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figure S1.  Schematic of epitopes used to create antibodies against the AZ proteins used in this 

study.  Antibodies designed against CAST and RIM2 were based on protein amino acid (a.a.) 

sequences from rat as presented in Table1; however, in this figure the aa sequences for mouse RIM2 

and CAST are presented.  The database (accession number) used for mouse a.a. sequences are 

indicated in the figure.  See Table one for details on antibody sources and references. 
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figure S2. Illustration of how retinal tissue is transferred to glass using Heat Assisted Rapid 

Dehydration (HARD).  A slice of retina, made by cutting vertical sections through flat-mounted 

retina, is shown positioned on a glass coverslip.  The coverslip was pre-warmed to 50°C prior to 

applying the slice.  Once the slice contacted the glass, it was held in place for 30 sec and then 

retracted.  A thin layer of the slice is shown to remain on the glass.  The coverslip was left on the 

thermal plate for 2 to 5 minutes to ensure complete dehydration. 
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figure S3.  Confocal images of rod terminals in HARD samples exhibit the normal colocalization 

of synaptic ribbon and active zone markers. (A) RIM2 (red, Alexa647) co-stained with ribbon 

marker ribA (= ribeye A-domain; green, Alexa488). (B) RIM2 (green, Alexa488) active zone 

marker bassoon (red, Alexa647).  (C) Co-labeling of ribA (green, Alexa488) with active zone 

protein CAST (red, Alexa647). (D) Co-staining of piccolo (green, Alexa488) and RIM2 (red, 

Alexa647). (E) Illustrates the complete overlap of the two ribbon markers piccolo (red, Alexa647) 

and ctpb2 (ribeye B-domain; green, Alexa488).  (F) Presents the co-labeling of Cav channel pore 

forming subunit α1F (Alexa647) against ribA (Alexa488) and bassoon (Alexa546).  

  

RIM2A ribA overlay

bassoonRIM2B overlay

CASTC ribA overlay

piccoctbp2E overlay series (overlay)

RIM2piccoloD overlay

bassoon

ribA

ribA bassoon

F

Cav a1F

Cav a1F
overlay

Fig. S3



 

 

 

 

 

 

 

figure S4.  2D-MINFLUX localizations for piccolo and CAST.  (A and B) Insets show confocal 

images of rod ribbons indirectly labelled for piccolo (red, Alexa647) and ribeye (green, Alexa488). 

The two proteins are highly colocalized.  2D-MINFLUX images of piccolo are presented on full 

scale in (A) and (B). Highlighted regions of interest presented in (Ai, ii) show the dense mesh of 

piccolo localizations.  Confocal inset in (B) has a scale bar = 500 nm. (C and D) Inset present 

confocal images of rod ribbons indirectly labelled for CAST (red, Alexa647) and ribeye (green, 

Alexa488).  Co-localization is minimal, especially when compared to piccolo.  2D-MINFLUX 

images of CAST are presented on full scale in (C) and (D) and show lower labeling density than 

what is observed for piccolo.  Highlighted regions of interest presented in (Ci, ii) show a linear 

band of CAST, and a couple localizations displaced from the band.  Scale bar = 500 nm in confocal 

inset in (D). 

  



 

 

 

figure S5. Proposed model of the molecular topography of the rod ribbon active zone.  (A) 

Schematic representations of the base of the rod ribbon AZ.  Taking the point where the SV contacts 

the plasma membrane as a SV release site, then the upper estimate for the distance between the 

center/midline of the ribbon to the SV at the base is 66 nm. Values present in the schematic are in 

nanometers, and they are taken from published electron microscopy studies (25, 29, 32, 57). (B) 

Summary of 3D-MINFLUX results. The distance between the “plasma membrane” release sites is 

132 nm (2 × 66 nm).  The distances between the two rows of AZ epitopes are given for each protein. 

Since the spacing between rows of Cav1.4 and ubMunc13-2 were not statistically different, they 

were grouped together, and for the same reason the scaffolding proteins RIM2 and bassoon were 

grouped together.  Rows of Cav1.4 and ubMunc13-2 were significantly separated from the 

scaffolding proteins (see Results).  The right half of the schematic includes SVs.  C. The outlines 

of the ribbon AZ (from A) are overlaid with the AZ proteins.  In addition, the compactness of the 

AZ proteins is incorporated into the illustration.  Since Cav1.4 and ubMunc13-2 are likely more 

compact than the scaffolding proteins, and not likely to extend much beyond the location of the 

epitopes, they are given a compact representation in (C) and (B).  In contrast the scaffolding proteins 

are less compact and may reach beyond the uncertainty inherent in the localization of their epitopes 

with the indirect antibody labeling procedure (~10 nm); therefore, the scaffolding proteins are 



 

 

represented by a larger area of uncertainty.  For example, bassoon is over twice the molecular 

weight of RIM2 and it is predicted to have a length of 80 nm in silico (34). 

  



 

Supplemental Materials: HARD samples 

As described in the Results, initial attempts at 2D-MINFLUX failed because of excessively high 

rates of photon emission.  Both the density of ribbons per unit volume in the OPL, out of focus 

ribbons, and a large copy number of ribeye molecules per ribbon contributed to the excessive rates 

of photon emissions.  To overcome these obstacles the next cycle of optimization made two distinct 

changes.  First, rather than attempt to reduce emission density by lowering labelling efficiency (for 

example, lower primary and/or secondary antibody concentrations), or by suppressing emission 

rates per fluorophore by increasing the concentration of sulfhydryl compounds (e.g., β-

mercaptoethanol) that suppress fluorophore blinking, AZ proteins (such as, RIM2) were targeted 

since they are presumed to be expressed at a lower copy number than ribeye.  Second, to further 

reduce emission density from ribbon crowding in the OPL, a new approach was designed to deposit 

a thin layer of retinal slice on a standard glass coverslip. In addition, aldehydes were omitted to 

avoid increasing autofluorescence and degradation of AZ protein epitopes. 

HARD sample rationale and development 

Sample dehydration is commonly used during the processing of samples for conventional electron 

microscopy (EM) and immuno-fluorescence (IF) imaging.  This often involves use of ethanol or 

methanol to remove water from the tissue (dehydrate) when making samples for EM.  IF methods 

use alcohols to denature proteins so that they are rendered immobile, and in some instances the 

alcohol concentration may be high enough to dehydrate the tissue (33).  Two procedures of 

interest either evacuate water under vacuum (58), or evaporate water from thin sections of retina 

through warming that samples (32, 59).    For instance, a standard approach used for preparing 

retinal samples for IF entails making cryo-sections from whole eyes frozen to a temperature of 

−20ºC, or less.  Freshly cut frozen sections have a thickness of 15 to 20 μm, and they are 

transferred directly onto glass slides that are at a temperature of ~23°C.  The glass slides are then 

placed on a thermal plate that is preheated to 50ºC and allowed to warm up for 10 minutes, which 

dehydrates the tissue (32).  This procedure immobilizes large AZ proteins at rod ribbons in the 

OPL, and has the benefit of not requiring aldehyde fixation; however, smaller cytosolic proteins 

may require aldehyde fixation to retain them in the tissue (32).  When aldehyde fixation is 

required, it can create a noticeable increase in background signal (noise), and diminish the target 

protein’s epitope (32, 33).  Hence, the standard dehydration method used with cryosections, and 

the more advanced vacuum dehydration approach, give improved labeling when aldehydes are 

omitted. 



 

Assuming dehydration, and denaturation, were the critical events that rendered the AZ 

proteins fixed in the different protocols outlined above, it was reasoned that it may be possible to 

avoid the freezing step and go directly to dehydrating the retinal tissue.  To do this, a living retinal 

slice attached to a piece of nitrocellulose membrane was taken out of solution, and excess solution 

carried on the forceps and nitrocellulose membrane were drawn off with a small piece of 

Kimwipe tissue paper.  The slice was oriented as indicated in figure S1 and placed gently onto a 

glass coverslip prewarmed to 50ºC on a thermal plate.  After 20 to 30 sec the slice was withdrawn 

from the glass.  A thin layer of tissue remained on the glass and appeared translucent for ~1 sec 

prior to becoming grey and dehydrated.  The coverslip was left on the thermal plate for a couple 

more minutes.  After this, coverslips were stored at room temperature in a desiccated chamber for 

up to 2 weeks.  Validation of the samples for IF is documented in the Results (Fig. 1-3, fig. S3; 

movies: 1-6), and the immune-staining procedure is outlined in the Methods section. 

Additional technical notes.  The reason for withdrawing the slice is that we did not want a 

thick layer of retina (the retinal slices on nitrocellulose paper are between 150 to 200 μm in 

thickness), which would cause excessive out-of-focus signal.   In addition, a thin layer of retina 

will dehydrate faster, and withdrawing the slice leaves a thin layer of tissue on the glass that 

dehydrates rapidly.  To optimize the procedure, excess liquid had to be removed from the slices 

for two reasons.  First, it was desired to have the retinal slice warm rapidly (from ~23°C to 50ºC, 

ΔT ~27ºC), and excess solution consumes heat that would otherwise be transferred to the retinal 

slice.  Second, the final step aimed to dehydrate the tissue as fast as possible, after the slice was 

withdrawn, and the presence of excess solution would prolong the dehydration step.   If excess 

solution was not removed, then a residual bead of solution was left on the glass coverslip after the 

retinal slice was removed.  Once the water evaporated the appearance was not a clean imprint of 

the slice, but rather a salt residue remained.  



 

Movie Captions. 

Movie 1. Confocal stack (320 nm thick sections) made through the OPL of a fixed retinal slice 

labelled with anti-ctbp2 (ribeye B-domain) using conventional methods (fixed with 3 % PFA and 

detergent permeabilized). 

Movie 2. HARD retinal sample stained for ubMunc13-2 (red) and ribeye-A (green). Confocal 

optical sections taken at a thickness of 1 micron. 

Movie 3. Retinal HARD sample stained for ubMunc13-2 (red) and ribeye-A (green). Zoomed in 

view of photoreceptors in the OPL. 200 nm optical sections. 

Movie 4. Shows a series of optical sections through terminals bounded by vglut1 (green). The red 

channel presents bassoon + RIM2. 

Movie 5. Red channel presents bassoon + RIM2. 

Movie 6. Brightfield image with an overlay of bassoon and RIM2 (both in the red channel). 

Movie 7. Bassoon 3D-MINFLUX. Color-coded, depth heat map. Edge of square = 100 nm. 

Movie 8. Bassoon 3D-MINFLUX. Grey scale. Edge of square = 100 nm. 

Movie 9. RIM2 3D-MINFLUX. Color-coded, depth heat map. Edge of square = 100 nm. 

Movie 10. RIM2 3D-MINFLUX. Grey scale. Edge of square = 100 nm. 

Movie 11. ubMunc13-2 3D-MINFLUX. Color-coded, depth heat map. Edge of square = 100 nm. 

Movie 12. ubMunc13-2 3D-MINFLUX. Grey scale. Edge of square = 100 nm. 

Movie 13. Cav1.4-a1F 3D-MINFLUX. Color-coded, depth heat map. Edge of square = 100 nm. 

Movie 14. Cav1.4-a1F 3D-MINFLUX. Grey scale. Edge of square = 100 nm. 
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