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Section S1: Description of the phenology model weighting

We used a weighted ensemble of the four models for each species and phenophase. The

weights for each model within the ensemble were derived via stacking as described in

Dormann et al. (2018). The steps for calculating weights are as followed:

1. Subset the phenology data into random training/testing sets.

2. Fit each core model on the training set.

3. Make predictions on the testing set.

4. Find the weights which minimize RMSE of the testing set.

5. Repeat 1-4 for 100 iterations.

6. Take the average weight for each model from all iterations as the final weight used

in the ensemble. These will sum to 1.

7. Fit the core models a final time on the full dataset. Parameters derived from this

final iterations will be used to make predictions, which are then used in the final

weighted average.

The four phenology models are applied to each of the five members of the climate

ensemble, with a final predicted value, D̂OY forecast, derived as:

D̂OY forecast = 1
5

5∑
n=1

4∑
i=1

wiD̂OY n,i

Where n is the climate ensemble member, i is the phenology model, w is the phenology

model weight, and D̂OY the estimated Julian day.

Uncertainty is the 95% confidience interval of the estimates from the five climate

ensembles:

2 ∗

√√√√1
5

5∑
n=1

(D̂OY n − D̂OY forecast)2
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Section S2: Description of the climate downscaling model

The Climate Forecast System Version 2 (CFSv2) is a coupled atmosphere-ocean-land

global circulation model maintained by the National Oceanic and Atmospheric Adminis-

tration (NOAA)(Saha et al. 2014). The model tracks over 1000 global state variables of

varying resolution and forecast length, such as ocean temperature and heights of pressure

bands. Here we use the 2-meter temperature variable, which has a 6-hour timestep and

a spatial resolution of 0.25 degrees latitude/longitude. The forecast is updated every 6

hours with the latest initial conditions and projected out 9 months.

The CFSv2 also has a reanalysis available. A climate reanalysis is a run of the full model

over a prior time period with constant assimilation of known conditions. In practice this

allows for analysis of state variables which are not able to be measured (such as the

500mb height over the arctic in winter). Here it allows us to build a downscaling model

using the CFSv2 model’s best estimate of past conditions of land surface temperature.

These past conditions are regressed against finer grained “known” conditions from a

different gridded dataset on a per pixel basis. We used the 2-m temperature output

from the reanalysis from 1995-2015 as well as 4km daily mean temperature from

the PRISM dataset (Climate 2004) to build a downscaling model using asynchronous

regression (Figure 1, E-G). The model and theory are described in Stoner et al. (2013)

and references therein. The CFSv2 data is first interpolated from the original 0.25 degree

grid to a 4km grid using distance weighted sampling, then the following method is

applied to each 4km pixel and calendar month.

1. Collect all daily mean temperature observations from 21 years of data from both

the CFSv2 reanalysis and the PRISM dataset. This provides 588 - 641 points

representing daily temperature for a single pixel and calendar month.

2. In addition to the data from each calendar month, also include data for the 14

days prior and 14 days following the calendar month, adding an addition 588 data

points (21*(14+14)). This helps account for future novel conditions.
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3. Order each dataset by their rank, such that the lowest value from the PRISM

dataset is matched to the lowest value from the CFSv2 reanalysis.

4. Fit a linear regression model.

The two parameters from the regression model are saved in a netCFD file which can later

be referenced by location and calendar month (Figure 1, H). This downscaling model, at

the scale of the continental U.S.A., is used to downscale the most recent CFSv2 forecasts

to a 4km resolution during the automated steps.
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Table S1: Phenology Models

For all models, except the Linear and Naive models, the daily mean temperature Ti is

first transformed via the specified forcing equation. The cumulative sum of forcing is

then calculated from a specific start date (either DOY = 1 or using the fitted parameter

t1, where DOY is the day of year). The phenological event is estimated to be the DOY

where cumulative forcing is greater than or equal to the specified total required forcing

(either F ∗ or the specified equation). Parameters for each model are as follows: For the

Linear model β1 and β2 are the intercept and slope, respectively and Tmean is the average

daily temperature between the spring start date and end using the parameters Springstart

and Springstart + Springlength; in the Thermal Time model F ∗ is the total accumulated

forcing required, t1 is the start date of forcing accumulation, and Tbase is the threshold

daily mean temperature above which forcing accumulates; for the Alternating model

NCD is the number of chill days (daily mean temperature below 0◦C) from DOY = 1

to the DOY of the phenological event, a, b, and c are the three fitted model coefficients;

for the Uniforc model, is F ∗ is the total accumulated forcing required, t1 is the start

date of forcing accumulation, and b and c are two additional fitted parameters which

define the sigmoid function. For the Naive model β1 and β2 are the intercept and slope,

respectively, for the average Julian day of a phenological event corrected for latitude.

The Linear, Thermal Time, Alternating, andn Uniforc models are used in the primary

forecast ensemble. The Long Term Average model does not use temperature data, and

represents the long-term average, spatially correct average of a species/phenophase for

use in annomoly calculations.

Name DOY Estimator Forcing Equations Reference

Linear DOY = β1 + β2Tmean - -

Thermal

Time

∑DOY

t=t1
Rf (Ti) ≥ F∗ Rf (Ti) = max(Ti − Tbase, 0) (Réaumur 1735, Wang 1960, Hunter and

Lechowicz 1992)

Alternating
∑DOY

t=1
Rf (Ti) ≥ a + becNCD(t) Rf (Ti) = max(Ti − 5, 0) (Cannell and Smith 1983)

Uniforc
∑DOY

t=t1
Rf (Ti) ≥ F∗ Rf (Ti) = 1

1+eb(Ti−c) (Chuine 2000)
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Name DOY Estimator Forcing Equations Reference

Long Term

Average

DOY = β1 + β2Latitude
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Table S2: Species and phenophases used in the forecast system.

Species and their associated phenophases used in the forecast system. Note not all
species have forecasts for all phenophases due to data availabilty. A * indicates a
contributed model which was not built using USA-NPN data.

Species Budburst Fall Colors Flowers Ripe Fruits

1 Acacia greggii X

2 Acer circinatum X X

3 Acer macrophyllum X X

4 Acer negundo X X X

5 Acer pensylvanicum X X X

6 Acer rubrum X X X

7 Acer saccharinum X X X

8 Acer saccharum X X X

9 Aesculus californica X X X

10 Alnus incana X X X

11 Alnus rubra X X

12 Amelanchier alnifolia X X X

13 Artemisia tridentata X

14 Berberis aquifolium* X X

15 Betula alleghaniensis X X X

16 Betula lenta X X X

17 Betula nigra X X

18 Betula papyrifera X X X

19 Carpinus caroliniana X X X

20 Carya glabra X X X

21 Celtis occidentalis X

22 Cephalanthus occidentalis X X

23 Cercis canadensis X X X

24 Chilopsis linearis X

25 Clintonia borealis X

26 Cornus florida X X X

27 Cornus racemosa X

28 Cornus sericea X X X

29 Corylus cornuta* X X

30 Diospyros virginiana X

31 Fagus grandifolia X X X

32 Fouquieria splendens X

33 Fraxinus americana X X X

34 Fraxinus pennsylvanica X X X

35 Gaultheria shallon* X X

36 Ginkgo biloba X X X

37 Gleditsia triacanthos X X X

38 Hamamelis virginiana X X X

39 Ilex verticillata X X

40 Juglans nigra X X X

41 Liquidambar styraciflua X X X

42 Liriodendron tulipifera X X X

43 Magnolia grandiflora X X

44 Maianthemum canadense X

45 Nyssa sylvatica X X

46 Ostrya virginiana X X

47 Oxydendrum arboreum X X X

48 Platanthera praeclara X X

49 Platanus racemosa X X
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Species Budburst Fall Colors Flowers Ripe Fruits

50 Populus deltoides X X X

51 Populus fremontii X X X

52 Populus tremuloides X X X

53 Prunus americana X X

54 Prunus serotina X X X

55 Prunus virginiana X X X

56 Quercus agrifolia X X

57 Quercus alba X X X

58 Quercus douglasii X X X

59 Quercus gambelii X X

60 Quercus laurifolia X

61 Quercus lobata X X X

62 Quercus macrocarpa X X X

63 Quercus palustris X X X

64 Quercus rubra X X X

65 Quercus velutina X X X

66 Quercus virginiana X X

67 Rhododendron macrophyllum X X

68 Robinia pseudoacacia X X X

69 Salix hookeriana X X X

70 Salix lasiolepis X X

71 Sassafras albidum X X X

72 Sorbus americana X X X

73 Tilia americana X X X

74 Ulmus americana X X X

75 Umbellularia californica X X

76 Vaccinium corymbosum X X X

77 Vaccinium membranaceum* X X

78 Yucca brevifolia X

Total 67 47 72 4
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Table S3: Species and phenophases used in forecast evaluation

Species and their associated phenophases evaluated from the 2019 season. Numbers

indicate the total observations for the species and phenophase, with the mean Julian day

in parentheses. Data are from the USA National Phenology Network from Jan. 1, 2019 -

May 8, 2019.

Species Budburst Fall Colors Flowers

1 Acer circinatum 38 (93.1) 25 (112.4)

2 Acer macrophyllum 10 (90.6) 6 (94.7)

3 Acer negundo 14 (98.7) 13 (86.1)

4 Acer pensylvanicum 6 (93.8) 2 (91)

5 Acer rubrum 177 (93) 152 (86.1)

6 Acer saccharinum 10 (107) 6 (99.3)

7 Acer saccharum 56 (105.5) 30 (109.8)

8 Aesculus californica 3 (46.3) 2 (115) 5 (118.2)

9 Alnus incana 1 (107)

10 Alnus rubra 6 (85.2)

11 Amelanchier alnifolia 1 (83)

12 Betula alleghaniensis 7 (114.3) 4 (122.5)

13 Betula lenta 28 (99.2) 11 (106.5)

14 Betula nigra 1 (104) 1 (87)

15 Betula papyrifera 5 (112) 6 (113.8)

16 Carpinus caroliniana 28 (82.1) 20 (80)

17 Carya glabra 6 (77.2) 5 (112.8)

18 Celtis occidentalis 4 (105.5)

19 Cephalanthus occidentalis 9 (102)

20 Cercis canadensis 22 (94.1) 24 (93)

21 Chilopsis linearis 4 (119)

22 Cornus florida 69 (89.7) 56 (101.8)

23 Cornus racemosa 6 (102.5)

24 Cornus sericea 9 (103.4)

25 Corylus cornuta 4 (57.8)

26 Diospyros virginiana 1 (124)

27 Fagus grandifolia 45 (100.9) 10 (114.2)

28 Fouquieria splendens 9 (97.7)

29 Fraxinus americana 3 (109.7)

30 Fraxinus pennsylvanica 2 (112.5)

31 Ginkgo biloba 5 (108.6) 1 (111)

32 Hamamelis virginiana 23 (104.3)

33 Ilex verticillata 3 (115.3)

34 Juglans nigra 5 (106.6) 4 (107.2)

35 Liquidambar styraciflua 18 (75.2) 13 (89)

36 Liriodendron tulipifera 41 (88.4) 14 (86.2)

37 Magnolia grandiflora 5 (85.8) 7 (104.7)

38 Nyssa sylvatica 17 (99) 1 (76)

39 Ostrya virginiana 4 (91.5)

40 Oxydendrum arboreum 8 (98.6) 1 (76)

41 Platanus racemosa 5 (22) 3 (46)

42 Populus deltoides 8 (111.8) 5 (110.6)

43 Populus fremontii 2 (102)

44 Populus tremuloides 10 (113) 11 (97.6)
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Species Budburst Fall Colors Flowers

45 Prunus americana 1 (111) 1 (112)

46 Prunus serotina 30 (84.1) 10 (70.7)

47 Prunus virginiana 6 (95.2) 1 (107)

48 Quercus agrifolia 32 (68.7) 12 (83.2)

49 Quercus alba 32 (100) 14 (112.7)

50 Quercus douglasii 4 (81.8) 3 (108)

51 Quercus gambelii 16 (114.2)

52 Quercus laurifolia 9 (50.4)

53 Quercus lobata 14 (63.9) 4 (81)

54 Quercus macrocarpa 23 (108.5) 10 (120.5)

55 Quercus palustris 4 (103) 2 (113)

56 Quercus rubra 47 (105.8) 24 (112.9)

57 Quercus velutina 4 (102.8) 3 (106)

58 Quercus virginiana 10 (58) 11 (66.5)

59 Sassafras albidum 6 (108) 8 (108)

60 Sorbus americana 2 (124)

61 Tilia americana 7 (101.9)

62 Ulmus americana 8 (80.8) 2 (42)

63 Umbellularia californica 5 (98.8) 5 (54.6)

64 Vaccinium corymbosum 10 (81.1) 15 (90.4)

65 Yucca brevifolia 10 (76.4)

Total 991 (93.8) 2 (115) 588 (94.8)

10



References

Cannell, M. G. R., and R. I. Smith. 1983. Thermal Time, Chill Days and Prediction of

Budburst in Picea sitchensis. The Journal of Applied Ecology 20:951.

Chuine, I. 2000. A Unified Model for Budburst of Trees. Journal of Theoretical Biology

207:337–347.

Climate, G. 2004. Oregon State University. \url{http://prism.oregonstate.edu}; Oregon

State University.

Dormann, C. F., J. M. Calabrese, G. Guillera-Arroita, E. Matechou, V. Bahn, K. Bartoń,
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