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Supplementary Table 1. Sequences of the primer pairs used for quantitative real-time PCR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  

Gene name Forward (5’-3’) Reverse (5’-3’) 
Rplp0 gtgtttgacaacggcagcatt tctccacagacaatgccagga 

Aqp4 agtgacagagctgcggcaagg ttccagaaagcctgagtcca 

Cav1 gacgcgcacaccaaggagatt ctgaccgggttggttttgat 
Cd44 gctacagcaagaagggcgagt cctgatctccagtaggctgttc 
Cdh5 gcccagccctacgaacctaaa gggtgaagttgctgtcctcgt 
Cldn5 tgtcgtgcgtggtgcagagt tgctacccgtgccttaactgg 
Des accatcgcggctaagaacatc atcatctcctgcttggcttgg 
Glut1/Slc2a1 tcgtcgttggcatccttatt gtagcagggctgggatgaaga 
Kcnj8 gtccgctgtctgtgtgaccaa gaagatgcagcccaacatgac 
Mmp12 agcacatttcgcctctctgct gcttccaccagaagaaccagtc 
Ng2/Cspg4 gccttcacgatcaccatcctt gcccgaatcattgtctgttcc 
Occln gtgaatggcaagcgatcatacc tgcctgaagtcatccacactca 
Plvap cttcatcgccgctatcatcct ccttggagcacactgccttct 
Slc1a1 cattgctgttgactggctcct catccatctgctccagctcct 
Slc1a3 cggtcactgctgtcattgtgg ccatcttcccggatgccttac 

Tmem119 acccggtccttcacccagag gccgggagtgacacagagtag 



	
	

Supplementary Table 2. Modified neurological severity score (mNSS) criteria for neurological 

deficits in mice post ischemic stroke 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  

14-points modified Neurological Severity Score (mNSS) 

Motor tests (motor function scores) 

Flexion: raising the mouse by the tail (normal=0; maximum=3) 

1 Flexion of forelimb 

1 Flexion of hindlimb 

1 Head movement more than 10 ° to the vertical axis within 30 seconds 

 

Gait: placing the mouse on the floor (normal=0; maximum=3) 

0 Normal walk  

1 Inability to walk straight  

2 Circling towards the paretic side 

3 Falling towards the paretic side 

 

Beam balance tests (motor balance scores; normal=0; maximum=6) 

0 Balances with steady posture 

1 Grasps side of beam  

2 Hugs the beam and one limb falls down from the beam 

3 Hugs the beam and two limbs fall down from the beam, or spins on beam (>30 seconds) 

4 Attempts to balance on the beam but falls off (>20 seconds) 

5 Attempts to balance on the beam but falls off (>10 seconds) 

6 Falls off; no attempt to balance or hang on to the beam (<10 seconds)    

 

Sensory function tests (reflexes scores; normal=0; maximum=2) 

1 Absence of corneal reflex 

1 Absence of Pinna reflex 



	
	

Supplementary Table 3. Patient characteristics of stroke specimen used for osteopontin 

expression analysis 

 

 

 Case ID Age (years) Gender Localization of stroke lesion 

Stroke stage I 

(acute necrosis) 

1 58 female Occipital lobe, bilateral 

2 50 female Basal ganglia, right 

3 61 male Multilocular 

4 62 male Parietal/occipital lobe, left 

5 80 male Frontal/temporal lobe, right 

6 74 female Occipital lobe, right 

Stroke stage II 

(macrophage resorption) 

10 53 male Temporal lobe, left 

12 74 female Temporal lobe, left 

13 71 male Parietal lobe, right 

15 87 female Basal ganglia, right 

16 70 male Cerebellum, left 

17 79 male Occipital lobe, right 

Stroke stage III 

(pseudocystic cavity) 

20 76 male Cerebellum, left 

21 67 male Basal ganglia, left 

22 71 male Basal ganglia, left 

23 70 male Basal ganglia, left 

25 75 male Frontal/temporal lobe, left 

26 73 male Cerebellum, left 



	
	

Supplementary Table 4. Antibody details for immunohistochemical and immunofluorescence 

staining 

Antibody (species) Company Reference Dilution 
Albumin (Rb), poly Proteintech 16475-1-AP 1/400 

CD4 (Rb), mono Abcam ab183685 1/450 
CD8a (Rb), mono Cell Signaling 98941S 1/450 
CD13 (Gt), poly R&D systems AF2335 1/200 

CD31 (Ms), mono Dako Clone JC70A 1/200 
Collagen IV (Rb), poly BioRad 2150-1410 1/50 
Claudin-5 (Ms), mono ThermoFisher Scientific 352500 1/200 

α-dystroglycan (Ms), mono Novus biologicals NBP1-49634 1/50 
Fibrinogen (Rb), poly LSBio LS C150799 1/200 

GFAP (Gt), poly Abcam ab53554 1/250 
Iba1 (Ms), mono Merck SAB2702364 1/200 
Iba1 (Rb), poly Fujifilm Wako Chemicals 019-19741 1/100 

Osteopontin (Rb), poly Proteintech 22952-1-AP 1/500 
PDGFRβ (Gt), poly R&D systems AF385 1/50 

Podocalyxin (Rt), mono R&D systems MAB1556 1/200 
VE-Cadherin (Gt), poly R&D systems AF1002 1/100 

Dk anti-Gt 488, poly ThermoFisher Scientific SA5-10086 1/200 
Dk anti-Gt 650, poly ThermoFisher Scientific SA5-10089 1/200 
Dk anti-Rb  550, poly ThermoFisher Scientific SA5-10039 1/200 
Dk anti-Rb 488, poly ThermoFisher Scientific SA5-10038 1/200 
Dk anti-Ms 650, poly ThermoFisher Scientific SA5-10169 1/200 
Dk anti-Ms 550, poly ThermoFisher Scientific SA5-10167 1/200 
Dk anti-Rt 488, poly ThermoFisher Scientific SA5-10026 1/200 
Gt anti-Rt 568, poly ThermoFisher Scientific A11077 1/200 

Species: Rb, rabbit; Gt, goat; Ms, mouse; Rt, rat; Dk, donkey; mono, monoclonal; poly, polyclonal. 

 

 



	
	

Supplementary Table 5. Overview of methods available for isolation and analysis of NVU cells in health and CNS disease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EC, endothelial cells; PC, pericytes; AC, astrocytes; MG, microglia; OD, oligodendrocytes; N, neurons; LCM, Laser capture microdissection; IP, 

Immunoprecipitation; FACS, Fluorescence-activated cell sorting; TRAP, Translating ribosome affinity purification; * indicates that cells were 

isolated from cell-specific reporter mice. 

Cell type(s) isolated (species) Cell isolation 
technique Downstream application Condition 

EC (mouse) Gradient 
centrifugation 

Single-cell RNA-seq Cognitive impairment1 

EC (mouse, human) LCM  Single-cell RNA-seq Health2 
EC (transgenic mouse) FACS RNA-Seq Health and aging3 
EC (transgenic mouse) Ribosome IP RNA-seq Health4 
EC (transgenic mouse) FACS Single-cell RNA-seq Pericyte deficiency5 
EC (transgenic mouse) FACS RNA-seq Stroke, Multiple Sclerosis, Brain injury, 

seizure6 
EC (transgenic mouse) FACS RNA-seq, MethylC-seq, ATAC-seq Health7 
EC and PC (mouse) FACS RNA-seq Health8 
AC (mouse) FACS Single-cell RNA-seq Health9 
AC and MG (mouse) FACS RNA-seq Alzheimer’s disease10  
AC (transgenic mouse) LCM Single-cell RNA-seq Health11 
AC (transgenic mouse) TRAP RNA-seq Cognitive impairment12 
AC (transgenic mouse) Ribosome IP RNA-seq Cognitive impairment13 
MG (human) FACS Bulk/Single-cell RNA-seq Alzheimer’s disease14 
MG (human) FACS Single-cell RNA-seq Alzheimer’s disease15 
MG (mouse) FACS Single-cell RNA-seq Cognitive impairment, brain injury16 
Mural cells (transgenic mouse) FACS Single-cell RNA-seq Health17 
EC, mural cells, AC and MG*  FACS  Single-cell RNA-seq Health18 
EC, PC, MG, AC, OD and N*  FACS RNA-seq Health19 
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Supplementary Figure 1. Syngenic isolation of NVU cells from healthy adult mouse brain 

tissue. (a) Scheme depicting the sequence of mechanical tissue dissociation, filtration, cell type-

specific enzymatic digestions, multiple immunolabeling and fluorescence activated cell sorting 

(FACS) for syngenic isolation of NVU cells in wild-type healthy animals. (b) Gating strategy 

allowing the simultaneous separation and collection of endothelial cells (EC), pericytes (PC), 

astrocytes (AC) and microglia (MG) from healthy mouse cerebrum. First FSC/SSC plot shows 

1,000,000 events for stained and 100,000 for unstained samples. FSC, forward-scatter area; SSC, 

side-scatter area. Percentages refer to the proportion of cells in the previous parent gate. (c) 

Normalized cell numbers of endothelial cells, pericytes, astrocytes and microglia isolated by 

flow cytometry after tissue dissociation (n = 4, 2-3 mice/preparation). (d) Qualitative analysis of 

RNA from isolated endothelial cells, astrocytes, microglia and pericytes, (n = 2 independent 

isolations). (e-h) Purity of sorted cells was assessed by qRT-PCR, targeting cell type-specific 

markers for endothelial cells (e, Cdh5, Slc1a1), pericytes (f, Kcnj8), astrocytes (g, Aqp4, Slc1a3) 

and microglia (h, Tmem119). If no amplification was detected, the ΔCt value was set at 15 by 

default. * P < 0.05, ** P < 0.01, §§§/†††/$$$ P < 0.001, §§§§/††††/$$$$ P < 0.0001 and not 

significant (ns) P > 0.05 (n = 4) determined by one-way analysis of variance and followed by 

Dunnett’s multiple comparison test. *, †, § and $ indicate comparison to endothelial cells, 

pericytes, astrocytes and microglia, respectively. 
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Supplementary Figure 2. Syngenic isolation of NVU cells from the contralateral 

hemisphere of animals subjected to tMCAO. (a) Gating strategy allowing the simultaneous 

separation and collection of endothelial cells, pericytes, astrocytes and microglia from the 

contralateral hemisphere after transient middle cerebral artery occlusion (tMCAO). First 

FSC/SSC plot shows 1,000,000 events. (b) FACS dot plots showing unstained controls (mixed 

ipsilateral and contralateral hemispheres cell suspension) for the selected surface antigens. First 

FSC/SSC plot shows 100,000 events. FSC, forward-scatter area; SSC, side-scatter area. 

Percentages refer to the proportion of cells in the previous parent gate. 
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Supplementary Figure 3. Gene expression PCA plots of NVU cells isolated from murine 

stroke and contralateral hemisphere. (a-d) RNA-Sequencing principal component analysis 

(PCA) plot of NVU cell types isolated from the ischemic ipsilateral (stroke, light dots) and 

contralateral (control, dark dots) hemisphere (n = 6, 3-4 mice/preparation) including endothelial 

cells (a, red), pericytes (b, blue), astrocytes (c, green) and microglia (d, yellow). (e) Neuronal 

marker Dcx and Rbfox3/NeuN expression in endothelial cells, pericytes, astrocytes and microglia 

from the ischemic (stroke, s) and contralateral (c) hemispheres shows minimal neuronal 

contamination when isolating NVU cells using the EPAM-ia method. Dashed line represent the 

value of 10 reads, that is the threshold value to be considered as expressed. 
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Supplementary Figure 4. Histopathological scoring of OPN levels and expression in normal 

and ischemic brain tissue of stroke patients. (a) Representative hematoxylin and eosin (H&E) 

staining (upper panel) and immunohistochemistry staining for osteopontin (OPN, brown; lower 

panel) of human stroke samples at different stages (stage I-III) identifying the peri-infarct region 

(pi) and infarct core (c) and normal appearing tissue (NAT). Dotted lines illustrate the border 

between the peri-infarct region and infarct core. (b) Neuropathological scoring of osteopontin 

levels (OPN, represented in a, lower panel) in the stroke area (Str), including the peri-infarct 

region and the infarct core, and NAT; n = 6 individual specimens for each stage, * P < 0.05 and 

not significant (ns) P > 0.05 by Wilcoxon test. (c-g) Representative images of 

immunofluorescence staining for osteopontin (OPN, red) and cell-specific markers (green) 

including CD31 for endothelial cells (c, g), PDGFRβ for pericytes (d, g), GFAP for astrocytes 

(e, g) and IBA1 for microglia/macrophages (f, g) in the infarct core (c-f) and the NAT (g) of 

human stroke samples. (h-k) Quantification of cell-specific markers including CD31 for 

endothelial cells (h), PDGFRβ for pericytes (i), GFAP for astrocytes (j) and IBA1 for 

microglia/macrophages (k) in the peri-infarct region, the infarct core, and the NAT of human 

stroke samples at stages I-III. n = 6 individual specimens for each stage, * P <0.05, ** P <0.01, 

*** P <0.001, and ns P > 0.05 by one-way analysis of variance and Tukey’s multiple 

comparison test. (l) Representative images for anti-OPN primary antibody staining specificity in 

human stroke samples. Scale bars: 1000µm (a, upper panel), 200µm (a, lower panel), 20µm (c-

g), and 100µm (l). 
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Supplementary Figure 5. Osteopontin expression in vessel-associated astrocytes and 

microglia/macrophages in normal and ischemic brain tissue of stroke patients. (a) 

Representative images of immunofluorescence staining for osteopontin (OPN, red) and astrocyte 

marker GFAP (green) together with vessel marker CD31 (white) in stage I human stroke tissue. 

(b) Representative images of immunofluorescence staining for osteopontin (OPN, red) and 

microglia/macrophages marker IBA1 (green) together with vessel marker CD31 (white) in stage 

I human stroke tissue. Arrowheads indicate vessel-associated astrocytes (a) and 

microglia/macrophages (b). Scale 20µm. 
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Supplementary Figure 6: Correlation analysis of OPN expression and age in human stroke 

samples. (a) Correlation analysis of total OPN expression (IHC-peroxidase) with age in peri-

infarct (black dots) and core (white dots) human samples post ischemic tissue. (b-e) Correlation 

analysis of cell specific OPN expression (immunofluorescence) with age in peri-infarct (black 

dots) and core (white dots) endothelial cells (b), pericytes (c), astrocytes (d) and 

microglia/macrophages (e). n = 6 each group. P value was determined using Pearson’s 

correlation test * P < 0.05, and not significant (ns) P > 0.05. 
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Supplementary Figure 7: Absence of gender-related influence on OPN expression in human 

and mouse ischemic tissues. (a) Quantification of OPN expression (IHC-peroxidase) in stage I 

(black dots) and II (grey dots) tissues in core and peri-infarct human male and female samples. n 

= 3 for both stage I males and females, n = 4 and 2 for stage II males and females, respectively. 

(b) Quantification of OPN expression (IHC-peroxidase) in males and females Ctrl IgG antibody-

treated mice (n = 6 each group). ns P > 0.05 by two-tailed, unpaired t-test. 
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Supplementary Figure 8. Gender-related effects of anti-OPN antibody treatment on OPN 

expression and outcome in mice post ischemic stroke. Outcome parameters in control (Ctrl) 

IgG or anti (α)-OPN antibody treated male (Ctrl, n = 11; α-OPN, n = 8) and female (Ctrl, n = 6; 

α-OPN, n = 4) mice. For analysis of hemorrhagic transformation, edema and stroke volumes, and 

OPN expression, only mice that survived for 24 hours were included (n = 6 and 6 for Ctrl males 

and females, and n = 6 and 4 for α-OPN males and females, respectively). (a) 24 hours survival 

proportion with numbers in histograms indicating raw number of animals dead or surviving in 

each group. n = 11 and 8 for Ctrl IgG-treated males and females, and n = 6 and 4 for α-OPN 

antibody-treated males and females, respectively; not significant (ns) P > 0.05 by one-tailed Chi-

square test. (b) Total mNSS including (c) motor balance, motor function and reflexes scores. n = 

11 and 8 for Ctrl IgG-treated males and females, and n = 6 and 4 for α-OPN antibody-treated 

males and females, respectively; ns P > 0.05 by Mann Whitney test. (d) Hemorrhagic 

transformation frequency of stroke lesions. (e) Edema volume, (f) stroke volume, n = 6 for both 

Ctrl IgG treated males and females, and n = 6 and 4 for α-OPN antibody-treated males and 

females respectively; * P < 0.05 and ** P < 0.01 and ns P > 0.05 by one-tailed Chi-square test 

for (d) and by two-tailed, unpaired t-test, with Welch’s correction when variances were 

significantly different based on F-test, for (e) and (f). (g) Quantification of OPN expression 

(arbitrary units, a.u.) in the infarct core, peri-infarct region and contralateral hemisphere (3 

images/region/animal); n = 6 for both Ctrl IgG treated males and females, and n = 6 and 4 for α-

OPN antibody-treated males and females, respectively; */§/† p<0.05, **/§§/†† p<0.01, ***/§§§ 

p<0.001 and ns p>0.05. * indicates two-tailed, unpaired t-test comparing the two treatment 

groups for the same region, § indicates two-tailed, paired t-test comparison of peri-infarct to 

contralateral or core regions within the same treatment group/animal, and † indicates two-tailed, 

paired t-test comparison of core to contralateral regions within the same treatment group/animal. 

Grey rectangles highlight the difference of significance observed in gender separated results 

from pooled results (Fig 5) 
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Supplementary Figure 9. OPN expression pattern of murine NVU cells in the infarct core, 

peri-infarct region and contralateral hemisphere after antibody treatment. (a-d) 

Representative images of immunofluorescence staining for osteopontin (OPN, red) and cell-

specific markers (green) including podocalyxin for endothelial cells (a), CD13 for pericytes (b), 

GFAP for astrocytes (c) and IBA1 for microglia/macrophages (d) in the infarct core of Ctrl IgG 

and α-OPN antibody-treated mice 24 hours post ischemic stroke. White arrowheads indicate 

OPN expressing NVU cells. (e-l) Quantification of OPN expression in core, peri-infarct, and 

contralateral endothelial cells (e), pericytes (f), astrocytes (g) and microglia/macrophages (h) and 

ratio of OPN positive endothelial cells (i), pericytes (j), astrocytes (k) and 

microglia/macrophages (l) in Ctrl IgG and α-OPN antibody-treated mice. (m-p) Quantification 

(arbitrary units, a.u.) of podocalyxin (podxl) staining in endothelial cells (m) as well as CD13 in 

pericytes (n), GFAP in astrocytes (o) and IBA1 in microglia/macrophages (p) in the peri-infarct 

region and contralateral hemisphere of Ctrl IgG and α-OPN antibody-treated mice utilizing 3 

images/region/animal, n = 12 and 10 for Ctrl and α-OPN, respectively. */§/† P < 0.05, **/§§/†† 

P < 0.01, ***/§§§/††† P < 0.001, ****/§§§§/†††† P < 0.0001 and not significant (ns) P > 0.05. 

* indicates two-tailed, unpaired t-test, with Welch’s correction when variances were significantly 

different based on F-test, comparing the two treatment groups for the same region, § indicates 

two-tailed, paired t-test comparison of peri-infarct to contralateral or core regions within the 

same treatment group/animal, and † indicates two-tailed, paired t-test comparison of core to 

contralateral regions within the same treatment group/animal. Scale bars: 10µm (5µm in insets).  
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Supplementary Figure 10: Gender-related effects of anti-OPN antibody treatment on OPN 

expression pattern of murine NVU cells in the infarct core, peri-infarct region and 

contralateral hemisphere after antibody treatment. (a-h) Quantification of OPN expression 

in core, peri-infarct, and contralateral endothelial cells (a), pericytes (b), astrocytes (c) and 

microglia/macrophages (d) and ratio of OPN positive endothelial cells (e), pericytes (f), 

astrocytes (g) and microglia/macrophages (h) in males and females Ctrl IgG and α-OPN 

antibody-treated mice. (i-l) Quantification (arbitrary units, a.u.) of podocalyxin (Podxl) staining 

in endothelial cells (i) as well as CD13 in pericytes (j), GFAP in astrocytes (k) and IBA1 in 

microglia/macrophages (l) in core, peri-infarct region, and contralateral hemisphere of males and 

females Ctrl IgG and α-OPN antibody-treated mice. Three images per region and per animal 

were used, n = 6 for both Ctrl IgG treated males and females, and n = 6 and 4 for α-OPN 

antibody-treated males and females, respectively. */§/† P < 0.05, **/§§/†† P < 0.01, ***/§§§ P < 

0.001, ****/§§§§ P < 0.0001 and not significant (ns) P > 0.05. * indicates two-tailed, unpaired t-

test, with Welch’s correction when variances were significantly different based on F-test, 

comparing the two treatment groups for the same region. § indicates two-tailed, paired t-test 

comparison of peri-infarct to contralateral or core regions within the same treatment 

group/animal, and † indicates two-tailed, paired t-test comparison of core to contralateral regions 

within the same treatment group/animal. Grey rectangles highlight the difference of significance 

observed in gender separated results from pooled results (Fig Suppl 9) 
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Supplementary Figure 11. Effect of the anti-OPN antibody therapy on astrocyte endfeet in 

ischemic mice. (a) Representative images of immunofluorescence staining for OPN (red) and 

astrocyte endfeet marker α-dystroglycan (green) in the ischemic core, peri-infarct and 

contralateral hemisphere of Ctrl IgG and α-OPN antibody-treated mice. Podocalyxin (white) was 

used as vessel marker as shown on overlay pictures (b-c) Quantification of OPN expression in 

astrocyte endfeet (b) and α-dystroglycan expression (c) in ischemic core, peri-infarct and 

contralateral hemisphere of Ctrl IgG and α-OPN antibody-treated mice. Quantifications were 

done utilizing three images/region/animal, n = 12 and n = 10 for Ctrl and α-OPN, respectively; 

*/§/† P < 0.05, ** P < 0.01, ***/§§§ P < 0.001, §§§§/†††† P < 0.0001 and not significant (ns) P 

> 0.05. * indicates two-tailed, unpaired t-test, with Welch’s correction when variances were 

significantly different based on F-test, comparing the two treatment groups for the same region. 

§ indicates two-tailed, paired t-test comparison of peri-infarct to core or contralateral regions 

within the same treatment group/animal, and † indicates two-tailed paired t-test comparison of 

the infarct core and contralateral regions within the same treatment group/animal. Scale bars: 

20µm and inset: 5µm.  
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Supplementary Figure 12. Effect of the anti-OPN antibody therapy on vessel-associated 

microglia/macrophages in ischemic mice. (a) Representative images of immunofluorescence 

staining for OPN (red) and vessel-associated (VA) microglia/macrophages (IBA1, green) in the 

ischemic core, peri-infarct and contralateral hemisphere of Ctrl IgG and α-OPN antibody-treated 

mice. Podocalyxin (white) was used as vessel marker as shown on overlay pictures (b-d) 

Quantification of OPN expression (b), the ratio of vessel-associated microglia/macrophages 

positive for OPN (c), and IBA1 expression (d) in ischemic core, peri-infarct and contralateral 

hemisphere of Ctrl IgG and α-OPN antibody-treated mice. Quantifications were done utilizing 

three images/region/animal, n = 12 and n = 10 for Ctrl and α-OPN, respectively; † P < 0.05, 

**/§§/†† P < 0.01, ***/§§§/††† P < 0.001, ****/§§§§ P < 0.0001 and not significant (ns) P > 

0.05. * indicates two-tailed, unpaired t-test, with Welch’s correction when variances were 

significantly different based on F-test, comparing the two treatment groups for the same region. 

§ indicates two-tailed, paired t-test comparison of peri-infarct to core or contralateral regions 

within the same treatment group/animal, and † indicates two-tailed paired t-test comparison of 

the infarct core and contralateral regions within the same treatment group/animal. Scale bars: 

20µm and inset: 5µm.  

 

  



Core Peri-infarct Contralateral

Core Peri-infarct NAT
O
PN

O
PN

O
ve

rla
y

O
ve

rla
y

α-
O
PN

C
tr
l

H
um

an
st
ag

e
I

OPN - TMEM119 - Podocalyxin - DAPI

OPN - TMEM119 - CD31 - DAPI

Suppl Figure 13
O
PN

O
ve

rla
y

a

b



	
	

Supplementary Figure 13. Osteopontin expression in vessel-associated microglia in human 

and murine specimen post-acute ischemic stroke. (a) Representative images of 

immunofluorescence staining for osteopontin (OPN, red) and microglia marker TMEM119 

(green) together with vessel marker CD31 (white) in stage I human stroke tissue and normal 

appearing tissue (NAT). (b) Representative images of immunofluorescence staining for 

osteopontin (OPN, red) and microglia marker TMEM119 (green) together with vessel marker 

Podocalyxin (white) in Ctrl IgG and α-OPN antibody-treated mice. Scale 20µm. 
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Supplementary Figure 14: Effect of the anti-OPN antibody therapy on immune cells 

infiltration in the infarct core post ischemic stroke in mice. Representative image (of n = 2) 

of immunofluorescence staining for osteopontin (OPN, red), microglia/macrophage marker IBA1 

(green), vessel marker collagen IV (white) together with lymphocyte markers CD4 (cyan, 

arrowhead) and CD8a (yellow, arrow) in the infarct core of Ctrl IgG and α-OPN antibody-treated 

mice. DAPI was used to reveal nuclei. Scale 50µm. 
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Supplementary Figure 15: Effect of the anti-OPN antibody therapy on immune cells 

infiltration in the peri-infarct region post ischemic stroke in mice. Representative image (of 

n = 2) of immunofluorescence staining for osteopontin (OPN, red), microglia/macrophage 

marker IBA1 (green), vessel marker collagen IV (white) together with lymphocyte markers CD4 

(cyan, arrowhead) and CD8a (yellow, arrow) in the peri-infarct region of Ctrl IgG and α-OPN 

antibody-treated mice. DAPI was used to reveal nuclei. Scale 50µm. 
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Supplementary Figure 16: Effect of the anti-OPN antibody therapy on immune cells 

infiltration in the contralateral hemisphere post ischemic stroke in mice. Representative 

image (of n = 2) of immunofluorescence staining for osteopontin (OPN, red), 

microglia/macrophage marker IBA1 (green), vessel marker collagen IV (white) together with 

lymphocyte markers CD4 (cyan, arrowhead) and CD8a (yellow, arrow) in the contralateral 

hemisphere of Ctrl IgG and α-OPN antibody-treated mice. DAPI was used to reveal nuclei. Scale 

50µm.  
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Supplementary Figure 17. CNS distribution of the therapeutic anti-OPN antibody in mice. 

Representative images of immunofluorescence staining for osteopontin (OPN, red), rabbit 

polyclonal antibody), anti-OPN antibody (α-OPN-Ab, green, therapeutic goat polyclonal 

antibody) and podocalyxin (white) in the infarct core (a), peri-infarct region (b) and contralateral 

hemisphere (c) of untreated mice and mice treated with the α-OPN antibody after ischemic 

stroke. White arrowheads indicate therapeutic α-OPN antibody detected in the brain parenchyma. 

(d) Representative images from serial sections of OPN peroxidase staining on untreated ischemic 

mice with primary antibody (rabbit) co-incubated with or without anti-OPN goat therapeutic 

antibody. The unchanged intensity between the two conditions suggests no apparent effect of the 

therapeutic neutralization antibody (goat) on the detection of osteopontin by the rabbit 

polyclonal antibody. Scale bars: 10µm (a-c) and 20µm (d).  
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Supplementary Figure 18. Albumin staining for permeability assessment post anti-OPN 

treatment in ischemic mice. (a) Representative images of peroxidase staining for mouse 

albumin (brown) in Ctrl IgG and α-OPN antibody-treated mice 24 hours post occlusion. (b) 

Representative images of mouse albumin (pink) and vessels (Podocalyxin, brown) in Ctrl IgG 

and α-OPN antibody-treated mice. Nuclei are stained in blue. Images on part b are from a 

different set of mice compared to part a and Fig 8b. Scale 800µm for full brain section and 20µm 

for insets. 
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Supplementary Figure 19. Effect of the anti-OPN antibody therapy on BBB function in the 

infarct core in ischemic mice. (a-c) Representative images of fibrinogen immunofluorescence 

staining (green, a) and quantification of extravasated (b) and intravascular (c) fibrinogen in the 

core, peri-infarct region and contralateral hemisphere of Ctrl IgG and α-OPN antibody-treated 

mice. (d-f) Representative images of mouse immunoglobulin (IgG) immunofluorescence 

staining (red, d) and quantification of extravasated (e) and intravascular (f) IgG in the core, peri-

infarct and contralateral hemisphere of Ctrl IgG and α-OPN antibody-treated mice. Podocalyxin 

(white) was used as vessel marker as shown in overlay pictures (a, d). (g-j) Representative 

images of EC adherens and tight junctions VECAD (g) and CLDN5 (i) stainings in the core of 

Ctrl IgG and α-OPN antibody-treated mice and corresponding quantifications (h, j). 

Quantifications were done utilizing three images/region/animal, n = 12 and n = 10 for Ctrl and α-

OPN antibody, respectively. *§/† P < 0.05, **/§§/†† P < 0.01, §§§/††† P < 0.001, ****/†††† P 

< 0.0001 and not significant (ns) P > 0.05. * indicates two-tailed, unpaired t-test, with Welch’s 

correction when variances were significantly different based on F-test, comparing the two 

treatment groups for the same region, § indicates two-tailed, paired t-test comparison of peri-

infarct to core or contralateral regions within the same treatment group/animal, and † indicates 

two-tailed paired t-test comparison of the infarct core and contralateral regions within the same 

treatment group/animal. Scale bars: 20µm for (a, d); 10µm (g). 
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Supplementary Figure 20: Gender-related effects of anti-OPN antibody treatment on BBB 

function in ischemic mice. (a-b) Quantification of extravasated (a) and intravascular (b) 

fibrinogen in the core, peri-infarct region, and contralateral hemisphere of males and females 

Ctrl IgG and α-OPN antibody-treated mice. (c-d) Quantification of extravasated (c) and 

intravascular (d) mouse IgG in the core, peri-infarct and contralateral hemisphere of males and 

females Ctrl IgG and α-OPN antibody-treated mice. (e-f) Quantification of endothelial adherens 

and tight junctions VECAD (e) and CLDN5 (f) staining in the core of males and females Ctrl 

IgG and α-OPN antibody-treated mice. Three images per region and per animal were used, n = 6 

for both Ctrl IgG treated males and females, and n = 6 and 4 for α-OPN antibody-treated males 

and females, respectively. */§/† P < 0.05, **/§§/†† P < 0.01, ††† P < 0.001, ****/ P < 0.0001 

and not significant (ns) P > 0.05. * indicates two-tailed, unpaired t-test, with Welch’s correction 

when variances were significantly different based on F-test, comparing the two treatment groups 

for the same region. § indicates two-tailed, paired t-test comparison of peri-infarct to 

contralateral or core regions within the same treatment group/animal, and † indicates two-tailed, 

paired t-test comparison of core to contralateral regions within the same treatment group/animal. 

Grey rectangles highlight the difference of significance observed in gender separated results 

from pooled results (Fig Suppl 19) 
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Supplementary Figure 21. OPN expression and permeability assessment post OGD in vitro. 

(a) Representative images of osteopontin (OPN, green) in endothelial monolayer 24 hours post 

oxygen-glucose deprivation (OGD) treatment. CD31 (white) was used as endothelial marker and 

DAPI (blue) to reveal nuclei. n = 2 independent experiments from Fig 8g. Scale bars: 10µm (b) 

Schematic representing the permeability indicators used in vitro along with their molecular 

weight (MW) and their Stokes radius (SR). The size of the circle is based on the Stokes radius; 

Dex = dextran. (c) Representative graph for continuous TEER values of the MBMEC monolayer 

in control normoxic conditions (treated with isotype control) and for OGD conditions – isotype 

control or anti-OPN antibody treated, normalized to pre-treatment TEER values. (d) 24 hours 

TEER values of MBMEC treated with isotype control or anti-OPN antibody during OGD 

normalized to the control; n = 4 independent experiment. (e) Raw permeability (pe) index values 

of several molecular weight fluorescent tracers through MBMEC monolayer subjected to OGD 

and treated with isotype control or anti-OPN antibody. n = 4 independent experiments. * P < 

0.05; *** P < 0.001 and ns P > 0.05 by two-tailed, paired t-test.  
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