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Methods 

Analysis of TCGA samples 

Sample selection and collection of clinical information 

Clinical and somatic gene mutation profiles of all tumors except diffuse large B-cell lymphoma, acute myeloid 

leukemia, and thymoma, PanCancer Atlas datasets were downloaded from cBioPortal 1 (29 studies, 10075 cases). 

Information on smoking habit and HPV infection status was obtained from GDAC 2. Among these tumors, 9794 cases for 

which the somatic mutation profiles analyzed by Mutect2 3 in the MAF format were available from the GDC portal 4 were 

selected for analysis. 

The annotation of cancer types with FDA approval for ICI monotherapy was based on a previous report 5. The 

response rates for ICI monotherapy for each tumor type were obtained from previous reports 6, 7. The response rate data for 

endometrial cancer with mismatch repair deficiency or with mismatch repair proficiency were calculated from another 

previous report 8. 

Identification of genomic subtypes based on mutational signatures 

Using MutationalPatterns 9, the contribution values of each sample to COSMIC v2 30 mutational signatures 10 

were calculated from the four deferent somatic mutation profiles, which were pre-computed using Mutect2 3, Varscan2 11, 

MuSE 12, and Somatic Sniper 13 and were available in the MAF format on the GDC portal 4. Using the log10 transformed 

values of these contribution values, unsupervised hierarchical clustering with Ward's method was performed. 

Annotation of gene alterations 

 Somatic gene mutations annotated as significant in the PanCancer Atlas studies of cBioPortal 1 were included, 

while those marked as mutations of unknown significance were excluded. For germline mutations, we obtained the 

annotations from a previous report 14, where those annotated as “likely pathogenic” or “pathogenic” in “Overall 

Classification” column were retained. For gene mutations in BRCA1 and BRCA2, we extracted those with locus-specific 

LOH or homozygous deletions as we previously reported 15. For gene promoter methylations in MLH1 and BRCA1, we 

obtained annotations from a previous report 16. 

Insertions and deletions-based mutational signature 6 

To investigate the features of HRD subtype tumors, we calculated indel signature 6, a signature derived from 

small insertions and deletions (ID) that has been reported to be associated with the HRD phenotype in recent whole genome 

sequencing studies 17. The annotated somatic mutations called by Mutect2 were obtained from the GDC portal 4 in the VCF 

format, and the insertions and deletions with "PASS" annotations were extracted. The contribution values of each sample to 

the COSMIC reference ID signatures 10 were calculated using YAPSA 18. The ratio of contribution values of indel signature 

6 to the number of all detected mutations was calculated as the indel signature 6 ratio. 

MSI score and MSI-high annotation 

We calculated MSI scores of all samples using MSI sensor 19 with the default parameters from normal-tumor 

paired whole exome sequencing (WES) data. For UCEC, CRC, STAD, and ESCA, MSI status was obtained from the 

clinical information in cBioPortal. Within these samples, the optimal cutoff value of MSI score for the annotated MSI-high 

cases was calculated using the ROC curve and the Youden index (Figure S19A,B). Then, for the other cancer types, 

samples with the score above this cutoff were determined to be MSI-high (Figure S19C). 

Other genomic alterations scores 

 The following scores were calculated from the somatic mutation profiles calculated by Mutect2. Tumor 

mutational burden: the number of missense mutations. Total indel count: the total number of frameshift insertions, inframe 

insertions, frameshift deletions, and inframe deletions. Indel ratio: the ratio of the total indel count to the total number of 
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detected mutations, including synonymous mutations. Insertion to indel ratio: the ratio of the total number of frameshift 

insertions and inframe insertions to the total indel count. 

 For predicted neoantigens counts based on netMHCpan 20, we obtained the pre-computated data for SNVs and 

indels from a previous report 21. 

 For chromosomal changes, we obtained HRD scores and CNV burden scores from the GDC portal4. 

Gene expression scores 

 We obtained batch-corrected gene expression values from a previous report 21. The CYT score was calculated 

from the geometric mean of the expression levels of GZMA and PRF1 according to the previous report 22. We obtained a 

gene set "HALLMARK_PI3K_AKT_PATHWAY" from MSigDB 23 and calculated its enrichment score using ssGSEA 24. 

In addition, using the literature 25 as a reference, the GEP score was calculated as the sum of each gene expression 

multiplied by the following coefficients: CL5=0.008346; CD27=0.072293; CD274=0.042853; CD276=-0.0239; 

CD8A=0.031021; CMKLR1=0.151253; CXCL9=0.074135; CXCR6=0.004313; HLA.DQA1=0.020091; 

HLA.DRB1=0.058806; HLA.E=0.07175; IDO1=0.060679; LAG3=0.123895; NKG7=0.075524; PDCD1LG2=0.003734; 

PSMB10=0.032999; STAT1=0.250229; TIGIT=0.084767. 

TcellExTRECT score 

 BAM files from primary tumor samples of skin cutaneous melanoma (SKCM), head and neck squamous cell 

carcinoma (HNSC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and bladder urothelial 

carcinoma (BLCA) were downloaded from the GDC portal and used as input to calculate the TcellExTRECT score as 

previously reported 26. Samples with ‘qcFit’ values greater than 4 were excluded from the analysis. Because adjustments for 

‘TCRA.fraction.score’ by known tumor purity and copy number status did not improve the positive correlation with T-cell 

related gene expressions, the score was used without such adjustments. 

Development of GS-PRACTICE 

 Using the 30 signature contribution values as features and the genomic subtypes as labels in the selected 7181 

samples (Figure S9C), we built four independent classifiers from four different algorithms, namely, k-nearest neighbor, 

support vector machine, logistic regression, and random forest using the Scikit-learn module in Python. For the former three 

classifiers, the main hyperparameters were optimized by double cross-validation (Figure S10A). First, the above selected 

TCGA samples were divided into two parts, X1 and X2. Second, parameters were calculated using X1 by two-fold cross-

validation, and those parameters were evaluated using X2 as test data. Third, X1 and X2 were swapped, and the same 

calculations were performed. These processes were repeated 100-1000 times to determine the optimal parameters (Figure 

S10A). For the random forest model, since parameter adjusting hardly changed the prediction accuracy, the default settings 

were used. 

 After calculating the contribution values of the 30 mutational signatures from external somatic mutation profiles 

in VCF or MAF format using MutationalPatterns 9, the four classifiers independently make predictions using these values as 

input, and then integrate the results to output the final classification (Figure 2A). In the classification into eight subtypes, if 

the results from three or more classifiers matched, the matched result was determined to be the subtype, otherwise it was 

determined to be undeterminable (UND). In parallel, if the results from three or more classifiers belong to immune-related 

genomic subtype (irGS), namely, SMK, UVL, APB, POL, or MRD, it was classified as irGS, otherwise non-irGS. This tool 

is available in the GitHub page (https://github.com/shirotak/GS-PRACTICE). 

 

Analysis of non-TCGA datasets 

Pan-Cancer Analysis of Whole Genomes consortium (PCAWG) datasets 27 
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Donor-centric phenotype data, consensus coding mutation profiles, allele-specific copy number profiles, RNAseq-

based gene expression profiles were obtained from the UCSC Xena 28. From a total of 2834 cases, those included in the 

whitelist, with consensus coding mutations available, aged 20 years or older, and with tumor types included in TCGA 

studies were analyzed (Figure S11A). Subtyping by GS-PRACTICE was performed using the consensus coding mutations 

in the MAF format as input (Figure S11B). Somatic mutations were retained only when the altered allele count was ≥ 4, the 

altered allele frequency was ≥ 2.5%, and the oncoKB 29 annotation was either ‘pathogenic’ or ‘likely pathogenic’. Somatic 

BRCA1/2 mutations were checked for their allele-specific copy numbers, and only those with the minor allele copy number 

equal to zero were retained as significant alterations, as previously reported 15. The normalized gene expression values, 

derived from the log2 transformed upper quartile fragments per kilobase of transcript per million mapped reads (FPKM-

UQ), were used for analysis. The CYT score 22 and the GEP score 25 were calculated in the same way as TCGA data 

analysis. 

Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets 30 

 Clinical information and somatic mutation profiles in the MAF format were obtained from GDC portal 4.  

cBioPortal datasets 1 

 Clinical information and somatic mutation profiles in the MAF format were obtained from the websites (Table 

S2). 

National Bioscience Database Center (NBDC) datasets 31 

 We obtained clinical and raw WES data (Table S2) through the application process for NBDC Human Database 

31, calculated somatic mutation profiles in our WES analysis pipeline (see below). 

Sample selection and definition of response in ICI-treated cohorts 

 Collected samples were derived from pairs of the primary tumor and normal blood or tissue, and those collected 

from metastatic sites different from the primary tumor (lymph nodes, bones, distant internal organs, etc.) were excluded. In 

addition, collected samples were taken before or during ICI administration, and those with a history of ICI treatment at the 

time of sample collection were excluded. Most of the cases were evaluated using the RECIST criteria for radiological 

response or equivalent, where CR/PR was defined as a responder and SD/PD/NE as a non-responder. In some datasets, we 

could not find a response assessment by such criteria from the articles. In the data of Anagnostou et al.32, durable clinical 

benefit (DCB) was defined as 'complete, partial response or stable disease with a duration >6 months from the time of 

treatment initiation'. Within their dataset, we defined cases who achieved DCB and had more than 12 months of PFS as 

responders with the rest labeled as non-responders. For the dataset from Cristescu et al 25, we distinguished between 

responders and non-responders based on the values listed in the figures and tables in the paper, and confirmed that the 

annotations were consistent with the results of the other figures. As a result, a total of 973 patients from 13 datasets that met 

the above criteria and had available response information were included in the analysis (Table S3). 

Sample selection for survival analysis in the ICI-treated cohorts 

We obtained data of Miao et al. from cBioPortal (n = 249), where they analyzed WES data from patients with 

clinically annotated outcomes to ICI therapy 33. Five other datasets with available overall survival information, including 

Snyder et al.34, Riaz et al.35, Mariathasan et al.36, Liu et al.37, and Anagnostou et al.32 were added to the analysis. 

WES analysis pipeline 

For the raw paired WES data obtained from NBDC, dbGaP and EGA (Table S2, Table S3), somatic mutations 

were analyzed in the following steps according to the Best Practice Workflows of somatic short variant (SNVs + Indels) 

discovery published by the Broad institute GATK team 38, where Genome Analysis Toolkit (GATK) v4.0.12 and Picard 

v2.20.2 were used. (1) BAM files were converted to FASTQ files using Picard SamToFastq. (2) Low-quality reads and 
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presumed adapter sequences were removed using TrimGalore 39. (3) The trimmed reads were aligned to the human 

reference genome hg38 obtained from the GATK resource bundle using BWA mem (v0.7.17-r1188) 40. (4) Data 

preprocessing including marking duplicates, making the panel of normal samples, and estimating contamination was 

performed using the Picard and GATK tools. (5) Somatic mutation calling including orientation bias filtering was 

performed using Mutect2. (6) The following parameters were used to filter out variants with low reliability: annotated as 

"PASS"; “TLOD” greater than 6.3 and 9 for single nucleotide variants and insertions and deletions, respectively; coverage 

of altered alleles greater than or equal to 5; altered allele frequency greater than or equal to 2.5%. (7) Variant annotation 

was performed using Funcotator with default setting using data source of v1.7.20200521s to generate MAF format files. 

For the dataset from Hellmann et al 41, only the VCF files after somatic mutation calling were available, so we 

filtered variants using the same criteria as described above and converted to MAF files for subsequent analysis. 

Validation of the WES analysis pipeline 

 As reported by Litchfield et al 42, TMB does not differ significantly depending on the exome capture kits used. 

For compatibility between TCGA and other datasets, we adopted the Agilent SureSelect Human All Exon V5 capture kit as 

the common exome regions to be analyzed in our WES analysis pipeline. Comparing the number of missense mutations 

calculated from cBioPortal 1 with those from our pipeline among the same samples, the Pearson correlation tended to 

exceed 0.9 in most of the datasets (Figure S20). Similarly, when we compared the number of non-synonymous SNVs in the 

Cristescu et al paper 25 with those from our pipeline, the Pearson correlation was 0.945 (Figure S20). 

TcellExTRECT score 

 The BAM files derived from the tumor samples mapped in the above pipeline were used as input to calculate the 

TcellExTRECT scores 26 in the same way as the TCGA data analysis. 

 

Statistical analyses 

 Unless otherwise noted, statistical analyses were performed in Python (3.7.4). The Mann–Whitney U test, chi-

square test, and Spearman's rank correlation coefficient test were performed using SciPy (1.6.1). Survival analyses 

including Kaplan–Meier curve, log-rank test, and Cox proportional hazard regression model were performed using Lifelines 

(0.25.10) and StatsModels (0.12.2). Machine learning analyses were performed using Scikit-learn (0.24.1). We considered a 

p-value < 0.05 as being statistically significant. Venn diagrams were depicted using “VennDiagram” (1.6.20) package in R. 

The Jonckheere-Terpstra test was performed using “clinfun” (1.0.15) package in R. The Passing-Bablok regression was 

performed using “mcr” (1.2.2) package in R. 

 

Data and code availability 

 Controlled access data used in this study were obtained from dbGaP, EGA, and NBDC with access permissions 

according to the respective required procedures (Table S2 and S3). The processed data and codes to reproduce the results of 

this work are available on the GitHub page (https://github.com/shirotak/pancancer_MutSig_ICI). Other codes for 

preprocessing or restricted-access data are available from the corresponding author upon reasonable request. 
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Figure S1. Characteristics of the eight tumor genomic subtypes derived from TCGA solid tumors (N=9794) 

A) Clinical and genomic information for each subtype, related to Figure1A. The values are either the average of the Z-scores 

or the frequency for each subtype, and the values are displayed as a heat map. Predicted SNV and indel neoantigens 

counts by netMHCpan were significantly correlated with TMB and indel counts, respectively. CNV burdens and HRD 

scores were also correlated with each other. CD274, unlike CXCL9 and CXCL13, did not show definitively higher 

expression specifically in irGS. This appears to be consistent with a previous report 42 that CD274 mRNA expression 

was not strongly associated with ICI reactivity in pan-cancer analysis. 

B) Relationship between the distribution of cancer types based on the hierarchical clustering and the FDA approval for ICI 

therapy. Each case is represented by a red bar (with FDA approval for ICI) or a black bar (without FDA approval for 

ICI). 

C) Type of cancer and number of samples per subtype. The color of each cancer type matches the color shown in B. 

D) Differences in survival outcomes between subtypes. When all cases were compared among the eight subtypes, the 

prognosis was different. Furthermore, for the cancer types shown here, the prognosis was significantly different by 

subtype in the analysis of each cancer type. P-value is based on log-rank test. 

 

ACC, Adrenocortical carcinoma; BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical 

squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; CRC, Colorectal adenocarcinoma; 

ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and neck squamous cell carcinoma; KICH, Kidney 

chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LGG, Brain lower grade 

glioma; LIHC, Liver hepatocellular carcinoma ; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, 

Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and 

paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin cutaneous melanoma; STAD, Stomach 

adenocarcinoma; TGCT, Testicular germ cell tumors; THCA, Thyroid carcinoma; UCEC, Uterine corpus endometrial carcinoma; 

UCS, Uterine carcinosarcoma; UVM, Uveal melanoma.  
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Figure S2. Features of SMOKING (SMK) subtype (n=1072) 

The association with smoking habits was investigated in LUAD, LUSC, HNSC and BLCA where clinical information on 

smoking was available. 

A) SMK cases had a higher frequency of smoking history (current smoking and smoking within 15 years) than the other 

groups.  

B) The sum of the contributions of signature 4 and 29, which are known to be related to smoking exposure and tobacco 

chewing habit, were positively correlated with smoking habit. (Jonckheere-Terpstra test, *** P<1 x10-4, ** P < 0.01, *, 

P < 0.05 )  
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Figure S3. Features of ULTRAVIOLET LIGHT (UVL) subtype (n=401) 

A) Cancer type of UVL subtype. 95.8% were SKCM. 

B) Excluding SKCM, UVL tumors showed higher GEP score than the other subtypes (P= 0.033, Mann-Whitney U test). 

These results suggest that, although rare in cancers other than SKCM, there are some tumors that exhibit UVL subtype and 

may have a high tumor immunogenicity. 

 

BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CRC, Colorectal adenocarcinoma; HNSC, Head and 

neck squamous cell carcinoma; LUSC, Lung squamous cell carcinoma; SARC, Sarcoma; THCA, Thyroid carcinoma 
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Figure S4. Features of APOBEC (APB) subtype (n=1036) 

A) The expression of APOBEC3 family genes was significantly higher in APB subtype (all P-values < 2.2 x10-19, Mann-

Whitney test). 

B) HPV infection was associated with higher immune response in TCGA-HNSC (n=507). Besides, even in HPV-negative 

tumors, APOBEC subtype showed a higher immune response than the other groups.  

C) (Left) The PIK3CA mutation rate was the highest (26.4%) in the APB subtype excluding hyper mutator subtype (MRD 

and POL). Chi-square test P=1.7 x10-29. (Right), PIK3_AKT_MTOR pathway score was the highest in the APB 

subtype. Mann-Whitney P=2.3 x10-18. These results are consistent with the previously reported association between 

PIK3CA mutation and APOBEC-mediated cytosine deamination 43. 
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Figure S5. Features of MISMATCH REPAIR DEFICIENCY (MRD) subtype (n=339) 

A) 86.4% had MMR gene alterations (somatic and germline mutation in MLH1, MSH2, MSH6, and PMS2, and MLH1 

methylation). 

B) Cancer types of MRD subtype. 

C) Excluding cancer types with relatively high frequently of MSI-high tumors (UCEC, CRC, STAD, ESCA), immune-

related gene expression scores were still higher in MRD subtype than the others (P=0.016, Man-Whitney U test) 

D) Excluding cancer types with relatively high frequently of MSI-high tumors (UCEC, CRC, STAD, ESCA), the ratio of 

the total indel count to the total number of detected mutations (indel ratio) was still higher in MRD subtype than the 

others (P=4.0 x10-8, Man-Whitney U test) 
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Figure S6. Features of POLE (POL) subtype (n=81) 

A) Somatic POLE mutation was observed in 76.5% of POL subtype, and MMR-gene mutation (somatic and germline 

mutation in MLH1, MSH2, MSH6, and PMS2) was observed in 59.3% of POL subtype. 

B) Cancer types of POL subtype 

C) POL subtype, both with and without MMR mutation, showed lower ratio of the total indel count to the total detected 

mutations (indel ratio) (left) and higher ratio of the total insertion count to the total indel count (insertion to indel ratio) 

(right) than other subtypes, in contrast to MRD subtype. These data indicate that most tumors with concurrent POLE 

and MMR-gene mutations have acquired POLE mutation first, as previously reported 44, and thus have the POLE 

mutation-dominant underlying mutational processes. 
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Figure S7. Features of HOMOLOGOUS RCOMBINATION DEFICIENCY (HRD) subtype (n=1956) 

A) The ratio of contribution values of indel signature 6 to the number of all detected mutations (indel signature 6 ratio), a 

ratio related to homologous recombination deficiency, was higher in the HRD subtype than in other subtypes   

B) Association between mean HRD scores (x-axis) and indel signature 6 ratios (y-axis) per cancer type calculated in 

tumors classified into HRD subtype. These two values were simultaneously high in cancer types such as OV, BRCA, 

SARC, UCEC, and STAD, which are known to include a certain proportion of HRD phenotypes in previous reports 15. 

On the other hand, cancer types such as KIRP, KIRC, and GBM showed low values in both, suggesting that the HRD 

subtype may include tumors which do not harbor HRD phenotype. 

 

ACC, Adrenocortical carcinoma; BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical 

squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; CRC, Colorectal adenocarcinoma; 
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Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and 

paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin cutaneous melanoma; STAD, Stomach 

adenocarcinoma; TGCT, Testicular germ cell tumors; THCA, Thyroid carcinoma; UCEC, Uterine corpus endometrial carcinoma; 

UCS, Uterine carcinosarcoma; UVM, Uveal melanoma. 
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Figure S8. Features of GENOMICALLY STABLE (GNS) subtype (n=909) 

Not only the total number of SNVs (A), but also that of insertions and deletions (B) were the lowest in GNS among all 

subtypes. 
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Figure S9. Consistency of clustering results from different variant callers 

A) The results of hierarchical clustering based on the somatic mutation profiles derived from MuSE (upper), VarScan2 

(middle), and SomaticSniper (lower).  

Using these methods of annotation, eight genomic subtypes were created, as in the case using Mutect2. 

B) Venn diagrams showing the overlapping of results from the four valiant callers per subtype. GNS, HRD, and AGE 

subtypes showed relatively low consistency. To extract tumors typical for each subtype, cases that were matched by 

three or more algorithms, including Mutect2, were used for the next analysis (numbers in bold). 

C) The UMAP clustering shows that the sample selection described in B reduces the number of cases in the border region 

of the subtype heatmap. 
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Figure S10. Developing classifiers through machine learning algorithms 

A) Double cross-validation and hyperparameter tuning. First, the selected 7181 TCGA samples were divided into two 

parts, X1 and X2. Second, parameters were calculated using X1 by two-fold cross-validation, and those parameters 

were evaluated using X2 as test data. Third, X1 and X2 were swapped, and the same calculations were performed. 

These processes were repeated 100-1000 times to determine the optimal parameters. 

B) Confusion matrices showing the classification performance on test data for the four classifiers: K-nearest neighbor 

(KN), support vector machine (SV), random forest (RF), and logistic regression (LR). Results using 75% of all cases 

for training and 25% for testing are shown. All showed more then 95% subset accuracy (exact match ratio). 

C) Consistency of subtyping results between the four classifiers per data group. When three or more of the four classifier 

results do not match, the sample is annotated as "undeterminable”. Undeterminable samples were found in 

approximately 2-4% in the studied data groups, and there was no significant difference in the proportion between FFPE 

samples and frozen tissue origins or between data groups 

D) Association of TMB with multi-classifier concordance rates for the eight genomic subtypes or for irGS/non-irGS 

classification. To derive concordance rates, all samples examined in C (n=6243) were arranged by the total number of 

SNVs per sample, and subjected to a moving average analysis per 500 samples. The black and red solid lines represent 

moving averages of tumor subtypes and irGS/non-irGS concordance rates, respectively. Black and red dotted lines 

indicate the respective average rates over all samples (87.0% and 96.6%). The concordance rate for subtypes was the 

lowest around 50 SNVs per sample, at about 82%. The concordance rate for irGS/non-irGS classification remained 

above 95% even when per-classifier discrepancies were present.  
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Figure S11. Tumor subtyping by GS-PRACTICE in the PCAWG datasets 

A) Sample selection.  

From a total of 2834 cases, those included in the whilelist, with consensus coding mutations available, aged 20 years or 

older, and with tumor types included in TCGA studies were analyzed (n = 1916). 

B) Distribution of the samples by tumor genomic subtype and by cancer type 
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Figure S12. Relationship between tumor genomic subtype, response rate and cancer type in the ICI-treated 

cohort 

A) ICI response rate for each tumor genomic subtype. Subtypes included in irGS (SMK, UVL, APB, MRD, POL) showed 

a higher response rate than subtypes included in non-irGS (HRD, GNS, AGE). 

B) Distribution of the samples by tumor genomic subtype and by cancer type. 
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Figure S13. Studies examined by type of drug 

A) Study in the cases treated with anti-PD1 antibody. 

B) Study in the cases treated with anti-PDL1 antibody. 

C) Study in the cases treated with anti-CTLA antibody or anti-CTLA antibody plus other ICIs. 

In all studies, ICI response rate tended to be higher in irGS compared to non-irGS within TMB low cases. 
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Figure S14. Study in the dataset from the KEYNOTE trials, which were prospective cohort studies of patients 

treated with solely pembrolizumab (n=311) 

A) Association between TMB and ICI response per sample divided by irGS status (left) and comparison of ICI response 

rate in the four groups stratified by irGS and TMB status (right). irGS showed a significantly higher response rate than 

non-irGS within the sample classified as TMB low. 

B) Univariate and multivariate logistic regression analysis for ICI response. irGS status was significantly associated with 

the ICI response after adjusting by TMB status and cancer type. 

C) Distribution of the samples by tumor genomic subtype and by cancer type. Although the KEYNOTE trials excluded 

patients with clinically diagnosed MSI high tumors at enrollment, two tumors from the cohort (one each with gastric 

cancer and biliary tract cancer) were classified as MRD subtype, and both of them responded to ICI. 

 

irGS, immune-reactive genomic subtype; TMB, Tumor mutational burden; OR, Odds ratio; CI, confidence interval; SCC, 

squamous cell carcinoma 
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Figure S15. Studies using the cohorts’ optimal TMB cutoff or logarithmic TMB as a continuous value 

A) The cohort’s optimal TMB cutoff determined by the ROC curve and the Youden index for objective responses in the 

whole cohort (N=973) was 165 missense mutations, which was close to 173, the value calculated Figure3B. 

B) Association between TMB and ICI response per sample divided by irGS status (left) and comparison of ICI response rate 

in the four groups stratified by irGS and TMB status (right). irGS showed a significantly higher response rate than non-

irGS within the sample classified as TMB low. 

C) Univariate and multivariate logistic regression analysis for ICI response in the validation cohort (N=973). irGS status 

was significantly associated with the ICI response after adjusting by TMB status, either as a binary or continuous value, 

in addition to cancer type. 

 

irGS, immune-reactive genomic subtype; TMB, Tumor mutational burden; OR, Odds ratio; CI, confidence interval 
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Figure S17. Study excluding the Anagnostou et al. dataset 

As the data of Anagnostou et al. differs from other datasets in the method used to evaluate response (see Supplementary 

Methods), a re-analysis was undertaken after excluding the data of Anagnostou et al.. 

A) ICI response rate was significantly higher in irGS tumors than non-irGS (left), as well as in TMB high tumors than 

TMB low (right). 

B) Association between distribution of TMB and ICI response per sample divided by irGS status. Red dots indicate 

responders, and black dots indicate non-responders. 

C) Comparison of ICI response rates in the four groups stratified by irGS and TMB status. irGS tumors had a significantly 

higher response rate than non-irGS within the samples classified as TMB low. 

D) Univariate and multivariate logistic regression analysis for ICI response. irGS status was significantly associated with 

the ICI response after adjusting by TMB status and cancer type. 

 

irGS, immune-reactive genomic subtype; TMB, Tumor mutational burden; OR, Odds ratio; CI, confidence interval; SCC, 

squamous cell carcinoma 
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Figure S18. Association between TMB and ICI response divided by irGS status per dataset 

The right table indicates the distribution of samples for each subtype per dataset. See also Table S3. 
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Figure S19. Determination of MSI-high cases using MSIsensor 

A,B) Optimal cutoff of MSI score to discriminate cases with MSI-high annotations was calculated using ROC curve and 

Youden index from the datasets of CRC, ESCA, STAD and UCEC. 

C) The relationship between MSI score and the cutoff value in cancer types other than the four above. Cases exceeding 

the cutoff were annotated as MSI high. 
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Figure S20. Comparison of the number of missense mutations or non-synonymous SNVs from our WES 

pipeline and previously published data 

The red line represents a straight line with slope 1 reaching the zero point. The r value and p value at the top of each panel 

were calculated using the Pearson’s correlation. Most of the datasets have Pearson correlations greater than 0.9. 
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