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Supplementary Table 1. Datasets used for benchmarking experiments. 
 

Dataset Platform Pore Reads Total seq. 
(Gbases) 

Size 
FAST5-
zlib 

Size 
FAST5-
vbz 

Size 
SLOW5 

Size 
BLOW5 

Size 
BLOW5-
zlib 

Size 
BLOW5-
vbz 

~30X human 
genome 
(NA12878) 

PromethION R9.4.1 9,083,052 93.4 1.3 TB 978 GB 4.0 TB 2.0 TB 1.0TB 707 GB 

Downsampled 
human 
dataset 
(NA12878) 

PromethION R9.4.1 500,000 5.1 71 GB 51 GB 212 GB 106 GB 53 GB 36 GB 
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Supplementary Table 2. Specifications of all computers used in this study. 
 

System Type CPU CPU 
cores 

RAM 
(GB) 

GPU File 
system 

Disk System OS 

HPC-HDD HPC with HDD 
RAID 

2 × Intel Xeon 
Gold 6154 

36 384 - ext4 12×10TB HDD drives 
with RAID6 
configuration 

Ubuntu 
18.04.3 LTS 

HPC-Lustre NCI CPU node 
with distributed 
lustre file 
system  

2 x core Intel 
Xeon Platinum 
8274 

48 192  - lustre 
 

7200 4TB disks in 120 
NetApp disk arrays 

CentOS 
8.3.2011 

HPC-GPU NCI GPU node 
with distributed 
lustre file 
system  

2 x Intel Xeon 
Platinum 8268  

48 384  Nvidia Tesla 
V100-SXM2-
32GB (Volta 
architecture) 

lustre 7200 4TB disks in 120 
NetApp disk arrays 

CentOS 
8.3.2011 

Cloud-FsX Amazon AWS 
c5a.16xlarge 
instance with 
distributed 
lustre file 
system  

AMD EPYC 
7R32 (virtual 
machine) 

32 virtual 
machine 

128  - Amazon 
FSx for 
Lustre 

Amazon FSx Lustre 
storage (persistent 
HDD) 

Ubuntu 
20.04.2 LTS 

Cloud-EBS Amazon AWS 
c5a.16xlarge 
instance with 
elastic block 
storage (EBS) 

AMD EPYC 
7R32 (virtual 
machine) 

32 virtual 
machine 

128  - ext4 1x500GB elastic block 
storage (standard 
magnetic) 

Ubuntu 
20.04.2 LTS 

Workstation-
SSD 

GPU 
Workstation 
with SSD 

1xAMD Ryzen 
Threadripper 
3970X 

32 128  NVIDIA 3090  
- 24GB 
(Ampere 
architecture) 

ext4 4x500GB SSD drives 
with RAID0 
configuration 

 Ubuntu 
18.04.5 LTS 

Workstation-
NFS 

Workstation 
with network 
file system (NFS) 

1xAMD Ryzen 
Threadripper 
3970X 

32 128  - ext4 
mounted 
as NFS 

12x12 TB  HDD with 
RAID 10 configuration 
(Synology DS3617xs 
NAS) 
 
 

 Ubuntu 
18.04.5 LTS 

Laptop-HDD Dell XPS 9570 
laptop with a 
USB 3.0 external 
HDD attached 

Intel core  i7-
8750H CPU 

6 16 NVIDIA 1050 
Ti - 4 GB 
(Pascal 
architecture) 

ext4 1x 500GB HDD 
(external USB3.0 drive) 

Ubuntu  
18.04.1 LTS 
 

Embedded 
system 

Jetson Xavier 
AGX with a USB 
3.0 external 
HDD attached 

ARM v8 64-bit 
CPU 

8 16  NVIDIA tegra 
- 16GB shared 
with RAM 
(Volta 
architecture) 

ext4 1x 500GB HDD 
(external USB3.0 drive) 

Ubuntu 
18.04.3 LTS 
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Supplementary Table 3. FAST5 vs BLOW5 file size comparison for various datasets. 
 

Dataset Source Type 
FAST5-zlib 

(GB) 
BLOW5-zlib 

(GB) 
Saving 

(%) 

NA12878_prom 
Internal (NCBI: 
SRR15058166) ~30X human genome (NA12878) 1330 1012 23.95 

 

NA12878_prom_sub 
Internal (NCBI: 
SRR15058164) 

Downsampled human dataset 
(NA12878) 70 53 24.57 

 

PUXP097306 Internal Ultra-long human gDNA sequencing 346 281 18.58  

PBXP153375 Internal Sheared human gDNA sequencing 1646 1212 26.34  

PQXT038257 Internal Q20+ human gDNA sequencing 522 417 20.12  

MBXM172390 Internal ReadFish targeted human gDNA sequencing 268 205 23.25  

PBXP088299 Internal Human cDNA sequencing 3881 1495 61.49  

PNXP021236 Internal Mouse direct-RNA sequencing 481 395 17.83  

PLPL079987 Internal Viral PCR amplicon sequencing 338 105 69.04  

PUBLIC-GENOME NCBI: SRR14493367  Standard human gDNA sequencing 1244 931 25.15  

PUBLIC-METAGENOME NCBI: ERR4991716  Metagenome amplicon sequencing 18 8 54.53  

PUBLIC-TRANSCRIPTOME NCBI: SRR13261194  Human direct-RNA sequencing 9 7 22.96  

PUBLIC-PLANT NCBI: SRR15611015  Datura stramonium plant genome sequencing 27 19 29.55  
PUBLIC-VIRAL ARTIC community SARS-CoV-2 amplicon sequencing 21 8 61.34  

    average 34%  

    median 25%  

    range 18-69%  
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Supplementary Note 1. FAST5 format de-mystified 

PREAMBLE 

FAST5 files are Hierarchical Data Format 5 (HDF5) files with a specific schema defined by Oxford Nanopore 
Technologies (ONT) for storing raw current-signal data generated from ONT devices. We have compiled the 
following material to help researchers to understand FAST5 files, and consulted ONT on various definitions 
within their format. This document should not be interpreted as a definitive specification document from the 
developers of FAST5, although it is the most detailed description of FAST5 format that we are aware of. 

There are two FAST5 types: single-FAST5 and multi-FAST5 (first appearing around September 2018). A multi-
FAST5 file contains a batch of reads in a single file whereas a single-FAST5 file contains just a single read per 
file. Single-FAST5 format is no longer used by ONT. In this document, FAST5 will always refer to multi-FAST5 
unless otherwise stated. 

To read FAST5 files we use the HDF5 library and HDF5 tools [1]. 

BASICS 

A FAST5 (HDF5) file is like a file system. Just as there are multiple levels of directories and files in a file system, 
a FAST5 (HDF5) file contains groups and datasets, respectively. The term HDF5 objects is an umbrella term 
for both groups and datasets. HDF5 objects can optionally contain attributes, which are key-value pairs. HDF5 
related terms are defined below with examples. 

Groups 
HDF5 groups (and links1) organise HDF5 objects. Every HDF5 file contains a root group that can contain other 
groups or links to other HDF5 objects2. Working with groups and group members (HDF5 objects) is similar in 
many ways to working with directories and files in UNIX. As with UNIX directories and files, objects in an HDF5 
file are often described by giving their full (or absolute) path names. 

● / signifies the root group. 
● /foo signifies a member of the root group called foo. 
● /foo/zoo signifies a member of the group foo, which in turn is a member of the root group. 

Datasets 
HDF5 datasets organise and contain the actual data values [2]. A dataset consists of metadata (datatype, 
datasize, compression technique, etc) that describes the data, in addition to the data itself. In any read within 
a FAST5 file, two datasets are found; the Raw group contains the raw current-signal the Analyses group 
contains the FASTQ data (only if live base-calling was enabled) [1]. 

 
1 Links are like directory/file paths in a file system. Links can be absolute, relative or even symbolic. 
2 Other objects can, in theory, be in the same FAST5 file or in a different FAST5 file. 
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Attributes 
Attributes can optionally be associated with HDF5 objects. The attributes have two parts: a name and a value. 
Attributes are accessed by opening the object that they are attached to; hence, they are not independent 
objects. Typically an attribute is small in size and contains details about the object that it is attached to. 

Attributes look similar to HDF5 datasets in that they have metadata such as data type and dataspace. 
However, unlike HDF5 datasets, HDF5 attributes do not support partial I/O operations and cannot be 
compressed or extended [2]. 

HDF5 dataspace 
The HDF5 dataspace must be defined prior to defining an HDF5 dataset or an attribute. The dataspace defines 
some metadata such as the size and shape of the dataset or attribute raw data (i.e., the number of 
dimensions and the size of each dimension of the multidimensional array in which the raw data is 
represented) [2]. 

HIERARCHY OF A MULTI-FAST5 FILE 
The root group (e.g.  /fmh_15… in the snapshot below) contains a group for each read that is named as 
“read_” followed by the read identifier (e.g. read_001f4… in the snapshot below): 

 
 
Under each read group, there are the following groups: 

● Raw 
● channel_id 
● context_tags 
● tracking_id 
● Analyses 

Note that the Analyses group is only available in base-called FAST5 files. The groups found in a FAST5 file that 
has not been base-called are shown in the snapshot below: 
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As the name suggests, Raw contains the raw signal (raw data acquisition values) and associated metadata. 
channel_id contains (but is not limited to) parameters useful for converting the raw signal into pico-ampere 
values. context_tags and tracking_id contain global information that are common to the sequencing run. 
More information on these groups is provided below. 

The Analyses group is for storing data resultant from various downstream analyses, such as base-calling.  For 
instance, if the Guppy base-caller is run with the option to output base-called FAST5 files, those output FAST5 
files will contain this Analyses group. Analyses groups can be used by custom software (e.g. Tombo) for 
storing data from additional downstream analyses. 

In the following subsections we provide detailed descriptions of groups mentioned above, except the 
Analyses group. Since we are concerned with the raw signal data, basecalled data is not in the scope of this 
document. 

Root_group 

Root group has two attributes file_type (note that file_type is only available in multi-fast5 from version 2.2 
onwards) and file_version. Note that we do not make any assumptions about file-structure based on FAST5 
version numbers, because we have observed some inconsistencies across different files of the same version, 
and we would discourage users from doing so. 

1. file_type 
Example value: multi-read 
Data type: String 

2. file_version 
Example value: 2.2 
Data type: String   

Read 

A read group has two attributes run_id and pore_type (note that pore_type is not available in multi-fast5 
v2.0). 

1. run_id 
 The value of this attribute is constant across all the read groups. 

Example value: fe697f519ab04ba540bc4fe93f7cbd86669f38ca 
Data type: String 

2. pore_type 
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In existing FAST5 versions, this value is empty. This attribute may be used in the future to 
distinguish different pore types within a single flow cell. 
Example value: <not set> 
Data type: String 

Raw 

Raw group contains one dataset and seven attributes. The dataset is the raw signal, which is a series of 16-
bit integers (HDF5 Datatype = H5T_STD_I16LE). These are the integer values directly coming from the data 
acquisition process (analog to digital converter). This raw signal can be converted into pico Ampere (pA) 
values using attributes available in the channel_id group (explained later). 

The seven attributes from the Raw group are listed below with a description of each attribute, example values 
and the data type. Understanding these descriptions require a brief understanding of an ONT flow cell. A flow 
cell has multiple channels allowing multiple DNA/RNA strands to be sequenced in parallel. For instance, a 
MinION flow cell has 512 channels and thus can sequence 512 strands in parallel. Each channel contains one 
or more wells3. For instance, a MinION flow cell has 4 wells per channel. The wells within a channel are 
connected to a multiplexer (MUX), a switch that controls which of the four wells in the channel is controlled 
and read out by the circuits. Please refer to reference [3] or [4] for more information about channels and 
multiplexers. 

Note that some of the information below is extracted from ONT document [1]. 

1. read_number 
A unique number within each channel counted upwards from zero [1]. Note that not all reads 
generated are “strand” reads, but only strand reads are written to the final fast5 file, so some 
read numbers may be absent. 
Example value: 17981 
Data type: 32-bit signed integer 

2. read_id 
A unique identifier for the read. This is a Universally unique identifier (UUID) version 4 and 
should be unique for any read from any device. 
Example value:  00592138-f120-4ab5-9916-c5567adb8e29 
Data type: String 

3. start_time 
The start time of the read. The unit for start_time is ‘number of signal samples’, so start_time 
has to be divided by sampling rate (Read_xxxx/channel_id/sampling_rate) to get the start 
time in seconds (i.e. the time since the run was started). 
Example value: 335845487 
Data type: 64-bit unsigned integer 

4. duration 
The duration of the read. The unit for duration is also ‘number of signal samples’.  
Example value: 1467 
Data type: 32-bit unsigned integer 

5. start_mux 

 
3 Each well should ideally contain one pore 
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The MUX setting4 for the channel when the read began. Due to timing issues this can 
sometimes reflect what the MUX was just before the read began; this will only matter for 
reads that start immediately after a MUX change.  
Example value: 4 
Data type: 8-bit unsigned integer 

6. median_before 
The estimated median current level immediately preceding the read. In most cases this can 
be used as an estimate of the open pore level5. 
Example value: 238.78225708007812 
Data type: 64-bit floating-point 

7. end_reason 
This is a new attribute in FAST5 v2.2 onwards. 
Example value: unblock_mux_change 
Data type: 8-bit enum 

ATTRIBUTE "end_reason" { 
         DATATYPE  H5T_ENUM { 
            H5T_STD_U8LE; 
            "unknown"       0; 
            "partial"       1; 
            "mux_change"    2; 
            "unblock_mux_change" 3; 
            "signal_positive"  4; 
            "signal_negative"  5; 
         } 

Channel_id 

This group has attributes that are relevant to the channel that sequenced a given read. The channel_id group 
has the following attributes. 

1. channel_number 
The channel number from which the read was acquired. 
Example value: 504 
Data type: String 

2. digitisation 
The digitisation is the number of quantisation levels in the Analog to Digital Converter (ADC). 
That is, if the ADC is 12 bit, digitisation is 4096 (2^12). 
Example value: 8192.0 
Data type: 64-bit floating-point 

3. offset 
The ADC offset error. This value is added when converting the signal to pico ampere. 
Example value: 10.0 
Data type: 64-bit floating-point 

4. range 
The full scale measurement range in pico amperes. 
Example value: 1441.389892578125 

 
4 out of the wells in the channel, which well the mux is set to sequence 
5 open-pore state is when there is no strand inside the pore 
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Data type: 64-bit floating-point 
5. sampling_rate 

Sampling frequency of the ADC, i.e., the number of data points collected per second (in 
Hertz). 
Example value: 4000 
Data type: 64-bit floating-point 

 
Of these attributes, digitisation, offset and range can be used to transform the raw signal in the Raw group 
(raw ADC values), to pico-ampere current values as follows: 
 
signal_in_pico_ampere = (raw_signal_value + offset) * range / digitisation 

Context_tags 

The context_tags group has global attributes that describe the sequencing run. The attributes under the 
context_tags group are listed below with short descriptions. The data type of the value of all the attributes 
listed under context_tags group is String. 

1. barcoding_enabled 
 Indicates if barcode demultiplexing is enabled during live basecalling 

Example value: 0 
2. experiment_duration_set 

Indicates the duration of the experiment selected when starting the sequencing run (in 
minutes) 
Example value: 4320 

3. experiment_type 
Indicates the type of the experiment, for instance, genomic_dna or rna. 
Example value: genomic_dna 

4. local_basecalling 
Indicates if live base calling is enabled or not (set to 1 or 0). 
Example value: 1 

5. package 
This attribute relates to the Bream package 
[https://github.com/nanoporetech/minknow_lims_interface] 
Example value: bream4 

6. Package_version 
Example value: 6.0.7 

7. sample_frequency 
Typically the same as the sampling_frequency in the channel_id group 
Example value: 4000 

8. sequencing_kit 
The sequencing kit selected by the user in the GUI, for instance, sqk-lsk109 or sqk-rna002. 
[https://store.nanoporetech.com/sample-prep.html]  
Example value: sqk-lsk109 
 

There can be additional attributes such as basecall_config_filename, depending whether live basecalling was 
turned on/off when the sequencing run was started. 
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Tracking_id 

The tracking_id group has global attributes relevant to the sequencing run and the sequencing device. These 
are mostly for internal use by ONT, who have assisted us in providing the definitions below. The data type of 
the value of all the attributes listed under tracking_id group is String. 

1. asic_id 
Application Specific Integrated Circuit identifier (ASIC) of the flow cell (unique number of the 
chip). Enables tracking of batches of chips. 
Example value: 213553007 

2. asic_id_eeprom 
Identifier of the ASIC’s electrically erasable programmable read-only memory (EEPROM) of 
the flow cell. 
Example value: 5309577 

3. asic_temp 
The temperature in degrees celsius of the ASIC chip at the start of the sequencing run. 
Example value: 28.867193 

4. asic_version 
 The version of ASIC being used. 

Example value: IA02D 
5. auto_update 

Whether auto update in Minknow is enabled or not. 
Example value: 0 

6. auto_update_source 
The link to the Minknow update source. 
Example value: https://mirror.oxfordnanoportal.com/software/MinKNOW/ 

7. bream_is_standard 
Bream is one of the software for controlling sequencing. 
Example value: 0 

8. configuration_version 
 The version of the configuration system in MinKNOW including the experiment scripts. 

Example value: 4.0.13 
9. device_id 

The serial ID of the MinION or device position for GridION/PromethION. 
Device position on GridION/PromethION refers to the ID of the bay (slot where the flowcell 
is put) on the device. 
Example value: X2 

10. device_type 
The device type, that is whether MinION, PromethION or GridION. 
Example value: gridion 

11. distribution_status 
 Stable vs dev/alpha/beta status. 

Example value: stable 
12. distribution_version 

 MinKNOW version. 
Example value: 20.06.9 

13. exp_script_name 
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The name of the experiment script run along with optional parameters passed to it, based 
on what kits are selected in MinKNOW for sequencing. 
Example value: sequencing/sequencing_MIN106_DNA:FLO-MIN106:SQK-LSK109 

14. exp_script_purpose 
The ‘purpose’ of the experiment script. For example, whether the experiment was a real 
sequencing run or a simulation playback. 

 Example value: sequencing_run 
15. exp_start_time 

 Start time of sequencing run in ISO 8601 standard. 
 Example value: 2020-09-08T01:23:21Z 

16. flow_cell_id 
 Unique ID for the flowcell, used by ONT to track flowcell metrics and warranty. 

Example value: FAN43349 
17. flow_cell_product_code 

The type of flowcell (product code of the flowcell and pore type). These will be different 
based on R9.4.1, R10.3, R9.5, PromethION, etc. 

 Example value: FLO-MIN106 
18. guppy_version 

Guppy version being used by MinKNOW. 
 Example value: 4.0.11+f1071ce 

19. heatsink_temp 
The temperature (in degrees celsius) of the heat sink on the ASIC at the start of the 
sequencing run. 

 Example value: 33.996094 
20. hostname 

 The hostname of the computer/machine doing the sequencing run. 
 Example value: GXB02243 

21. installation_type 
This is the MinKNOW installation type. 

 Example value: nc 
22. local_firmware_file 

 Example value: 1 
23. operating_system 

The operating system and version of the computer performing the sequencing run. 
 Example value: ubuntu 16.04 

24. protocol_group_id 
This is the unique ID given to the group of acquisition periods during a run, denoted by 
run_id. Multiple acquisition periods can occur during a single “run”, depending on the 
protocol.  

 Example value: GLFN180082 
25. protocol_run_id 

This is a unique identifier for the experiment GROUP (just in case the name given by the user 
is not unique). This is the same for each run of the same experimental group. 

 Example value: f2c69573-5fef-43b8-8d81-9cb20634aa7c 
26. protocol_start_time 

 The start time of the data acquisition periods for a protocol_group_id. Appeared in FAST5 
2.3. 
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Example value: 2021-08-26T15:34:52.186021+10:00 
27. protocols_version 

Allows MinKNOW to track various protocols for barcoding, kits, etc. 
 Example value: 6.0.7 

28. run_id 
The unique run ID which will be different for each run (data acquisition period), even in the 
same experiment group. Whenever MINKNOW starts an experiment script for data 
acquisition, a new run_id is generated. 

 Example value: 07770780274b0e3703f00d969291b1a37a5a6be1 
29. sample_id 

Sample ID is the name given by the user for the sample.  
  Example value: NA12878 

30. usb_config 
Information about the connection between the flowcell and the computer. 

  Example value: GridX5_fx3_1.1.3_ONT#MinION_fpga_1.1.1#bulk#Auto 
31. version 

MinKNOW version. 
 Example value: 4.0.3 

Note that the above list is not an exhaustive list. For instance, FAST5 files generated on the PromethION have 
additional attributes such as hublett_board_id and satellite_firmware_version. 

FAST5 VERSIONS & THEIR ATTRIBUTES 

The following table shows the availability (and unavailability) of attributes in un-basecalled multi-FAST5 files 
for different file versions. 

Grey cells = attribute available. 

Group Attribute name V2.0 V2.2 v2.3 

/ file_type  
  

 
file_version 

   

/read run_id 
   

 
pore_type  

  

/read/Raw start_time 
   

 
duration 

   

 
read_number 

   

 
start_mux 

   

 
read_id 

   

 
median_before 

   

 
end_reason  

  

/read/channel_id digitisation 
   

 
offset 
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range 

   

 
sampling_rate 

   

 
channel_number 

   

/read/context_tags barcoding_enabled 
   

 
experiment_duration_set 

   

 
experiment_type 

   

 
local_basecalling 

   

 
package 

   

 
package_version 

   

 sample_frequency    

 sequencing_kit    

 experiment_kit    

 filename    

 user_filename_input    

/read/tracking_id asic_id    

 asic_id_eeprom    

 asic_temp    

 asic_version    

 auto_update    

 auto_update_source    

 bream_core_version    

 bream_is_standard    

 bream_ont_version    

 bream_prod_version    

 bream_rnd_version    

 configuration_version    

 device_id    

 device_type    

 distribution_status    

 distribution_version    

 exp_script_name    

 exp_script_purpose    

 exp_start_time    

 flow_cell_id    

 flow_cell_product_code    
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 guppy_version    

 heatsink_temp    

 host_product_code    

 host_product_serial_number    

 hostname    

 installation_type    

 local_firmware_file    

 operating_system    

 protocol_group_id    

 protocol_run_id    

 protocol_start_time    

 protocols_version    

 run_id    

 sample_id    

 usb_config    

 version    

 

CONSTANT & VARIABLE ATTRIBUTES 

Many FAST5 attributes are identical amongst all the reads within a single sequencing run (within multi-FAST5 
files as well as amongst different multi-FAST5 files). For example, all reads from a given experiment will have 
the same run_id. Some attributes are variable between different reads, even within a single multi-FAST5. For 
example, each read has a different read_id. All the attributes in contex_tags and tracking_id are constant 
across all reads in a single sequencing run, whereas most of the attributes in Raw and channel_id are variable 
between reads (with a few exceptions). 

The variable attributes amongst all groups (except the Analyses group) are: 
● duration 

● end_reason (not in version 0.6 but in 2.2) 

● median_before 

● read_id 

● read_number 

● start_mux 

● start_time 

● channel_number 

● offset 

Note that the dataset “Signal” obviously has variable data. All the other attributes are contant. 
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ADVANCED INFORMATION 

Symbolic links 

For a given FAST5 file, the values of the attributes belonging to the two groups, context_tags and tracking_id 
are the same for all the reads in that FAST5 file. Hence only the first read_xxxx group has the actual attributes. 
The rest of the read_xxxx groups maintain symbolic links [2] to the first read_xxxx group. One can observe 
the linking structure of a FAST5 file using a utility program called h5dump developed by the HDF5 group. 

The following is an example output for a FAST5 file where read_000200a4* is the first read group. As listed 
below the rest of the read groups’ context_tags and tracking _id attributes maintain links (symbolic links) to 
the context_tags and tracking_id attributes of the first read group respectively. This observation was valid 
for all the FAST5 files we have examined. 

 

   

ONT h5 validator 

Ont_h5_validator is a tool developed by ONT to check if a given FAST5 file complies with the FAST5 schema. 
This tool only considers a subset of the complete FAST5 schema to validate a file. 

Single-FAST5 format fields 

The groups, attributes and some example values for a single-FAST5 file are provided below for the sake of 
completeness, despite no longer being in use. 
 

PreviousReadInfo  
        previous_read_id = cf435984-627d-450d-a81d-2a55c6060c80 
        previous_read_number = 80 

Read 
        duration = 30695 
        median_before = 206.2032470703125 
        read_id = b3d473e9-34f0-4ad6-a030-61ba6ab458bc 
        read_number = 99 
        start_mux = 4 
        start_time = 318648 

channel_id 
        channel_number = 707 
        digitisation = 2048.0 
        offset = -196.0 
        range = 748.5801660113588 
        sampling_rate = 4000.0 

context_tags 

GROUP "context_tags" { 
      HARDLINK "/read_000200a4-0347-4a49-b800-
37ad7b4287c9/context_tags" 
   } 
  GROUP "tracking_id" { 
      HARDLINK "/read_000200a4-0347-4a49-b800-
37ad7b4287c9/tracking_id" 
   } 
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        experiment_duration_set = 3840 
        experiment_type = genomic_dna 
        fast5_output_fastq_in_hdf = 1 
        fast5_raw = 1 
        fast5_reads_per_folder = 4000 
        fastq_enabled = 1 
        fastq_reads_per_file = 4000 
        filename = pct0028_20181029_0004a30b00232bec_1_e11_h11_sequencing_run_lxbab132606_84140 
        flowcell_type = flo-pro002 
        kit_classification = none 
        local_basecalling = 1 
        local_bc_comp_model =  
        local_bc_temp_model = template_r9.4_450bps_5mer_raw.jsn 
        sample_frequency = 4000 
        sequencing_kit = sqk-lsk109 
        user_filename_input = lxbab132606 

tracking_id 
        asic_id = 0004A30B00232BEC 
        asic_id_eeprom = 0004A30B00232BEC 
        asic_temp = 36.990513 
        asic_version = Unknown 
        auto_update = 0 
        auto_update_source = https://mirror.oxfordnanoportal.com/software/MinKNOW/ 
        bream_is_standard = 0 
        device_id = 1-E11-H11 
        device_type = promethion 
        exp_script_name = 59dfa94107ee2b6c0f4be0822482e7da35b4116a-da65898430ab8c4bfe54ba7064f0301390b76211 
        exp_script_purpose = sequencing_run 
        exp_start_time = 2018-10-29T01:40:23Z 
        flow_cell_id = PAD11989 
        heatsink_temp = 41.996017 
        hostname = PCT0028 
        hublett_board_id = 013220e36be4c748 
        hublett_firmware_version = 2.0.5 
        installation_type = nc 
        ip_address =  
        local_firmware_file = 1 
        mac_address =  
        operating_system = ubuntu 16.04 
        protocol_run_id = e3b445eb-5626-48ef-acc2-b28bcc611009 
        protocols_version = 0.0.0.0 
        run_id = 855cdb4b269484b72699b681e539e090c4a50bbb 
        sample_id = LXBAB132606 
        satellite_board_id = 0000000000000000 
        satellite_firmware_version = 2.0.4 
        usb_config = firm_1.2.3_ware#rbt_4.5.6_rbt#ctrl#USB3 
        version = 1.14.2 
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Supplementary Note 2. An inherent limitation in FAST5 files 
prevents efficient parallel analysis. 

PREAMBLE 
High Performance Computing (HPC) systems offer significant computational power through many-core CPUs 
that can be utilised in parallel. Moreover, HPC systems have Redundant Arrays of Independent Disks (RAID) 
storage composed of many disks for higher I/O throughput. Multi-threaded analysis on HPC systems is now 
standard practice in genomics, enabling efficient analysis of large DNA sequencing datasets. 

In our experience, the analysis of nanopore signal data (FAST5 files) is generally slow, even on powerful HPC 
systems. To understand why, we undertook a detailed investigation of a typical signal-level ONT analysis on 
a typical HPC system. We selected DNA methylation (5mC) profiling with the popular software Nanopolish 
[1] as our example use-case to assess computational performance and identify potential bottlenecks. 

APPROACH 
We executed the call-methylation tool within the Nanopolish toolkit on a downsampled ONT human genome 
sequencing dataset of 500 million reads (see Supplementary Table 1). We used a restructured version of the 
Nanopolish software (f5c) that allowed us to record the wall-clock time spent on I/O operations and data 
processing. This enables the time consumed by individual components of the analysis (FAST5 files access, 
FASTA file access, BAM file access & data processing) to be monitored separately. The experiment was run 
on an HPC system 12 × 10TB HDD drives with RAID6 configuration (Supplementary Table 2), using either 4, 
8, 16, 24 or 32 CPU threads. 

AN I/O BOTTLENECK LIMITS PERFORMANCE  
We observed a relatively modest improvement in the overall execution time with increasing numbers of CPU 
threads and almost no improvement beyond 16 threads (Extended Data Fig.1a). While we observed a linear 
increase in the rate of data processing with additional CPU threads, there was no increase in the rate of FAST5 
data access and, hence, FAST5 data access came to represent an increasingly large fraction of the total 
execution time (Extended Data Fig.1a,b). We observed a steep decline in CPU utilisation with increasing 
numbers of threads, dropping to just 18% utilisation at 32 threads (Extended Data Fig.1c). Likewise, we found 
that core-hours (which should be constant in an ideal scenario; see definition under Methods) increased with 
additional threads (Extended Data Fig.1d). 

These results clearly demonstrate that additional CPU threads are not efficiently utilised by Nanopolish/f5c 
to improve the overall execution time. There can be two possible explanations for the inability of a tool to 
efficiently utilise parallel resources: (i) a bottleneck in data processing; and (ii) a bottleneck in Input/Output 
(I/O). Our observations strongly suggest that an I/O bottleneck is the primary reason for the under-utilisation 
during methylation calling. 

UNDERSTANDING THE BOTTLENECK 
We deployed performance monitoring and profiling tools during the above experiment to elucidate the 
causes of inefficient resource-utilisation and performance. 

Hypothesis-1: The performance of the software tool is bounded by file I/O. 
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We observed through the htop utility in Linux that the majority of Nanopolish/f5c threads were in the ‘D’ 
state during the experiment. The ‘D’ state is defined as the ‘state of the process for disk sleep 
(uninterruptible)’. This suggests that the software is bounded by file I/O. 

Hypothesis-2: The file I/O bottleneck is caused by the HDF5 library and not by the limitation of physical disks. 

We observed disk usage statistics using the iostat utility and found that the disk system was not fully utilised 
during the experiment (i.e., the observed number of disk reads per second was around 100 Input/output 
operations per second (IOPS)), while the particular disk system could handle more than 1000 IOPS). This 
implies that the I/O bottleneck is not due to the limitation of physical disks to serve data fast enough to 
saturate the processor. 

To investigate further, we profiled Nanopolish/f5c with Intel Vtune under concurrency profiling. It reveals 
that the majority of the ‘wait time’ is due to a conditional variable (synchronisation primitive) in the 
underlying HDF5 library that is used to access FAST5 files. Closer inspection of the HDF5 library revealed that 
the thread-safe version of the HDF5 library serialises the calls for disk read requests. Thus, we reasoned that 
CPU under-utilisation is caused by the disk requests being serialised by the HDF5 library, consequently 
causing a bottleneck that limits the utility of a multi-disk RAID system. 

A HDF5 LIBRARY LIMITATION PREVENTS PARALLEL ACCESS 
The HDF5 library required to read and write FAST5 files uses synchronous I/O calls and even the latest HDF5 
implementation (HDF5-1.10) does not support asynchronous I/O6. This, by itself, is not an issue as multiple 
synchronous I/O operations can be performed in parallel using multiple I/O threads to exploit the high 
throughput of RAID systems (Extended Data Fig.1e; upper). 

However, the HDF group (that maintains the HDF5 library) mentions that the thread-safe version of the HDF5 
library is not thread efficient and that it effectively serialises the calls for disk read requests [2]. The global 
lock in the thread safe version of the HDF5 library creates this limitation, as explained in the following extract 
from the HDF5 documentation: 

“Users are often surprised to learn that (1) concurrent access to different datasets in a single HDF5 file and (2) concurrent 
access to different HDF5 files both require a thread-safe version of the HDF5 library. Although each thread in these 
examples is accessing different data, the HDF5 library modifies global data structures that are independent of a 
particular HDF5 dataset or HDF5 file. HDF5 relies on a semaphore around the library API calls in the thread-safe version 
of the library to protect the data structure from corruption by simultaneous manipulation from different threads. 
Examples of HDF5 library global data structures that must be protected are the freespace manager and open file lists.” 

Thus, in spite of having multiple I/O threads, I/O requests for HDF5 files have to go through the HDF5 library 
(Extended Data Fig.1e; lower). In a scenario where multiple I/O threads are requesting I/O from the HDF5 
library in parallel, the lock inside the HDF5 libraries serialises the parallel requests, effectively issuing only 
one request at a time to the operating system disk request queue. 

A MORE DETAILED EXPLANATION 
Extended Data Fig.1e (upper) illustrates how multiple I/O threads can be used to perform parallel disk 
accesses using synchronous I/O. Suppose the disk system has K disks, up to K requests may be served 
simultaneously depending on the RAID level; i.e., K simultaneous parallel reads are possible on a RAID 0 

 
6 In synchronous I/O calls, the OS, upon receiving the call, puts the user-space thread to sleep and the thread can no longer submit I/O 
requests until the disk reading is completed and woken by the OS. Conversely, asynchronous I/O system calls return immediately 
without the thread being put to sleep and the thread can continue to submit another asynchronous request. 
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system with K disks. Let t be the average disk request service time (from the time of the system call to when 
the thread is woken up). 

For a program that launches K I/O threads and if the disk controller can serve K requests in parallel, the total 
time for n disk reads is 𝑇′	 = 	𝑡	 ×	 !

"
. 

However, in spite of having multiple I/O threads, I/O requests for HDF5 files have to go through the HDF5 
library. Extended Data Fig.1e (lower) illustrates this, where K I/O threads are requesting I/O from the HDF5 
library in parallel. However, the lock inside the HDF5 serialises the parallel requests, effectively issuing only 
one request at a time to the operating system disk request queue. The operating system will put the thread 
to sleep and this is equivalent to a single I/O thread. Thus, the total time spent on disk accesses T will be 𝑇	 =
	𝑡	 × 𝑛, and essentially, the high throughput capability of multiple disks in a RAID configuration is under-
utilised. 

POSSIBLE WORKAROUNDS 

We explored several possible approaches to circumvent the FAST5 bottleneck and these are articulated 
below. However, due to limitations in each of these approaches we decided instead to create an alternative 
file format that is not dependent on the HDF5 library. 

Fixing HDF5 Library 

One possible solution to the limitation articulated above is to re-engineer the HDF5 library to be thread 
efficient. However, the HDF5 library is a complicated library with a large code base of >300,000 lines of C 
code and such a fix would need to be carried out by the HDF Group. The HDF Group mentions that the future 
plan to implement efficient multi-threaded access is currently hindered by inadequate resources [2]. 
Therefore, such a fix is unlikely to happen in the near future. There is no other alternate library to read HDF5 
files, including FAST5 files [3, 4]. 

Using a process pool 

Multiple threads in a single process share the same address space and thus the lock in the HDF5 library affects 
multiple threads. Multiple threads are typically used to run sub-tasks in parallel while conveniently sharing 
data amongst the threads. In contrast, multiple processes have their own independent address spaces and 
are typically used to run isolated tasks in parallel. The presence of independent address spaces in multiple 
processes can be exploited to circumvent the lock in the HDF5 library. 

A multi-process based solution is elaborated in Extended Data Fig.1f. Multi-threads in the single parent-
process are used for data processing and multiple child-processes for I/O. The parent-process performs data 
processing using multiple threads in parallel. Each child-process has its own instance of the HDF5 library, as 
a consequence of independent address spaces. Moreover, each child-process has only a single thread that 
requests I/O. Thus, a single instance of the HDF5 library gets only one request at a time. In effect, there are 
multiple instances of the HDF5 library that can submit multiple I/O requests in parallel to the operating 
system (as opposed to the situation in multi-threaded HDF5 case), thus benefiting from the high throughput 
offered by RAID configurations.  

Formally, if there are K processes and if the disk controller can serve K requests in parallel, the total time 
spent on I/O operations will be  𝑇′	 = 	𝑡	 × !

"
. 

Multiple processes are spawned at the beginning of the program using the fork system call. These forked 
child-processes form a pool of processes that exist until the lifetime of the parent-process, solely performing 
I/O of FAST5 files. The data processing can be performed by multiple threads spawned by the parent-process 
as usual. The parent-process, when it requires to load signal data of N reads (FAST5 accesses), first splits the 
list of reads into K parts where K is the number of child-processes. Then, each part is assigned to a child-
process, which performs the assigned FAST5 accesses. When the data is loaded, the child-processes send this 
data to the parent-process. 
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Note 1: A fork-join model for multi-processes (as could be done for multi-threading) is unsuitable to be used 
instead of the process pool model presented above. Firstly, creating a process can be very expensive and 
could easily become the biggest bottleneck than the file reading itself. Secondly, forking in the middle of a 
program could double the memory usage and is usually problematic, and should be avoided where possible. 

Note 2: It is important to note that processes in an operating system are meant for isolation whereas threads 
are for sharing data. Inter-process communication requires system calls, while inter-thread communication 
involves sharing the same memory space. Further, spawning multiple processes is expensive and is not 
lightweight (unlike threads). Thus, using processes as a replacement to threads makes the code relatively 
complicated. 

In summary, a process pool approach, whilst technically viable, requires complicated re-engineering for every 
piece of software and is not a geralisable, long-term solution. 

Naive Approaches of Multi-processing 

Instead of using a process pool solely for FAST5 I/O and multi-threads for parallel data processing, developers 
may use multi-processes for both the I/O operations and parallel data processing. This would be easier than 
implementing a pool of processes, however, this is only suitable for perfectly parallel cases. This is the 
method we use in slow5tools for fast conversion from FAST5 to SLOW5. If the application needs to share data 
among multiple processing units, processes are unsuitable due to the complexity that arises when performing 
inter-process communication. 

Alternatively, the developer may let users manually split data and launch multiple processes. Unfortunately, 
this method exerts additional burden on the user, i.e., custom scripts must be written for data splitting, 
launching data processing and concatenating the result. Moreover, this is only suitable for perfectly parallel 
applications where data can be easily split. Also, an expensive HPC system with dozens of cores is superfluous 
as the user could use a cluster of low cost networked computers [5]. 

ALTERNATIVES TO FAST5 FORMAT 

Given the limitations to the FAST5 format highlighted above and the complexity of the ‘workaround’ 
solutions, we propose that a new file format is required. In the current article, we present ‘SLOW5’ format 
as our preferred solution. However other possible formats have been considered. These are discussed below. 

Storing nanopore signal data in CRAM format 

CRAM is a compressed columnar file format for storing biological sequences aligned to a reference sequence. 
CRAM was designed to be an efficient reference-based alternative to the SAM/BAM format. CRAM does not 
impose any rules about what data should or should not be preserved and CRAM has therefore been 
considered as a possible format for storing ONT signal data (https://github.com/EGA-archive/ont2cram). This 
seems appealing because CRAM is already an established format (for storing alignments) and is designed for 
efficient parallel access. However, implementation of efficient nanopore signal data storage faces several 
major technical hurdles: 

1. CRAM is a genome-aligned format and therefore not ideal for storing data without a reference genome. 
This applies to a large fraction (if not the majority) of nanopore data. Additionally, raw data cannot be directly 
written in CRAM format since this first requires base-calling and alignment to a reference genome. 

2. Within CRAM format, there is no way to efficiently access a particular record, given a read ID. CRAM 
indexing allows efficient queries by alignment coordinate, but not by read ID. 

3. Data duplication at secondary/supplementary alignments would most likely cause very large file sizes for 
large Eukaryotic genome samples stored in a hypothetical CRAM format. 

4. There is no way to store double precision floating point data in CRAM format. This data is required for 
lossless storage of nanopore data, so lossless data conversion would not be possible with ont2cram. 
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On the basis of these issues, we do not consider CRAM format to be a viable solution for storage of nanopore 
signal data. With no formal format specification and just a single pre-release version in 2019, it appears that 
the ont2cram project has since been abandoned. 

Storing nanopore signals in a generic database format 

Another proposed solution would be to retain FAST5 as the native format for ONT data generation and 
storage, whilst temporarily moving signal data into a database format during analysis. This seems appealing 
because it would take advantage of existing database formats like SQL or MongoDB. Just like HDF5, these 
formats can store any data in any structure, including nanopore signal data. However, a database of 
nanopore signal data would have a large storage footprint, be poorly compressible, highly coupled with the 
specific database management system and therefore not portable, and would fail to take advantage of the 
principles of temporal/spatial locality of data access that make domain-specific file formats highly efficient. 
Indeed, a generic database format is a potential solution for any data storage/access problem in computer 
science, but is rarely the most efficient solution. Domain-specific file formats (e.g. MP3, JPEG, PDF, DOCX, 
SAM, SLOW5), rather than generic database formats, are the norm in modern computer science. 
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Supplementary Note 3. SLOW5 specifications (version 0.2.0) 

 

PREAMBLE 
SLOW5 is a new file format encoding signal data from nanopore sequencing. SLOW5 was developed to 
overcome inherent limitations in the existing FAST5 (HDF5) data format that prevent efficient parallel analysis 
and cause many headaches for developers. 

SLOW5 refers to two file formats, namely SLOW5 ASCII and SLOW5 binary (called BLOW5). The extension for 
SLOW5 ASCII is .slow5 and for BLOW5 it is .blow5. For efficient data access and to minimise disk space, users 
are expected to use BLOW5. SLOW5 ASCII is the human readable format and should only be used to view the 
content. 

Random access to either SLOW5 ASCII or BLOW5 is supported using a binary index file. This is a separate file 
in the same directory as the SLOW5 ASCII or BLOW5 file. For SLOW5 ASCII, the index takes the extension 
.slow5.idx and for BLOW5 the index takes .blow5.idx. 

A SLOW5 file contains a header followed by the sequencing data. In datasets from Oxford Nanopore 
Technologies (ONT), the run_id is a unique identifier that distinguishes a sequencing run. We will refer to a 
sequencing run and its data as a read group. A SLOW5 file can store multiple read groups in a single file, 
allowing data from multiple sequencing runs to be stored in a single SLOW5 file, whilst retaining their 
individual metadata. 

Full specifications for current and previous versions of SLOW5 are available at: 
https://hasindu2008.github.io/slow5specs/ 

SLOW5 ASCII 
A SLOW5 ASCII file is a plain text file that uses the American Standard Code for Information Interchange 
(ASCII) encoding (locale: C/POSIX, code set: US-ASCII).  The file extension is .slow5. 

An example structure of a SLOW5 ASCII file with a single read group is provided in Table 1. An example 
structure of a SLOW5 ASCII with multiple read groups - i.e., multiple sequencing runs - is provided in Table 2. 
The column/row borders and cell colours are added to increase the readability. The actual format uses tabs 
(‘\t’) and newlines (‘\n’) as delimiters (IMPORTANT: ‘\r’ or “\r\n” are not allowed). The first set of lines is the 
SLOW5 header. The header lines start with ‘#’ or ‘@’. The remainder of the file encodes nanopore signal data 
in one read per line. 
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Table 1: Example of a SLOW5 ASCII file with a single read group. 

Blue = global header. Yellow = data header. White = data records. 

#slow5_version 1.0.0 

#num_read_groups 1 

@asic_id 0004A30B00232BEC 

@exp_start_time 2020-01-01T00:00:00Z 

@flow_cell_id FAH00000   

@run_id 855cdb 

…  … 

#char* uint32_t double double double double uint64_t int16_t* ... 

#read_id read_group digitisation offset range sampling_rate len_raw_signal raw_signal ... 

read0 0 8192 6 1467.6 4000 123456 498,492,... ... 

read1 0 8192 5 1467.6 4000 2000 491,491,... ... 

… … … … … … … … ... 

readN 0 8192 3 1467.6 4000 3000 400,400,... ... 

 
 

Table 2. Example of a SLOW5 ASCII file with multiple read groups. 

Blue = global header. Yellow = data header. White = data records. 

#slow5_version 1.0.0 

#num_read_groups 3 

@asic_id 0004A30B00232BEC 1004A30B00232BEC 2004A30B00232BEC 

@exp_start_time 2020-01-01T00:00:00Z 2020-01-01T00:00:00Z 2020-01-01T00:00:00Z 

@flow_cell_id FAH00000   FAH00001 FAH00002 

@run_id 855cdb 855cd1 855cdc 

…   …  … … 

#char* uint32_t double double double double uint64_t int16_t* ... 

#read_id read_group digitisation offset range sampling_rate len_raw_signal raw_signal ... 

read-0 1 8192 6 1467.6 4000 4000 498,492,... ...  

read-1 0 8192 5 1467.6 4000 2000 491,491,... ... 

… … … …  … … … … ... 

read-N 2 8192 3 1467.6 4000 3000 400,400,... ... 
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SLOW5 Header 
The SLOW5 header stores metadata regarding the experiment. Header lines start with either ‘#’ or ‘@’. The 
header contains two parts: the global header (blue fields in tables above) and the data header (yellow 
fields in tables above). 

Global header 

The lines starting with ‘#’ form the global header (blue fields above). 

The header lines are as follows: 

1. The first line of a SLOW5 ASCII file is a key-value pair that specifies the SLOW5 version. The key is 
separated from the value using a tab ‘\t’. 

2. The second line specifies the number of read groups in the file. Observe that in the single read group 
file example (Table 1), the value for num_read_groups is set to 1. In the second example with three 
read groups (Table 2) the value is set to 3. 

3. The last line of the header is always the field names for the subsequent per-read records. 

4. The second last line of the header specifies the data types of each field for the subsequent per-read 
records (i.e., for the fields named in the last line of the header). Further information about the fields 
is provided in the SLOW5 Data section below. 

Data header 

The header lines that start with ‘@’ form the data header (yellow fields above). These header lines contain 
ONT data attributes that are shared across multiple reads in a sequencing run (read group). For instance, the 
run_id and the flow_cell_id are common to all the reads in the read group and are therefore stored in the 
data header (Table 1). These data header lines should always lie after the first two mandatory global header 
lines and before the last two mandatory global header lines, as illustrated in Tables 1 & 2. 

For a SLOW5 file containing a single run_id, data header lines are key-value pairs delimited by a tab ‘\t’ (Table 
1). When there are multiple run_ids present, the key is followed by a series of values delimited by tabs ‘\t’ 
(Table 2). The first value is for the read group 0, the second value is for the read group 1, the third value is 
for the read group 2 and so on. 

If any attribute value is missing from a given read group a “.” is used. 

As indicated by the ‘…’ in Table 1 & 2 after the run_id row, many other data header lines may exist, encoding 
many attributes associated with a given nanopore sequencing experiment. 

The dataset headers are sorted in ascending order based on the native byte values (US-ASCII in C/POSIX 
locale) of the key. Using sorting, rather than a fixed order, ensures the SLOW5 file format can easily 
accommodate the addition or removal of attributes in the future. A list of possible data header attributes 
(not an exhaustive list) is provided in Table 3 below (note: we did not develop FAST5 files; many of the 
definitions are based on information in [1]). 
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Table 3. Common SLOW5 header attributes. 

Data header attribute key Description Example value 

asic_id Application Specific Integrated Circuit identifier (ASIC) of the flow cell 
(unique number of the chip), for tracking purposes. 

213553007 

asic_id_eeprom The identifier of the ASIC’s electrically erasable programmable read-
only memory (EEPROM) of the flow cell. 

5309577 

asic_temp The temperature in degrees celsius of the ASIC chip at the start of 
the sequencing run. 

28.867193 

asic_version The version of ASIC being used. IA02D 

auto_update Indicates whether auto-update in Minknow is enabled or not. 0 

auto_update_source The link to the Minknow update source. https://mirror.oxfordnanop
ortal.com/software/MinKN
OW/ 

barcoding_enabled Indicates whether barcode demultiplexing is enabled during live 
basecalling. 

0 

bream_is_standard Bream is one of the software for controlling sequencing. 0 

configuration_version The version of the configuration system in MinKNOW including the 
experiment scripts. 

4.0.13 

device_id The serial ID of the MinION or device position for 
GridION/PromethION. Device position on GridION/PromethION 
refers to the ID of the bay (slot where the flow-cell is put) on the 
device. 

X2 

device_type The device type (currently MinION, PromethION or GridION). gridion 

distribution_status Stable vs dev/alpha/beta status. stable 

distribution_version MinKNOW version. 20.06.9 

exp_script_name The name of the experiment script run along with optional 
parameters passed to it, based on what kits are selected in 
MinKNOW for sequencing. 

sequencing/sequencing_MI
N106_DNA:FLO-
MIN106:SQK-LSK109 

exp_script_purpose The ‘purpose’ of the experiment script. For example, whether the 
experiment was a real sequencing run or a simulation playback. 

sequencing_run 

exp_start_time Start time of sequencing run. 2020-09-08T01:23:21Z 

experiment_duration_set Indicates the duration of the experiment selected when starting the 
sequencing run (assumed to be  in minutes) 

4320 

experiment_type Indicates the type of the experiment, for instance, genomic_dna or 
rna. 

genomic_dna 

flow_cell_id Unique ID for the flow-cell, used by ONT to track flow-cell metrics 
and warranty. 

FAN43349 

flow_cell_product_code The type of flowcell (product code of the flowcell and pore type). 
These will be different based on R9.4.1, R10.3, R9.5, PromethION, 
etc. 

FLO-MIN106 

guppy_version Guppy version being used by MinKNOW. 4.0.11+f1071ce 

heatsink_temp The temperature (in degrees celsius) of the heat sink on the ASIC at 
the start of the sequencing run. 

33.996094 
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hostname The hostname of the computer/machine doing the sequencing run. GXB02243 

installation_type This is the MinKNOW install type.  nc 

local_basecalling Indicates if live base calling is enabled or not. 
 

1 

operating_system The operating system and the version of the computer performing 
the sequencing run. 

ubuntu 16.04 

package Relates to Bream 
[https://github.com/nanoporetech/minknow_lims_interface]. 

bream4 

protocol_group_id This is the unique ID given to the group of acquisition periods during 
a run, denoted by run_id. Multiple acquisition periods can occur 
during a single “run”, depending on the protocol. 

GLFN180082 

protocol_run_id This is a unique identifier for the experiment GROUP (just in case the 
name given by the user is not unique). This is the same for each run 
of the same experimental group. 

f2c69573-5fef-43b8-8d81-
9cb20634aa7c 

protocol_start_time The start time of the data acquisition periods for a 
protocol_group_id. Appeared in FAST5 2.3. 

2021-08-
26T15:34:52.186021+10:00 

protocols_version Allows MinKNOW to track various protocols for barcoding, kits, etc. 6.0.7 

run_id The unique run ID which will be different for each run (data 
acquisition period), even in the same experiment group. Whenever 
MINKNOW starts an experiment script for data acquisition, a new 
run_id is generated. 

07770780274b0e3703f00d9
69291b1a37a5a6be1 

sample_frequency Typically the same as the sampling_frequency in the channel_id 
group. 

4000 

sample_id Sample ID is the name given by the user for the sample.  NA12878 

sequencing_kit The sequencing kit used, for instance, sqk-lsk109 or sqk-rna002. 
[https://store.nanoporetech.com/sample-prep.html]  

sqk-lsk109 

usb_config Various information about the connection between the flow-cell and 
the computer. 

GridX5_fx3_1.1.3_ONT#Min
ION_fpga_1.1.1#bulk#Auto 

version MinKNOW version. 4.0.3 

 
NOTE: Many of the attributes in Table 3 are not used in a typical signal analysis experiment and many are 
also inconsistent between various FAST5 versions. Although they are unlikely to be used, these attributes are 
retained by default when converting from FAST5 to SLOW5 format (i.e. conversion is lossless by default). 
Note that the above list is not an exhaustive list. For instance, FAST5 files generated on the PromethION have 
additional attributes such as hublett_board_id and satellite_firmware_version. 
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SLOW5 Data 

After the SLOW5 header, the actual data is encoded (white fields in Tables 1 & 2, above). Each line contains 
information about a single read and we refer to this as a record. Each record is made up of several fields that 
are tab delimited. 

As mentioned earlier, the last header line specifies the name of each field. There are two types of fields: 

● Primary fields are mandatory and arranged in a strict order. There are 8 primary fields,  which are 
exemplified in Table 1 & 2 (from the read_id field to raw_signal field) 

● Auxiliary fields are optional and arranged in no strict order. There can be 0 or more auxiliary fields 
and these are denoted by the ‘…’ after the raw_signal field in Table 1 & 2. 

The second last header line specifies the data type of each primary & auxiliary field. For the primary fields 
the data types are always the same, whereas the auxiliary field types depend on the fields themselves. The 
supported data types in SLOW5 are: 

● 8-bit, 16-bit, 32-bit and 64-bit signed integers (int8_t, int16_t, int32_t, int64_t) and corresponding 
1D arrays (int8_t*, int16_t*, int32_t*, int64_t*) 

● 8-bit, 16-bit, 32-bit and 64-bit unsigned integers (uint8_t, uint16_t, uint32_t, uint64_t) and 
corresponding 1D arrays (uint8_t*, uint16_t*, uint32_t*, uint64_t*) 

● IEEE 754 32-bit and 64-bit precision floating point (float, double) and corresponding 1D arrays (float*, 
double*) 

● ASCII characters (char) and ASCII strings (char*). Note: Tabs (‘\t’ and newline characters ‘\n’ are not 
allowed in either) 

● 8-bit enumeration type (enum) that consists of integral constants. Enumerations must be declared 
with the enum keyword followed by the comma-separated integral constants inside curly braces. eg: 
enum{const1,const2,const3}. Note that the integral-constant names are restricted to alphanumeric 
characters plus underscores, similar to that in the C programming language. The values for the 
integral-constant are assigned based on the order they are defined, for instance, const1 = 0, const2 
= 1 and const3 = 2 in the above example. Note that enum in SLOW5 is restricted to 8-bit. 
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Primary fields 

The 8 primary data fields in SLOW5 format are summarised in Table 4 below. These fields are mandatory 
and must be arranged in the order that they appear in Table 4. 

Table 4. Primary data fields in SLOW5 format. 

Field name Data type Description Example value 

read_id char* A unique identifier for the read. This is a Universally unique identifier 
(UUID) version 4, and should be unique for any read from any device. 

00592138-f120-4ab5-
9916-c5567adb8e29 

read_group uint32_t Read group identifier. More information in the subsequent text. 0 

digitisation double The digitisation is the number of quantisation levels in the Analog to 
Digital Converter (ADC). That is, if the ADC is 12 bit, digitisation is 4096 
(212). 

8192.0 

offset double The ADC offset error. This value is added when converting the signal to 
pico ampere. 

10.0 

range double The full scale measurement range in pico amperes. 1441.389892578125 

sampling_rate double Sampling frequency of the ADC, i.e., the number of data points collected 
per second. 

4000 

len_raw_signal uint64_t The number of samples in the raw signal (length of the raw_signal vector 
below). 

59676 

raw_signal int16_t* The raw signal which are the direct acquisition values from the ADC and 
are comma separated. 

1039,588,588,593,586…. 

Of the 8 primary fields, read_group is the only field that does not appear in ONT’s FAST5 format but has been 
introduced in SLOW5. read_group identifiers allow reads from multiple sequencing runs to be stored in the 
same file. read_group is essentially an index (0-based index) that specifies where the data header values for 
a given read are to be found in the data header. For instance, in Table 2,  read0 has the read_group 1 which 
means that the second value of the three values for each header attribute contains information for that 
particular sequencing run (e.g. out of the three values for the flow_cell_id key, second one is FAH00001). 

In the SLOW5 header, the num_read_groups specify how many read groups are present. For instance, in 
Table 2, there are 3 samples in the file and thus num_read_groups is equal to 3. Note that the following 
should always be true:  0 <= read_group < num_read_groups. read_group is always 0 for a single sample file 
(as it is in Table 1). 

Datasets are separated into multiple read groups based on the run_id (which is a unique string for a 
sequencing run specified in the data header). The indexing order of the read groups (read_group) is 
determined by the order the FAST5 files are parsed during FAST5 to SLOW5 conversion. This read_group is 
an internal index used for enumerating. This index allows more efficient enumeration (less computation and 
saves disk space) than performing string comparisons if run_id string was stored in the data record for every 
read instead. 

Primary fields contain all the information required for a typical nanopore signal-level analysis. The raw signal 
can be easily converted to pico-ampere using the following equation: 

signal_in_pico_ampere = (raw_signal + offset) * range / digitisation 

Auxiliary fields 

SLOW5 files may contain 0 or more auxiliary data fields, some common examples of which are provided in 
Table 5 below. These fields are optional and not bound by any strict order. 
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Table 5. Common auxiliary data fields in SLOW5 format. 

Field name Data type Description Example value 

channel_number char* The channel number. A flow cell has multiple channels allowing multiple 
DNA/RNA strands to be sequenced in parallel. For instance, a MinION 
flow cell has 512 channels and thus can sequence 512 strands in parallel. 

 504 

median_before double The estimated median current level immediately preceding the read. In 
most cases this can be used as an estimate of the open pore level. The 
open-pore state is when there is no strand inside the pore. 

238.78225708007812 

read_number int32_t A unique number within each channel counted upwards from zero. Note 
that not all reads generated are “strand” reads, but only strand reads are 
written to the final fast5 file, so some read numbers may be absent. 

17981 

start_mux uint8_t The MUX setting for the channel when the read began. Each channel 
contains one or more wells. For instance, a MinION flow cell has 4 wells per 
channel. The wells within a channel are connected to a multiplexer (MUX), 
a switch that controls which of the four wells in the channel is controlled 
and read out for sequencing. 

4 

start_time uint64_t The start time of the read. The unit for start_time is ‘number of signal 
samples’, so start_time has to be divided by sampling rate (sampling_rate) 
to get the start time in seconds (i.e. the time since the run was started) 

335845487 

Auxiliary fields contain all per-read information from ONT FAST5 files that we do not consider primary data 
fields (i.e., attributes that are not commonly used in signal-level analysis). If a value for a particular auxiliary 
field is unavailable for a given read it is represented with a “.”. 

It is important to note that auxiliary fields can be in any order, meaning the user should not rely on their 
order and instead should enumerate based on the field names and data types specified in the header. Any 
future per-read attributes added to FAST5 by ONT will be included as auxiliary fields in SLOW5. If ONT drops 
any attribute from FAST5, it will also be dropped in SLOW5. 

The auxiliary fields are separated from each other and from the primary fields by using a tab ‘\t’ as a delimiter. 
The elements in a field of 1D array data type (except char* strings) are delimited by commas. Strings are 
stored as a series of characters, as usual, and the null terminating character is not stored. 
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BLOW5 
A SLOW5 binary file or a BLOW5 file is the binary counterpart to a SLOW5 ASCII file. The file extension is 
.blow5. In BLOW5 format all multi-byte numbers are stored in little-endian, regardless of the machine's 
endianness. 

A BLOW5 file can be either uncompressed or compressed. At present, three separate 
compression/decompression schemes have been implemented in slow5lib, namely: (i) Z-Library (zlib; also 
referred to as gzip or DEFLATE), which is an established library that is available by default on almost all 
systems; (ii) Zstandard (zstd), which is a recent, open source compression algorithm developed by Facebook; 
and (iii) StreamVByte (svb), which is a recent integer compression technique that uses Google's Group Varint 
approach). Zlib and zstd are used for compressing SLOW5 records (a record is the collection of all primary 
and auxiliary fields of a particular read), whereas svb is for compressing the raw signal field alone. Our 
implementation supports first compressing the raw signal using svb and then compressing the SLOW5 record 
(now with the raw signal svb compressed) using zlib or zstd, at the user’s discretion. Each read is 
compressed/decompressed independently from one another by using an individual compression stream for 
each read. Thus, multiple reads can be accessed and decompressed in parallel using multiple threads. 

The use of zstd on top of svb compression is equivalent to ONT’s custom ‘vbz’ scheme 
(https://github.com/nanoporetech/vbz_compression), which uses these two open source algorithms for 
FAST5 compression. We also note that slow5lib has been designed such that any other suitable compression 
scheme can be easily integrated if necessary, making it future proof. 

BLOW5 Header 

The fields of the BLOW5 header are displayed in Table 6 below. Note that despite being shown in a table for 
clarity, the fields in a BLOW5 file are stored serially in the exact order as they are in Table 6, without any tabs 
or newlines to separate the fields. The byte offset in the file (first column) and the size of the field in bytes 
(second column) are used to locate a particular field within a BLOW5 file.  

The first field, the magic number, is a 6 byte string “BLOW5\1” used as a signature to identify the file format. 
The next three fields are for storing the BLOW5 file version and the value here is the same as in the SLOW5 
ASCII counterpart. The 5th field indicates if the BLOW5 records  are compressed or not and the compression 
method used if compressed. The 6th field is the number of read groups in the file, which have the same value 
and meaning as in the SLOW5 ASCII counterpart (described above).  From SLOW5 v0.2.0 onwards, 7th field 
indicates if a special compression has been applied for the raw signal and the method used for that. Finally, 
49 bytes are reserved for future fields. These reserved bytes that are unused in this version must be initialised 
to zeros. 

Offset 64 contains an integer field that indicates the size of the upcoming variable-sized field, the SLOW5 
ASCII header. The next field is the SLOW5 ASCII header, which is the same as in a SLOW5 ASCII file, with the 
following exceptions: 

1. The first line of the SLOW5 header specifying the #slow5_version is removed as this is already stored at 
the beginning of the BLOW5 header; 

2. The second line of the SLOW5 header specifying the #num_read_groups is also removed as this is also 
stored at the beginning of the BLOW5 header; 
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Apart from these exceptions, the complete SLOW5 ASCII header is stored, including tabs, newlines and the 
starting characters “#” and “@”. Note that all header data values will be converted to ASCII strings, despite 
the data type for the corresponding fields in FAST5 files. 

Table 6. Structure of a BLOW5 file header. 
Offset size (bytes) Description data type Value 

00 6 Magic number char[6] “BLOW5\1” 

06 1 Major version number uint8_t 0 to 255 

07 1 Minor version number uint8_t 0 to 255 

08 1 Patch version number uint8_t 0 to 255 

09 1 Record compression method uint8_t 0 to 255 
(0 for none, 1 for 
zlib, 2 for zstd)7 

10 4 Number of read groups uint32_t 0 to 232-1 

14 1 Signal compression method (from v0.2.0 onwards) uint8_t 0 to 255 
(0 for none, 1 for 
svb-zd)8 

14 50 Reserved for future - - 

64 4 Size of the SLOW5 header (without null character) uint32_t 0 to 232-1 

68  The plain text header of the SLOW5  (null character not 
stored; #slow5_version and #num_read_groups are removed 
as they are already in the binary header) 

char[]  

BLOW5 Data 

The SLOW5 data records are serially stored in binary format with each record individually compressed using 
the record compression method specified in the header (data is not compressed if no compression is 
specified in the header, that is, if the record compression method is set to 0). From SLOW5 v.0.2.0 onwards, 
a special compression can be optionally applied to the raw signal field. If such special compression is applied 
and if so the compression method used is specified in the header (signal compression method). The record 
compression is still applied to the record (on top of the compressed signal now) if the record compression 
method in the header is set. 

Note that each record is individually compressed to allow efficient parallel access to different records 
simultaneously. 

IMPORTANT: Each BLOW5 record is preceded by the size of the upcoming BLOW5 record in bytes (the size 
of the compressed record if compressed), which is an 8-byte uint64_t type unsigned integer. Storing this size 
is useful for faster and easier indexing of a BLOW5. We will refer to this special field as “len_blow5_rec” from 
here onwards. 

The fields in an uncompressed BLOW5 record are displayed in Table 7 below. 

 
7 none means uncompressed binary. zlib stands for the z-library which is also referred to as gzip or 
DEFLATE. zstd stands for the z-standard. Note that more compressions can be added in future without 
changing the SLOW5 file version.   
8 none means uncompressed binary. svb-zd stands for StreamVByte [2] with zig-zag delta encoding. Note 
that more compressions can be added in future without changing the SLOW5 file version.   
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Table 7. Structure of a BLOW5 record. 

Size (bytes) Description Data type 

2 string length of the read ID (without null character) uint16_t 

<variable> - based on preceding value read ID (null character not stored) char* 

4 read group uint32_t 

8 digitisation double 

8 offset double 

8 range double 

8 sampling_rate double 

8 len_raw_signal uint64_t 

<variable> - based on preceding value raw_signal int16_t* 

 <auxiliary fields>  

The first field is a uint16_t integer that specifies the size of the upcoming read_id string. Then comes the 
eight primary data fields explained under the SLOW5 ASCII section (see above), but now stored in binary. 
Note that the raw_signal field, which was a comma separated list in SLOW5 ASCII, is now a series of int16_t 
integers (each 2 bytes in size) stored serially without commas. The size of the raw_signal field in bytes in 
Table 7 is determined by the product of the len_raw_signal and the size of int16_t, which is 2. 

The raw_signal field in a BLOW5 record is followed by the auxiliary fields, as described above. The fields are 
stored in the same order and datatypes as specified in the header. 

Primitive data types (int8_t, uint8_t, int16_t, uint16_t,  int32_t, uint32_t, int64_t, uint64_t,  float, double, 
char, enum) are stored such that: int8_t, uint8_t, char and enum taking 1 byte; int16_t and uint16_t taking 2 
bytes, int32_t, uint32_t and float taking 4 bytes; and, int64_t, uint64_t and double taking 8 bytes as shown 
in Table 8 below. Any missing data field (represented by a ‘.’ in SLOW5 ASCII) is represented in BLOW5 by 
using the value stated in column 3 in Table 8. This special value that represents a missing value cannot be 
used to represent the real value. 

Auxiliary fields of 1D array data types are stored with the length of the 1D array (the number of elements in 
the 1D array, not the size in bytes) in the form of an 8 byte unsigned integer (uint64_t) preceding the actual 
data in the array. The elements in 1D arrays are stored sequentially without any delimiting commas. The size 
of the array field in bytes is determined by the product of the length of the 1D array and the size of the 
corresponding primitive data type. A missing array field including for strings (“.” in SLOW5 ASCII) is 
represented by storing 0 as the length of the array. 
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Table 8. Primitive data types used in BLOW5 format. 

Data type size (bytes) Missing value representation 

int8_t 1 INT8_MAX = 2^7-1 

int16_t 2 INT16_MAX = 2^15-1 

int32_t 4 INT32_MAX = 2^31-1 

int64_t 8 INT64_MAX = 2^63-1 

uint8_t 1 UINT8_MAX = 2^8-1 

uint16_t 2 UINT16_MAX = 2^16-1 

uint32_t 4 UINT32_MAX = 2^32-1 

uint64_t 8 UINT64_MAX = 2^64-1 

float 4 generic NaN value returned by nanf(“”) 

double 8 generic NaN value returned by nan(“”) 

char 1 ‘\0’ 

enum 1 UINT8_MAX = 2^8-1 

BLOW5 Footer 

A BLOW file should always end with the end of file (EOF) marker “5WOLB”. This is useful for detecting file 
truncation. 

SLOW5 INDEX 
A SLOW5 index is a binary file that contains an index to facilitate random access to a SLOW5 ASCII or BLOW5 
file based on the read_id. The extension of an index for a SLOW5 ASCII file is .slow5.idx and for a BLOW5 file 
is .blow5.idx. A SLOW5 index always takes the same binary form as described below, irrespective of whether 
it is for a SLOW5 ASCII or BLOW5 file. 

SLOW5 Index Header 

Table 9. SLOW5 index header structure. 

Offset size (bytes) Description data type Value 

00 9 Magic number char[9] “SLOW5IDX\1” 

09 1 Major version number uint8_t 0-255 

10 1 Minor version number uint8_t 0-255 

11 1 Patch version number uint8_t 0-255 

12 52 Reserved for future - - 

 
Note: The SLOW5 index version is the same as that of the SLOW5 version in the corresponding SLOW5 file. 
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SLOW5 Index Data 

The SLOW5 index data records start from offset 64 of the file. The index should have a single record for every 
record in the corresponding SLOW5/BLOW5 file. An individual SLOW5 index record takes the following form: 

Table 10. SLOW5 index data structure. 

Size (bytes) Description Data type 

2 String length of the read ID (without null character) uint16_t 

<variable> - based on preceding value Read ID (null character not stored) char* 

8 For ASCII SLOW5: byte offset in the SLOW5 ASCII file that corresponds to 
the beginning of the data record. 
 
For BLOW5: byte offset in the BLOW5 file that corresponds to the 
beginning of the len_blow5_rec that precedes the data record. 

uint64_t 

8 For ASCII SLOW5: size of the SLOW5 ASCII data record in bytes. 
 
For BLOW5:  size of the BLOW5 data record in bytes (the size of the 
compressed record if compressed) + the size of the len_blow5_rec 
preceding the record (which is 8 as the datatype of len_blow5_rec is 
uint64_t).  

uint64_t 

SLOW5 Index Footer 

A SLOW5 index file should always end with the end of file marker “XDI5WOLS”.  This is useful in detecting 
file truncation. 
  



 

36 

RATIONALE BEHIND SLOW5 DESIGN DECISIONS 
In this section we provide the rationale behind certain design decisions and why these were preferred over 
other potential solutions. Please note that some of the following discussions are pretty technical and not for 
the faint-hearted. 
 

● Why does SLOW5 have two types of fields, primary and auxiliary?  
○ Primary fields are the essential elements of signal-based analysis. These essential elements 

are provided as primary fields for easy and quick accessibility.  
○ Auxiliary fields are very application-specific and not generally used in existing signal-based 

analyses. Keeping these fields separate prevents convoluting the primary fields. Also, 
auxiliary fields can be in any order and are optional. Therefore, the SLOW5 format will not 
break when ONT adds or removes a field, and users can optionally choose to discard the 
auxiliary fields during FAST5 to SLOW5 conversion, in order to reduce file size and complexity. 

 
● Why is SLOW5 one big file opposed to a number of small files? 

○ Modern file systems support bigger files. With disk sizes continually growing, this will be 
increasingly true in the future. 

○ Random accesses would require repeated expensive file open and close operations if 
multiple files are used (the default number of maximally open files in Linux is typically 1024). 

○ In the case of a user requiring to perform process-level parallelism on a per-file basis, they 
could use slow5tools split to quickly split the files.  

○ When archiving, users tend to tar the files into a single ball anyway if there were multiple 
files. So why not just create a single file that can be directly archived? 

○ Most bioinformatics users are familiar with working on a single large file for a given sample 
in FASTQ, BAM or VCF format, so we thought it would be good to follow this approach. 

 
● Why does SLOW5 support multiple sequencing runs in the same file? 

○ In nanopore sequencing experiments, it is quite common to run more than one flow cell on 
a given sample, or create a new run id when a flow cell is washed and reloaded during a run. 
Allowing data from multiple run_ids to be stored in a single SLOW5 file means developers do 
not have to deal with manually accepting multiple files when analysing data from more than 
one run. It is generally more convenient to have all the data in a single file. 
 

● Why are empty fields in SLOW5 ASCII represented by “.”? 
○ SLOW5 ASCII is only for human readability and having a “.” is easier to read than empty fields. 

This is also easier to parse when using tools like awk, sed and cut. Popular formats like SAM, 
BED and VCF use “.” for empty fields, so we chose to stick to this convention. 

○ If a single “.” is to become a valid field value (unlikely) in FAST5 which is not the case at the 
moment, we would introduce a workaround such as using “\.” or “..” in the future.   
 

● Why is there a version number for the slow5 index? 
○ To make it future proof. 
○ In the future, we can provide alternate btree based indexing for memory efficiency if 

required. 
 

● Why does BLOW5 use little endian storage? 
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○ All modern systems seem to use little endian. We are not aware of any big endian systems 
still in use. 
 

● Why is a tab used as the delimiter in SLOW5 ASCII? 
○ Tab separators are easy to parse with awk, sed, cut and other command line tools. This also 

mimics the convention used in SAM, VCF, BED and other genomics formats. 
 

● Why are # and @ used in the SLOW5 header? 
○ To distinguish the SLOW5 format related attributes (SLOW5 global header) from nanopore 

related attributes (SLOW5 data header) we use the two symbols # and @. Both of those 
characters are not supposed to be used in read identifiers and therefore there is no confusion 
with the data records. 

○ We considered ‘##’ for SLOW5 global header and a ‘#’ for the SLOW5 data header but we 
decided against this because if ONT introduces an attribute name that starts with a ‘#’, this 
would cause a lot of problems for SLOW5. 

 
● Why is native byte order sort used for the attribute names in the SLOW5 data header? 

○ There are many different data attributes and these are quite hard to keep track of because 
they differ between different FAST5 versions. Sorting these makes it easy for a human to 
quickly locate the information they are after. 

○ To prevent adhoc ordering which would make it difficult to parse. 
 

● Why doesn’t SLOW5 support the analysis group in FAST5 files? 
○ SLOW5 is meant for storing raw signal data. Storing analysis data (e.g., basecalled FASTQ 

records) would convolute the file format. We believe those post processing information 
should be a separate file, as is the case in other areas of bioinformatics where, for example, 
raw reads (FASTQ), alignments (BAM) and variants (VCF) are stored in separate files with 
specific formats. 
 

● Why is a SLOW5 index always in binary and no ASCII version? 
○ For fast loading and space saving. 
○ The index is primarily read by a computer and not particularly useful to a human. 

 
● Do any of the float/double fields in SLOW5 ASCII become lossy when they are converted to ASCII 

strings? 
○ Yes, some of them do (for example recurrent decimals). However, this is not an issue when 

FAST5 is directly converted to BLOW5 as floats/doubles are directly stored in binary. SLOW5 
ASCII is meant for viewing the binary counterpart BLOW5 by humans and not meant to be 
used for data archiving or processing. We recommend using the default conversion setup in 
slow5tools f2s that converts FAST5 files to zlib compressed BLOW5 files initially and the later 
use slow5tools view. 

○ In ASCII we could have stored the float/double fields in hexadecimal to make lossless, but 
then this is not as readable to humans as a natural representation like x.y 
 

● Do the values stored in the data header attributes become lossy as floats are also converted to string? 
○ Currently all the data header attributes in SLOW5 are stored as ASCII strings in FAST5 as well. 

So at the moment there is no loss. 
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● What happened to the duration attribute in FAST5? 

○ The duration attribute has a bad history. A few years ago this used to be the length of the 
signal in seconds and now this is used by ONT to represent the length of the signal in terms 
of number of samples. To avoid ambiguity we store the length of the signal in terms of the 
number of samples in the field len_raw_signal in SLOW5, which is equivalent to the value in 
the duration attribute in FAST5. 

○ If ONT decides to make the duration in seconds again, we can add this as an auxiliary field 
for SLOW5 while keeping the len_raw_signal intact in SLOW5 as the length of the signal  is 
essential in signal analysis. 
 

● What if the end of file markers “5WLOB” or “XDI5WOLS” occur in the middle of a file? 
○ This is possible to happen if the data by any chance matches this pattern in binary.  However, 

this is not an issue as the end of the file marker in BLOW5 is used to detect file truncation. 
That is, we check if the end of the file marker is present only if the EOF has been reached.  

○ The case that the data at the end of a truncation is translated to an end of marker is 
extremely rare. 

 
● Why are certain fields such as “digitisation” that seem to be identical across all reads in a given 

sequencing run present in data records, opposed to being header data attributes? 
○ These are essential values for converting the raw signal. So it is quite convenient to have 

them adjacent to the raw signal. Also in case something happens to the header, the records 
will still be usable. 

○ In the future, this digitisation attribute may no longer be the same across reads (as ONT 
stores this redundantly for each read unlike the header data attributes which are symbolic 
links). 
 

● Are options header lines that start with ‘#’ supported in SLOW5? 
○ No. Optional lines would complicate parsing and can include complicated situations where 

different users starting to use a header of their own and later causing confusions. If the 
requirement comes, we will introduce this in a future version. 
 

● What if the forbidden ‘\t’ and ‘\n’ in data header values and auxiliary fields ever should become a 
valid character in FAST5? 

○ At the moment they are forbidden to keep the file format simple. If this ever happens, in 
future versions we will allow ‘\\t’ or something. 

MISCELLANEOUS 
SLOW5 versioning 

While forward-compatibility cannot be ensured, backward compatibility will be maintained where possible. 

Versioning follows the major.minor.patch approach. 

● The patch version is incremented for backwards compatible bug fixes. 

● The minor version is incremented for backward compatible newer features and functions. 
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● The major version is incremented when potentially backward incompatible changes are introduced. 

There are two independent tracked versions: 

1. slow5 file and slow5 index file version 

2. slow5lib, pyslow5 and slow5tools  versions 

The slow5 file and slow5 index file version is independent from the slow5lib, pyslow5 and slow5tools  version 
and is used for checking compatibility.  

slow5lib, pyslow5 and slow5tools  versions are independently patched while maintaining compatibility, and 
are version synced during any stable release.  
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