This file serves as supplementary information for the paper:

"Nuclear Magnetic Resonance Diffusometry of Linear and Branched Wormlike Micelles" Samuel Holder,^{1,2} Samuel C. Grant^{1,2} and Hadi Mohammadigoushki^{1,2*}

¹Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, United States

²Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA 32310

This supplementary material consists of 2 pages, 1 figure and 1 table.

FIGURE S1. Cole-Cole plots for wormlike micellar solutions (a) CPCI/NaSal and (b) CTAB/NaSal. The continuous curves illustrate the fit to the single mode Maxwell model. A single mode Maxwell model is described as: $G'(\omega) = G_0 \frac{\omega^2 \tau_R^2}{1+\omega^2 \tau_R^2}$, $G''(\omega) = G_0 \frac{\omega \tau_R}{1+\omega^2 \tau_R^2}$. G', G'', ω , τ_R are storage modulus, loss modulus, angular frequency and the longest relaxation time, respectively. The micellar breakage ratio is calculated by using the following relation $\tau_R = (\tau_{br}, \tau_{rep})^{1/2}$, where τ_b and τ_r denote the breakage time and the reptation time, respectively. The breakage time is estimated as the inverse of the frequency at which loss modulus shows a local minimum.

Fluid	Salt concentration	η_0 (Pa.s)	$\tau_{R}(s)$	$\tau_{b}(s)$
	(mM)			
	30	1300	33	0.149
	40	3900	92	0.227
	60	1560	39.5	0.18
CTAB/NaSal	80	67	1.6	0.017
	100	10.09	0.24	0.011 [1]
	150	23	0.49	0.013 [1]
	200	98	1.9	0.017
	400	34	0.93	0.013
	45	0.5	0.092	
	50	16.5	1.2	
	55	118	3.36	0.042
	60	230	5.82	0.045
CPCl/NaSal	80	5.5	0.182	
	90	0.8	0.12	
	150	44	0.82	0.013
	200	320	5.5	0.056
	300	54	1.3	0.014
	400	1.9	0.041	

Table S(1). Rheological properties of the micellar solutions used in this study.

[1] J. Galvan-Miyoshi, J. Delgado and R. Castillo, "Diffusing wave spectroscopy in maxwellian fluids," *The European Physical Journal E*, vol. 26, p. 369–377, 2008.