Supporting Information for

"4D-Var inversion of European NH₃ emissions using CrIS NH₃ measurements and GEOS-Chem adjoint with bi-directional and unidirectional flux schemes"

Hansen Cao¹, Daven K. Henze¹, Liye Zhu², Mark W. Shephard³, Karen Cady-Pereira⁴, Enrico Dammers⁵, Michael Sitwell³, Nicholas Heath⁴, Chantelle Lonsdale⁶, Jesse O. Bash⁷, Kazuyuki Miyazaki ⁸, Christophe Flechard⁹, Yannick Fauvel⁹, Roy Wichink Kruit¹⁰, Stefan Feigenspan¹¹, Christian Brümmer¹², Frederik Schrader¹², Marsailidh M. Twigg¹³, Sarah Leeson¹³, Yuk S. Tang¹³, Amy C.M. Stephens¹³, Christine Braban¹³, Keith Vincent¹⁴, Mario Meier¹⁵, Eva Seitler¹⁵, Camilla Geels¹⁶, Thomas Ellermann¹⁶, Agnieszka Sanocka¹⁴, Shannon L. Capps¹⁷

¹University of Colorado, Boulder, USA ²Sun Yat-sen University, China ³Environment and Climate Change Canada, Toronto, Ontario, Canada ⁴Atmospheric and Environmental Research Inc., USA ⁵Netherlands Organisation for Applied Scientific Research (TNO), Climate Air and Sustainability (CAS), Utrecht, The Netherlands ⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY USA ⁷U.S. Environmental Protection Agency, USA ⁸Jet Propulsion Laboratory, California Institute of Technology, USA ⁹INRAE (National Research Institute for Agriculture, Food and Environment), UMR SAS, Agrocampus ¹⁰National Research institute for Agriculture, rood and Environment), OWRT SAS, Agrocampus
Ouest, 65 rue de Saint-Brieuc, 35042 Rennes, France
¹⁰National Institute for Public Health and the Environment, The Netherlands
¹¹German Environment Agency, Germany
¹²Thünen Institute of Climate-Smart Agriculture, Germany
¹³UK Centre for Ecology & Hydrology, UK
¹⁴Ricardo Energy & Environment, Wantage, England, UK
¹⁵Forschungsstelle für Umweltbeobachtung, Switzerland
¹⁶Department of Environmental Science, Aarhus University, Denmark
¹⁷Civil, Architectural, and Environmental Engineering Department, Drexel University, Philadelphia, PA,

USA

Contents

1. Figures S1 to S3

Supporting figures and tables

Corresponding author: Hansen Cao, hansen.cao@colorado.edu

Figure S1: MASAGE-based ratio of monthly livestock $\rm NH_3$ emissions to monthly total anthropogenic $\rm NH_3$ emissions.

Figure S2: Scatter plot between adjoint gradient and finite difference (FD) gradient of simulated NH3 with respect to pH scale factor (a), fertilizer application rate scale factor (b) and livestock emission scale factor (c), respectively, from July 1st to 7th 2016 for the Europe domain at $0.3125^{o} \times 0.25^{o}$.

Figure S3: Monthly mean IASI NH₃ column concentration averaged at $2^{o} \times 2^{o}$ during March (a), June (b), September (c) and December (d) in 2016. Grids with valid pixels less than 10 were set to NaN value (in gray color). Domain average was shown on the top-right of each sub-figure.