19, 34, 43, 44, 45, 49, 51, 62, 64, 72, 82, 84, 86, 90, 

100, 111, 113, 117, 121, 124 

Shift to larger stages/species 

with warming 
32, 65, 109, 113, 121, 124, 135 1, 2, 32, 79, 108, 135 

No effect 55, 110 50, 59, 90, 95, 110, 122, 132, 133, 136 

O
b
se

rv
at

io
n
al

 s
tu

d
ie

s Shift to smaller stages/species 

with warming 

3, 6, 33, 36, 37, 46, 75, 77, 96, 

104, 105, 118, 120, 129, 134 

4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 24, 25, 

26, 27, 28, 29, 30, 33, 39, 40, 41, 42, 46, 47, 52, 53, 57, 

58, 60, 61, 63, 67, 68, 70, 71, 73, 75, 76, 78, 81, 83, 86, 

88, 89, 91, 92, 93, 94, 97, 99, 101, 102, 106, 107, 112, 

114, 115, 123, 125, 126, 127, 128, 130, 131, 134 

Shift to larger stages/species 

with warming 

26, 35, 36, 37, 66, 80, 89, 96, 98, 

130 
21, 25, 38, 54, 60, 69, 85, 103 

No effect 69, 119 11, 23, 31, 56, 70, 74, 77, 87, 119 
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Reference list with short result summaries 

1. Aberle, N., Lengfellner, K. & Sommer, U. (2007). Spring bloom succession, grazing

impact and herbivore selectivity of ciliate communities in response to winter warming. 

Oecologia, 150, 668–681. 

Large ciliates dominate later in the season and in warmer treatment in Kiel indoor 

mesocosms. 

2. Aberle, N., Bauer, B., Lewandowska, A, Gaedke, U. & Sommer, U. (2012). Warming

induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton 

and protozoan production. Mar. Biol., 159, 2441–2453 

Ciliate extinction after peaking transiently with warming; copepods survive because they 

peak later; almost 2-month-long experiment. 

3. Adamczuk, M. (2012). Spatial distribution of juvenile and adult stages of limnetic

Cladocera in relation to selected environmental factors. J. Limnol., 71, 112–118. 

One season monitoring of Lake Piaseczno, Poland, April-November. Positive correlation 

between temperature and juvenile abundance of five species of Cladocera; no effect on 

adults. 

4. Adrian, R. & Deneke, R. (1996). Possible impact of mild winters on zooplankton

succession in eutrophic lakes of the Atlantic European area. Freshwater Biol., 36, 757–770. 

Shift from larger Daphnia galeata to smaller Daphnia cucullata in Heiligensee (close to 

Berlin) over 19 years of data. 
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5. Alheit, J. & Niquen, M. (2004). Regime shifts in the Humboldt Current ecosystem. Prog. 

Oceanogr., 60, 201–222. 

Decrease in abundance of large copepods in warmer periods in Humboldt Current system 

offshore Peru, and its connection to anchovy-sardine dynamics. 

 

6. Ambriz-Arreola, I., Gómez-Gutiérrez, J., del Carmen Franco-Gordo, M.,. Lavaniegos. B.E. 

& Godínez-Domínguez, E. (2012). Influence of coastal upwelling−downwelling variability 

on tropical euphausiid abundance and community structure in the inshore Mexican central 

Pacific. Mar. Ecol. Prog. Ser., 451, 119–136. 

West offshore Mexico, observations on euphasiids before, during, and after the El Nino event 

1996-1998. Larval abundance higher in warmer El Nino waters, and later stages (juvenile and 

adults) more abundant in colder water. 

 

7. Atkinson, D., Ciotti, B.J. & Montagnes, D.J.S. (2003). Protists decrease in size linearly 

with temperature: ca. 2.5% °C−1. Proc. R. Soc. Lond. B, 270, 2605–2611 

Decrease in protist size across many studies, 2.5% per 1 °C. 

 

8. Balayla, D., Lauridsen, T.L.,  Søndergaard, M. & Jeppesen, E. (2010). Larger zooplankton 

in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia, 646, 

159–172. 

Observations made in 37 Danish lakes across a few years, from which 1996 had a particularly 
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cold winter, which resulted in higher proportion of larger taxa in summer. Proposed main 

explanation involves higher fish mortality during colder winter. 

9. Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. (2018). Large

versus small zooplankton in relation to temperature in the Arctic shelf region. Polar Res., 37, 

1427409. 

Larger size fraction was more abundant in colder years in West Spitsbergen Shelf 2010-2016. 

Note that the smaller size fraction consisted not only of smaller species, but also nauplii, 

obscuring the effect. 

10. Batchelder, H.P., Daly, K.L., Davis, C.S., Ji, R., Ohman, M.D., Peterson, W.T. & Runge,

J.A. (2013). Climate impacts on zooplankton population dynamics in coastal marine 

ecosystems. Oceanography, 26, 34–51. 

Shift to smaller copepods during warm periods of Pacific Decadal Oscillation in the 

California current system. 

11. Batten, S.D., Moffitt, S., Pegau, W.S. & Campbell, R. (2016). Plankton indices explain

interannual variability in Prince William Sound herring first year growth. Fish. Oceanogr., 

25, 420–432. 

Change in timing but not in abundance of small and large copepods between cold and warm 

years. However, increase in microzooplankton in warmer years. Alaskan Gulf, 2000-2013. 
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12. Batten, S.D., Raitsos, D.E., Danielson, S., Hopcroft, R., Coyle, K. & McQuatters-Gollop, 

A. (2018). Interannual variability in lower trophic levels on the Alaskan Shelf. Deep-Sea Res. 

Pt II, 147, 58–68. 

Shift to smaller copepods both between and within years when warmer, on the Alaskan Shelf 

2000-2003. 

 

13. Beaugrand, G., Brander, K.M., Lindley, J.A., Souissi, S. & Reid, P.C (2003). Plankton 

effect on cod recruitment in the North Sea. Nature, 426, 661–664. 

Decrease in mean calanoid copepod size in the North Sea during 1960-2000. 

 

14. Beaugrand, G. Decadal changes in climate and ecosystems in the North Atlantic Ocean 

and adjacent seas. (2009). Deep-Sea Res. Pt II, 56, 656–673. 

Shift to smaller calanoid copepods in North Atlantic with higher surface temperature over 

decades. 

 

15. Beaver, J.R., Tausz, C.E., Renicker, T.R., Holdren, G.C., Hosler, D.M., Manis, E.E., 

Scotese, K.C., Teacher, C.E., Vitanye, B.T. & Davidson, R.M. (2014). The late summer 

crustacean zooplankton in western U.S.A reservoirs reflects ecoregion, temperature and 

latitude. Freshwater Biol., 59, 1173–1186. 

Late summer 2010 across 102 western US reservoirs. More of smaller species in warmer 

waters and in lower latitudes. 
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16. Beisner, B., McCauley, E. & Wrona, F.J. (1996). Temperature-mediated dynamics of 

planktonic food chains: the effect of an invertebrate carnivore. Freshwater Biol., 35, 219–

232. 

Transient dominance of Mesostoma juveniles before extinction in 3-month-long mesocosm 

experiment. 

 

17. Beisner, B., McCauley, E. & Wrona, F.J. (1997). The influence of temperature and food 

chain length on plankton predator-prey dynamics. Can. J. Fish. Aquat. Sci., 54, 586–595. 

Less adult-dominated transient before Daphnia went extinct due to juveniles failing to 

mature. 

 

18. Bengtsson, J. (1987). Competitive dominance among Cladocera: Are single-factor 

explanations enough? In: Forró L., Frey D.G. (eds) Cladocera. Developments in 

Hydrobiology, vol 35. Springer, Dordrecht. 

Shift to smaller Daphnia species at higher water temperature in rock pools. 

 

19. Bernot, R.J., Dodds, W.K., Quist, M.C. et al. (2006). Temperature and kairomone 

induced life history plasticity in coexisting Daphnia. Aquat. Ecol., 40, 361–372. 

Shift with warming in kairomone presence from larger Daphnia pulicaria to smaller Daphnia 

mendotae. Shift through one season in Glen Elder reservoir from Daphnia pulicaria to 

Daphnia mendotae, coinciding with warming but also with stronger fish predation. 
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20. Bjerring, R., Becares, E., Declerck, S., Gross, E.M., Hansson, L.‐A., Kairesalo, T., 

Nykänen, M., Halkiewicz, A., Kornijów, R., Conde‐Porcuna, J.M., Seferlis, M., Noges, T., 

Moss, B., Amsinck, S.L., Odgaard, B.V. & Jeppesen, E. (2009). Subfossil Cladocera in 

relation to contemporary environmental variables in 54 Pan‐European lakes. Freshwater 

Biol., 54, 2401–2417. 

Smaller species associated with lower latitudes and warmer lakes, vice versa for larger 

Cladocera species, in subfossil, sediment material of 54 lakes across Europe. 

 

21. Brucet, S., Boix, D., Gascon, S., Sala, J., Quintana, X.D., Badosa, A., Søndergaard, M., 

Lauridsen, T.L & Jeppesen, E. (2009). Species richness of crustacean zooplankton and 

trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark 

and Mediterranean Catalonia (Spain). Ecography, 32, 692–702. 

35 and 42 brackish lagoons in Spain and Denmark, respectively. Shift from copepod to rotifer 

dominance comparing winter vs. summer in Spain, but vice versa in Denmark. Differences in 

salinity as a confounding factor. 

 

22. Brucet, S., Boix, D., Quintana, X.D., Jensen, E., Nathansen, L.W., Trochine, C., 

Meerhoff, M., Gascon, S. & Jeppesen, E. (2010). Factors influencing zooplankton size 

structure at contrasting temperatures in coastal shallow lakes: Implications for effects of 

climate change. Limnol. Oceanogr., 55, 1697–1711. 

Shift to smaller species comparing four Danish with four Spanish lakes; in the latter no larger 

size classes present, no cladocerans, and rotifer dominance. 
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23. Carter, J.L. & Schindler, D.E. (2012). Responses of zooplankton populations to four 

decades of climate warming in lakes of Southwestern Alaska. Ecosystems, 15, 1010–1026. 

No change in summer densities of all dominant zooplankton taxa from 1963 to 2009, despite 

increase in summer temperatures in Alaskan lakes. Increase in cladoceran production though. 

 

24. Chiba, S., Tadokoro, K., Sugisaki, H. & Ino, T. (2006). Effects of decadal climate change 

on zooplankton over the last 50 years in the western subarctic North Pacific. Glob. Change 

Biol.,12, 907–920. 

Decline in spring-summer large copepod abundance with warming in northwest subarctic 

Pacific. 

 

25. Chiba, S., Batten, S.D., Yoshiki, T., Sasaki, Y., Sasaoka, K., Sugisaki, H. & Ichikawa, T. 

(2015). Temperature and zooplankton size structure: climate control and basin-scale 

comparison in the North Pacific. Ecol Evol., 5, 968–978. 

Decline in temperature optimum (=temperature at abundance peak) with body size in 

northwest Pacific copepods. However, due to particularities of temperature isoclines, more of 

larger species in warmer waters. 

 

26. Cooney, R.T., Coyle, K.O., Stockmar, E. & Stark, C. (2001). Seasonality in surface-layer 

net zooplankton communities in Prince William Sound, Alaska. Fish. Oceanogr., 10, 97–109. 

Adults and late copepodite stages dominated during summer in Alaskan gulf over the season, 

but no strong patterns present; seasonality of reproduction plays an important role. Larger 

copepods dominant only in winter and spring, the rest of the season smaller ones dominate. 
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27. Coyle, K.O., Pinchuk, A.I., Eisner, L.B. & Napp, J.M. (2008). Zooplankton species

composition, abundance and biomass on the eastern Bering Sea shelf during summer: The 

potential role of water-column stability and nutrients in structuring the zooplankton 

community. Deep-Sea Res. Pt II, 55, 1775– 1791. 

Strong shift from large to small zooplankton (mostly copepods) from 1990s to 2000s in the 

Barents Sea. 

28. Cremona, F., Agasild, H., Haberman, J., Zingel, P., Nõges, P., Nõges, T. & Laas, A.

(2020). How warming and other stressors affect zooplankton abundance, biomass and 

community composition in shallow eutrophic lakes. Climatic Change, 159, 565–580. 

General increase in biomass of ciliates, rotifers and cladocerans, and decrease in copepods, 

during 38 years in shallow Estonian lake. Small-bodied cyclopoids increase though. 

29. Dalpadado, P., Ingvaldsen, R. & Hassel, A. (2003). Zooplankton biomass variation in

relation to climatic conditions in the Barents Sea. Polar Biol., 26, 233–241. 

Increase in small bodied zooplankton in warm vs. cold year in the Barents Sea, 1981-2000. 

30. Debertin, A.J., Hanson, J.M. & Courtenay, S.C. (2018). Linking zooplankton

assemblages with oceanographic zones in an Atlantic coastal ecosystem. Can. J. Fish. Aq. 

Sci., 75,868–882. 

Dominance of smaller-bodied species such (copepods, Thecosomata, crab zoeae and hermit 
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crab larvae) in warmer water, and larger-bodied (Calanus copepods, chaetognaths and Podon 

sp.) in colder waters of Canadian shore waters. 

 

31. Dimas-Flore, N., Alcocer, J. & Ciros-Pérez, J. (2008). The structure of the zooplankton 

assemblages from two neighboring tropical high mountain lakes. J. Freshwater Ecol., 23, 21–

31. 

No clear seasonal trend in zooplankton size structure in two lakes in Mexico. Rotifers 

abundant in the fall, copepods fluctuating through the year, cladocerans generally declining 

after spring peak. 

 

32. van Doorslaer, W., Stoks, R., Swillen, I., Feuchtmayr, H., Atkinson, D., Moss, B. & De 

Meester, L. (2010). Experimental thermal microevolution in community-embedded Daphnia 

populations. Clim. Res., 43, 81–89. 

Short mesocosm experiment (20 and 24 °C) showed more of larger Daphnia magna than 

smaller Daphnia pulex. At the same time, after 6 months of adaptation, clone structure shifted 

to larger ones in warmer conditions, especially in Daphnia pulex. 

 

33. Du, P., Jiang, Z.B., Zhu, Y.L. et al. What factors control the variations in abundance, 

biomass, and size of mesozooplankton in a subtropical eutrophic bay? (2020). Estuaries 

Coasts, 43, 2128–2140. 

Full year 2015 in Xiangshan Bay, China. Warmer waters are associated with higher 

abundance of small-bodied copepods, but also more nauplii. 
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34. Dupuis, A.P. & Hann, B.J. (2009). Warm spring and summer water temperatures in small 

eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and 

zooplankton. J Plankton Res., 31, 489–502. 

Two consecutive springs (colder then warmer) in Canadian shallow lakes; decrease in 

Daphnia species, increase in rotifers, as well as increase of one copepod species and 

Bosmina. 

 

35. Durbin, E.G., Garrahan, P.R. & Casas, M.C. (2000). Abundance and distribution of 

Calanus finmarchicus on the Georges Bank during 1995 and 1996. ICES J Mar. Sci., 57, 

1664–1685. 

Less nauplii and more later stages of copepods when temperature is warmer May-June, in the 

Georges Bank, NW Atlantic, 1995-1996. 

 

36. Dutz, J., Mohrholz, V. & van Beusekom, J.E.E. (2010). Life cycle and spring phenology 

of Temora longicornis in the Baltic Sea. Mar. Ecol. Prog. Ser., 406, 223–238. 

Bornholm Basin of the Baltic Sea, 2002-2003. Strong seasonal signal in the life cycle of the 

copepod, with overwintering adults, nauplii peaking few times per season, and summer 

dominated mostly by older stages. 

 

37. Dvoretsky, V.G. & Dvoretsky, A.G. (2009). Life cycle of Oithona similis (Copepoda: 

Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol., 156, 1433–1446. 

Strong seasonal signal in the life cycle of the copepod. Nauplii peak in early summer, then 

they strongly decline and copepodites are stably abundant when it is still warm, and then 
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overwinter with little higher densities than adults, the latter peaking in early autumn when 

temperature is still high, especially lower in the water column. 

38. Dvoretsky, V.G. & Dvoretsky, A.G. (2013). Epiplankton in the Barents sea: Summer

variations of mesozooplankton biomass, community structure and diversity. Cont. Shelf Res., 

52, 1–11. 

Exceptionally warm years (around 2006) brought more herbivorous and large-bodied 

zooplankton in the Barents Sea between 2003 and 2009. 

39. Dzierzbicka-Glowacka, L., Żmijewska, I.M., Mudrak, S., Jakacki, J. & Lemieszek, A.

(2010). Population modelling of Acartia spp. in a water column ecosystem model for the 

South-Eastern Baltic Sea. Biogeosciences, 7, 2247–2259. 

Experimental data from year 2000 in Gdansk Gulf show that in summer, smaller-bodied taxa 

dominate (Bosmina, rotifers), unlike in winter with mostly copepods. 

40. Escribano, R., Daneri, G., Farías, L., Gallardo, V. et al. (2004). Biological and chemical

consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: a synthesis. 

Deep-Sea Res. Pt II, 51, 2389–2411. 

Strong El Nino event 1997-1998 caused a shift towards warmer waters, and more abundant 

smaller zooplankton species, offshore Chile and Peru. 

41. Evans, E.L., Hirst, A.G., Kratina, P. & Beaugrand, G. (2019). Temperature-mediated

changes in zooplankton body size: large scale temporal and spatial analysis. Ecography, 00, 
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1–10, doi: 10.1111/ecog.04631 

Shift to smaller copepod species in North Atlantic at lower latitudes and higher temperatures. 

 

42. Evans R., Lea, M.-A., Hindell, M.A. & Swadling, K.M. (2020). Significant shifts in 

coastal zooplankton populations through the 2015/16 Tasman Sea marine heatwave. Estuar. 

Coast. Shelf S., 235, 106538. 

Shift towards smaller species, and towards larvae (of nonplanktonic organisms, therefore 

functionally smaller species here), when warmer offshore Tasmania 2015-2018. 

 

43. Feniova I.Y., Razlutsky, V. I. & Palash, A.L. (2011). Temperature effects of interspecies 

competition between cladoceran species in experimental conditions. Inland Water Biol., 4, 

65–71. 

Shift from larger (Daphnia magna and Simocephalus) to smaller (Diaphanosoma and 

Ceriodaphnia) competing zooplankton species with warming in the lab (18 to 25 °C). 

 

44. Fey, S.B. & Cottingham, K.L. (2011). Linking biotic interactions and climate change to 

the success of exotic Daphnia lumholtzi. Freshwater Biol., 56, 2196–2209. 

Competitive dominance of Daphnia lumholtzi over Daphnia pulex with warming. 

 

45 Fey, S.B. & Cottingham, K.L. (2012). Thermal sensitivity predicts the establishment 

success of nonnative species in a mesocosm warming experiment. Ecology, 93, 2313–2320. 

Competitive dominance of smaller invasive Daphnia lumholtzi over native larger Daphnia 

pulex in heated mesocosms. 
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46. Florencia Gutierre, M., Devercelli, M., Brucet, S., Lauridsen, T.L, Søndergaard, M. & 

Jeppesen, E. (2016). Is recovery of large-bodied zooplankton after nutrient loading reduction 

hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, 

Denmark. Water, 8, 341. 

During 23 years of nutrient loading recovery of shallow lake Søbygaard, Denmark, small-

bodied species increased in abundance, however nauplii (yearly average) built up more and 

more proportion of all copepods. 

 

47. Gao, X., Chen, H., Govaert, L., Wang, W &, Yang, J. (2019). Responses of zooplankton 

body size and community trophic structure to temperature change in a subtropical reservoir. 

Ecol Evol., 9, 12544–12555. 

Shift to smaller species, mostly due to taxonomic sorting along increasing temperature in a 

subtropical reservoir in China. 

 

48. Garzke, J., Ismar, S.M.H. & Sommer, U. (2015). Climate change affects low trophic level 

marine consumers: warming decreases copepod size and abundance. Oecologia, 177, 849–

860. 

Shift from copepodite to nauplii domination; 28 day mesocosm experiment; it could have 

been driven by transient hatching and mortality differences. 

 

49. Garzke, J., Hansen, T., Ismar, S.M.H. & Sommer, U. (2016). Combined effects of ocean 

warming and acidification on copepod abundance, body size and fatty acid content. PLoS 
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ONE, 11, e0155952. 

Over 25 days of mesocosm experiment, in the warm treatment (15 vs. 9 °C) smaller species 

were more dominant (Oithona sp.), and abundances of all copepod stages declined, but it was 

strongest in adults. 
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