Supplemental Information

Supplemental figure 1. S100A9 suppresses diabetic ketogenesis via hepatic TLR4

(A) Plasma insulin (n/group = 7-9) (p=0.0001), (B) glycemia (n/group = 7-13) (p=0.0001), (C) plasma β hydroxybutyrate levels (n/group = 7-10) (p=0.0001), (**D**) plasma triglycerides (TG) (n/group = 7-10) (p=0.0001, p=0.0006), and (E) Body weight (n/group = 7-13) of 12-week-old DT-untreated RIP-DTR; S100a9^{-/-} and RIP-DTR; S100a9^{+/+} mice and DT-treated RIP-DTR; S100a9^{-/-} and RIP-DTR; S100a9^{+/+} mice (p=0.0003) (pertinent to the DT-treated groups, samples were collected 7 days after the last DT injection). To avoid post-prandial confounding effects, data shown in A-D were collected from mice after 3 hours of fasting. (F) Schematic of the *Tlr4LoxTB* allele and PCR analysis of genomic DNA isolated from *Tlr4^{WT}* and *Tlr4^{LoxTB/+}* mice (G) Lipopolysaccharide (LPS, 1mg/kg body weight) was injected intraperitoneally to chow-fed mice. Blood was collected 1.5 h after LPS administration and plasma TNF-α levels were measured by Elabscience ELISA (n/group = 4-6) (p=0.001). (H) Representative images of immunofluorescence from liver of *Tlr4LoxTB* allele (*Tlr4^{KO}*) mice treated with $1x10^{9}$ PFU Adenovirus serotype 5 expressing Cre and GFP with a strong tropism for hepatic tissue. 10 days after infection, mice were sacrificed and livers fixed in 4% PFA and stained for detection of GFP (green), and DAPI (blue). 7 Evenly spaced sections were quantified for % GFP expressing cells. Scale bar= 200um (p=0.0001). (I) Representative images of immunofluorescence from samples as in (H) were stained to detect GFP and F480, and relative quantification of percentage of F480 positive cells that are positive also for GFP (n/group=3). Scale bar=50um. (J) Plasma NEFA levels of RIP-DTR;*Tlr4^{WT}*, RIP-DTR;*Tlr4^{WT}*;S100A9^{OE}, RIP-DTR;*Tlr4^{KO}*;S100A9^{OE}, RIP-DTR;*Tlr4^{Liver}*;S100A9^{OE} mice (n/group= 4-6) (p=0.053, p=0.0009, p=0.0025, p=0.0001) (K) Lipase activity in perigonadal fat of the aforementioned groups (n/group=3-4). Error bars represent SEM. Statistical analyses were done using oneway ANOVA (Tukey's post-hoc test) or 2 tailed student's t-test H, except for G, where mixed effects model was used. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Related to Figure 1.

Supplemental figure 2. S100A9 overexpression does not affect hepatic AMPK or glucagon receptor signaling. (A) RIP-DTR; *Tlr4^{WT}* mice were made insulin deficient (ID) with DT and underwent HTVI of either a plasmid encoding for mouse S100A9 (RIP-DTR; S100A9^{OE}) (n=6) or empty vector (n=6). 7 days into insulin deficiency liver lysates from these mice and healthy controls (n=5= were analyzed by for immunoblotting the indicated proteins and phosphorylation states. (B-C). Densitometry of immunoblot from (A) (p= 0.021 and p=0.03 for (B). p= 0,044 and p=0.055 for (C)). (D)Liver lysates from $Tlr4^{WT}$ healthy, ID or ID; S100A9^{OE} mice were analyzed for the indicated proteins and phosphorylation states (n/group= 5, 4 and 5) (p=0.0007, p=0.0001) (E). Liver lysates from *Tlr4^{KO}* healthy, ID or ID; S100A9^{OE} mice were analyzed for the indicated proteins and phosphorylation states (n/group= 3, 5 and 4) (p=0.007, p=0.004). Healthy $Tlr4^{WT}$ (n=4) and $Tlr4^{KO}$ mice (n=4) (F) and ID (G) $Tlr4^{WT}$ (n=8) and $Tlr4^{KO}$ (n=7) mice were analyzed by immunoblotting for the indicated proteins and phosphorylation states. (H) Densitometry of immunoblot from (A) (p=0.017, p=0.046). (I) Healthy, ID and S100A9^{OE} RIP-DTR; *Tlr4^{KO}* mouse liver lysate was analyzed by immunoblotting the indicated proteins and phosphorylation states (n/group=4, 5 and 6) (p=0.02). (J) Healthy, ID and S100A9^{OE} RIP-DTR; *Tlr4^{WT}* mouse liver lysate was analyzed by immunoblotting the indicated proteins and phosphorylation states (n/group=5, 5 and 6) (p=0.02, p=0.004). Correlation analysis of hepatic pS6/S6 levels with plasma β-hydroxybutyrate levels (K) and pAKT/AKT levels (L). (M) Plasma samples from healthy, ID and ID; S100A9 OE mice was analyzed for TNF α levels by ELISA (n/group= 3, 11 and 8) (p=0.0001). qRT-PCR analysis of *Tnfa* (n/group= 4, 4 and 6) (N) and *IK-\beta \alpha* (n/group= 3, 5 and 3) (p=0.04) (O) from livers of RIP-DTR healthy, ID or ID; S100A9^{OE} mice (p=0.028, 0.048). (P) Healthy RIP-DTR mice were treated with 10mg/kg i.p LPS and were sacrificed 1 and 3 hours after injection. Liver lysates were run alongside lysates from RIP-DTR healthy, ID or ID; S100A9 OE mice and analyzed for the indicated proteins (Q-R) Densitometry of blots from P (n/group=3, 3, 3, 3, 6 and 5) (p=0.022 (Q) (p=0.039 (R)). (S) Plasma Non-Esterified Fatty Acid (NEFA) levels of *Tlr4^{WT}* and *Tlr4^{KO}* RIP-DTR healthy, ID or ID; S100A9^{OE} mice (n/group = 3, 3, 10, 4, 11 and 4) (p=0.001, p=0.005, p=0.0001, p=0.003). (T) Tsc l^{fl/fl} mice were treated with 1x10^9 PFU of Adenovirus-- TBG-GFP. 10 days after injection mice were sacrificed and livers were fixed in 4% formaldehyde, embedded in paraffin and stained for GFP (green) HNF-4 α and F4-80⁺ (magenta). Scale bar=50µm. Error bars represent SEM, statistical analyses were done using one way or two-way ANOVA (Tukey's post-hoc test) except for C where FDR was used $p \le 0.05$. For I and J correlation analysis was performed using Pearson's r. Western blot images shown in D-F and Pare cropped images. Source data are provided as a source data file. Related to Figures 2 and 3.

Figure S3 Α

в

D

UV Absorption [mAU]

G

Supplemental Figure 3. Production of r-mS100A9 and r-hS100A9. (A) SDS page of r-mS100A9 and r-hS100A9. (B) Far UV circular dichroism spectra of r-hS100A9 (dark gray) and r-mS100A9 (dashed light gray) at roughly 5 μ M concentration. (C) Representative image of immunofluorescence in RAW264.7 cells expressing mCherry-TOSI treated incubated with 2 μ g/mL of r-mS100A9 or r-hS100A9 (or their heat inactivated (h.i) forms) or 1 μ g/mL of lipopolysaccharides (LPS, from *E.coli* O111:B4, Sigma) for 4 hours, with or without 20uM Rapamycin . Quantification of mCherry positive cells / total cells is also shown. Scale bar= 100 μ m. n= 1x10^{6} cells examined. (D) Analytical size-exclusion chromatography (SEC) using a Superose 6 Increase 3.2/300 column (Cytiva) of r-hS100A9 (dark gray) and of r-mS100A9 (dashed light gray), eluting at similar elution volumes of 1.78 mL and 1.83 mL, respectively. (E) Crystal structures of homodimeric S100A9 (cyan and gray). (F) Size-Exclusion-Chromatography Multi-Angle Light Scattering analysis of the r-hS100A9 showing a homodimer formation in solution. (G) Comparison of amino acid sequence between human and murine S100A9 (homology is highlighted in black). (H) THP-1 cells were incubated with 2 μ g/mL of r-mS100A9 (or their heat inactivated controls) or 1 μ g/mL of lipopolysaccharide (LPS, from *E.coli* O111:B4, Sigma) for 4 hours with or without 20uM Rapamycin and cell lysates were analyzed by western blot. 1x10^6 cells were analyzed per condition. Related to Figure 4.

Supplemental Figure 4. Safety of r-mS100A9 administration in-vivo. (A) Plasma insulin in DT treated mice at day 0 and 7 days after first DT injection (cohort indicated in Figure 5A) (n/group=6, 7) (p=0.001). (B) RIP-DTR mice were rendered insulin deficient with DT and at day 8 were given intraperitoneal injections of either saline (n= 6) or 10mg/kg rapamycin (n= 6) and plasma β -hydroxybutyrate was measured (p=0.015, p=0.014). Metabolic assessments were done 3 hours after injection and food removal. (C) qRT-PCR analysis of genes from livers of ID RIP-DTR saline, rapamycin (10mg/kg), r-mS100A9 (0.6mg/kg), and rapamycin+rmS100A9 treated mice (n/group= 5, 5, 9 and 8) (p=0.041, 0.049, 0.012). (**D**) Plasma insulin levels measured 0, 7 and 10 days after first DT injection (n/group=5, 6) (p=0.001). (E) Plasma NEFA levels (n/group=5, 6) and (F) adipose tissue lipase activity of r-mS100A9- and saline -injected control mice 7 days after first DT injection (n/group=5, 5). (G) Daily food intake, (H) body weight, (I) fat mass, and (J) lean mass of rmS100A9- and saline -injected controls injection (cohort indicated in Figure 5G) (n/group=5, 6). (K) Plasma pharmacokinetic after subcutaneous injection of r-hS100A9 (n/group=2). (L) Correlation analysis of plasma S100A9 with HbA1c and (M) Glycemia (mM) in human diabetic patient samples (n=23). (N) Plasma S100A9 levels in diabetic adult (n=8) and pediatric (n=13) human patient samples and healthy controls. (O) Plasma S100A9 levels in male (m) and female (f) control and diabetic samples (n/group=5, 14 5, 7). Error bars represent SEM, statistical analyses were done using two-tailed t-test, or one way or two-way ANOVA (Tukey's post-hoc test) except in C where FDR was used. $**p \le 0.01$ and $***p \le 0.001$ showing comparison to basal. For L and M correlation analysis was performed using Pearson's r. Related to Figures 6 and 7.

Supplementary Table 1: List of sequence of primers used for real-time–qPCR. List of antibodies used for Western Blotting and Immunohistochemistry procedures.

Gene	Forward	Reverse		
18s	ACCGCAGCTAGGAATAATGA	GCCTCAGTTCCGAAAACCA		
Tlr4	CGCTGCCACCAGTTACAGAT	AGGAACTACCTCTATGCAGGG		
Hmgcs2	ATACCACCAACGCCTGTTATGG	CAATGTCACCACAGACCACCAG		
Cpt1a	CCATGAAGCCCTCAAACAGATC	ATCACACCCACCACCACGATA		
Cpt1b	AGAAGTGTAGGACCAGCCCG	ACTTGCCTT TGTCCCGGAAAT		
Cpt2	GGATAAACAGAATAAGCACACC	GAAGGAACAAAGCGGATGAG		
Acadl	CTTGGGAAGAGCAAGCGTACT	CTGTTCTTTTGTGCCGTAATTCG		
Tscl	TCAAGCACCTCTTCTGCCTT	GTCACATGGCCTGGTTTCTT		
ΙΚ-βα	CGGAGGACGGAGACTCGTT	CCATGGTCAGCGGCTTCT		
ΤΝFα	CCACGCTCTTCTGTCTACTGAACT	GATGAGAGGGAGGCCATTTG		
	Antibody			
Name	Supplier	Reference		
Phospho-S6 (Ser240/244	Cell Signaling Technology	5364		
<u>\$6</u>	Cell Signaling Technology	54D2		
S100A9 (mouse)	Boster	PB9678		
S100A9 (human)	Boster	PB9676		
α-Tubulin	Proteintech	11224-1-AP		
Na-K-ATPase	Cell Signaling Technology	3010		
KDMI/LSD1	Abcam	ab140365		
GFP	Abcam	ab13970		
Phospho Acetyl CoA	Cell Signaling Technology	3661		
Carboxylase				
Acetyl CoA Carboxylase	Cell Signaling Technology	3662		
Phospho CREB	Cell Signaling Technology	9198		
CREB	Cell Signaling Technology	9104		
HNF-4α	Santa cruz	sc-374229		
F4-80 ⁺	Cell Signaling Technology	70076		
mCherry	Thermo Fisher	M11217		
Phospho 4E-BP1(Thr37/46)	Cell Signaling Technology	2855		
4E-BP1	Cell Signaling Technology	9644		

Supplementary Table 2: List of diabetic patient samples used for analysis.

Patient ID#	Clinical Presentation	HbA1c	Adult/Ped.	Age range (Years) $0 \le a \le 10$ $11 \le b \le 25$ $26 \le c \le 50$ d > 50	Sex	Sample Type	Glycemia (mM)	βHB (mM)	S100A9 (ng/mL)
1	DKA (not inaugural)	15,3	Adult	с	М	plasma	25	12,6	1,3
2	DKA inaugural diabetes	10,4	Adult	с	F	plasma	24,3	7,3	1,7
3	DKA inaugural diabetes	11,5	Adult	с	F	plasma	27	9,3	1,9
4	DKA inaugural diabetes	9	Adult	b	F	plasma	18	6,8	1,4
5	DKA inaugural diabetes	12,3	Pediatric	b	F	serum	28	1,7	1,0
6	DKA inaugural diabetes	12,5	Pediatric	b	F	plasma	26	11,9	1,4
7	DKA inaugural diabetes	12,4	Adult	с	F	plasma	23	8,7	4,8
8	DKA inaugural diabetes	12,4	Pediatric	b	М	plasma	18,5	10,2	2,7
9	DKA inaugural diabetes	12,4	Pediatric	а	F	plasma	17,9	8,4	6,8
10	DKA inaugural diabetes	13,7	Adult	с	М	plasma	15	8,3	1,5
11	DKA inaugural diabetes	11,7	Pediatric	b	F	plasma	16,5	5,2	1,0
12	DKA inaugural diabetes	21,5	Pediatric	b	М	serum	13	2,3	0,9
13	DKA inaugural diabetes	11,9	Pediatric	а	F	plasma	11,2	5,8	1,6
14	DKA inaugural diabetes	8,7	Pediatric	а	М	plasma	30	11,4	1,3
15*	DKA (not inaugural)	12,5	Adult	b	F	plasma	25	11,6	2,3
16	DKA inaugural diabetes	8,5	Pediatric	а	F	serum	29	11,1	0,9
17	DKA inaugural diabetes	10,6	Pediatric	а	М	serum	21	2,7	0,8
18	DKA inaugural diabetes	12,4	Pediatric	а	F	plasma	25,4	11,4	1,2
19	DKA inaugural diabetes	11,2	Pediatric	а	М	serum	27,7	2,7	1,0
20	DKA inaugural diabetes	9	Pediatric	а	М	plasma	15,8	2,0	1,1
21	DKA (not inaugural)	12,4	Adult	с	F	plasma	28,8	13,1	1,7
22	DKA inaugural diabetes	11,4	Pediatric	а	F	plasma	25	9,0	1,3
23	DKA (not inaugural)	10,4	Adult	d	М	serum	28,8	12,3	2,3

* Average value of 4 repeated samples taken

Supplementary	Table 3:	List of control	patient sample	es used for ana	lysis
---------------	----------	-----------------	----------------	-----------------	-------

Sex	Age range $(Years)$ $0 \le a \le 10$ $11 \le b \le 25$ $26 \le c \le 50$ $d > 50$	Source	plasma/serum	βHB (mM)	S100A9 (ng/mL)
М	d	CTS	plasma	0	0,2
F	с	CTS	plasma	0,07	0,5
М	d	CTS	plasma	0	1,1
F	d	CTS	plasma	0	0,2
F	b	CTS	plasma	0	0,4
М	с	CTS	plasma	0	0,5
F	d	CTS	plasma	0	2,7
F	с	CTS	plasma	0	2,1
М	с	CTS	plasma	0	1,5
М	d	CTS	plasma	0	0,9