
Oliver et al.  Supplement 

1 

Social Cognitive Networks and Social Cognitive 
Performance Across Individuals With Schizophrenia 

Spectrum Disorders and Healthy Controls 
 

Supplementary Information 
 
 

Supplemental Methods and Materials 
 
Participants 
Participants were recruited for SPINS from the Centre for Addiction and Mental Health (CAMH; 
Toronto, Canada), Zucker Hillside Hospital (ZHH; New York, USA), and the Maryland 
Psychiatric Research Center (MPRC; Maryland, USA). Data for this study included participants 
recruited from December 2014 to March 2018 (time of CAMH scanner upgrade). Of 180 
participants with SSDs and 126 healthy individuals who completed all study visits and met 
eligibility requirements throughout, 164 participants with SSDs and 117 healthy individuals 
(cases:controls by site: CAMH 66:42; ZHH 42:34; MPRC 56:41) were included in data analyses 
after quality control. Participants with SSDs met DSM-5 diagnostic criteria for schizophrenia, 
schizoaffective disorder, schizophreniform disorder, delusional disorder, or psychotic disorder not 
otherwise specified, assessed using the Structured Clinical Interview for DSM (SCID-IV-TR), and 
had no change in antipsychotic medication or decrement in functioning/support level in the 30 
days prior to enrollment. Controls did not have a current or past Axis I psychiatric disorder, 
excepting adjustment disorder, phobic disorder, and past major depressive disorder (over two years 
prior; presently unmedicated), or a first degree relative with a history of psychotic mental disorder. 
Additional exclusion criteria included a history of head trauma resulting in unconsciousness, a 
substance use disorder (confirmed by urine toxicology screening), intellectual disability, 
debilitating or unstable medical illness, or other neurological diseases. Participants also had normal 
or corrected-to-normal vision. 
 
Clinical and Cognitive Assessment 
Data collection occurred across three visits within a one-month period (Visit 1: Consent, screening, 
clinical scales; Visit 2: Magnetic resonance imaging (MRI); Visit 3: Non-social cognitive and 
social cognitive testing).  
 
Administered social cognitive tasks ranged from basic emotion recognition to complex mental 
state inference, and were selected based on findings from the Social Cognition Psychometric 
Evaluation (SCOPE) study (1) and the Social Cognition and Functioning in Schizophrenia project 
(2). These included the Penn Emotion Recognition Test (ER40; 3), which assesses basic emotion 
recognition from static images, the Reading the Mind in the Eyes test (RMET; 4), involving mental 
state inference from the eye region of faces, and the Empathic Accuracy (EA) task (2, 5). 
Participants also completed The Awareness of Social Inference Test - Revised (TASIT; 6), which 
involves viewing social video clips and includes three subtests (TASIT 1: Identifying emotions; 
TASIT 2 and 3: Social inference, including detection of lies and sarcasm). 
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All participants also completed the Wechsler Test of Adult Reading (7) as a measure of premorbid 
IQ. Non-social cognition was evaluated using the MATRICS (Measurement and Treatment 
Research to Improve Cognition in Schizophrenia) Consensus Cognitive Battery (MCCB; 8), which 
includes tests of processing speed, reasoning and problem solving, attention/vigilance, working 
memory, and verbal and visual learning. Psychiatric symptoms were assessed in the SSD sample 
only using the Brief Psychiatric Rating Scale (BPRS; 9) and the Scale for the Assessment of 
Negative Symptoms (SANS; 10). Functioning was evaluated using the Birchwood Social 
Functioning Scale (BSFS; 11) across groups, and the Quality of Life Scale (QLS; 12) in the SSD 
group only. 
 
MRI Data Acquisition 
MRI scans were collected using harmonized scanning parameters on 3T scanners with 
multichannel head coils, including a General Electric Discovery (N=108; CAMH), a General 
Electric Signa (N=33; ZHH) and Siemens Prisma (N=43; ZHH), and a Siemens Tim Trio (N=55; 
MPRC) and Siemens Prisma (N=42; MPRC). 
 
Empathic Accuracy (EA) Task 
The EA task was completed during functional MRI. Prior to scanning, participants were trained 
using a practice version of the task in a mock scanner. During the task, participants watch 9 videos 
in a set order of individuals (5 females, 4 males) discussing emotional (4 positive, 5 negative) 
autobiographical events, such as taking a trip to Spain, seeing their favorite comedian, getting a 
part in a movie, not being paid on time, an uncle passing away, and having their truck broken into. 
This version of the EA task was designed to include adults varying in age, race, and ethnicity. The 
details of the video development are presented elsewhere (2, 13). Throughout the videos, 
participants provide continuous ratings of how positive or negative the individual in the video is 
feeling, on a 9-point scale (1 = extremely negative to 9 = extremely positive) using a button box. 
Thus, they provide a valence rating rather than having to explicitly infer higher-level, more 
complex mental states. EA was calculated for each participant by correlating their ratings with 
self-ratings provided by the individuals in the videos. These values were then Fisher r-to-z 
transformed. The task is presented in three runs (~10 mins/run) with three EA videos (120-150 s 
each) and two interleaved control videos (40 s each) per run. During the control condition, 
participants provide continuous ratings of the relative light or darkness of a greyscale circle as it 
changes shades, on a 9-point scale. This condition is included to ensure that participants are 
engaged in the task (controlling for avolition) and comprehend it. 
 
fMRI Preprocessing 
All scans were preprocessed using an in-house pipeline system, epitome 
[https://github.com/josephdviviano/epitome], which uses FSL and AFNI. All scans had the first 4 
TRs removed and were slice-time corrected. Time series outliers were removed using despiking 
and each run was scaled to have a global mean of 1000. Linear registrations were calculated 
between the EPI image and each subject’s T1 image using FLIRT, and the T1 and MNI space, 
followed by a non-linear warp to MNI space using FNIRT. 
 
For each participant, TRs with framewise displacement > .5 mm were censored (14), along with 
the preceding and trailing TR, and replaced with a linear interpolate to perform confound 
regression. A nuisance regression model was then applied to the data, including regressors for the 

https://github.com/josephdviviano/epitome


Oliver et al.  Supplement 

3 

6 head motion correction parameters, a 2nd order detrend, mean white matter (WM) signal, mean 
cerebral spinal fluid (CSF) signal, the square, derivative, and square of the derivative for each of 
these regressors, and the top three principal components of the WM and CSF signals (aCompCor). 
This approach combines thorough regression of head motion parameters (15) and tissue-specific 
regressors (16). The data was then smoothed to a full width half maximum of 8 mm (17, 18) using 
3dBlurToFWHM, and warped into MNI space using the previously calculated transform. 
 
Following mean residual time series generation for selected regions of interest, censored TRs were 
then dropped, and participants were excluded if more than 30% of their time points were dropped 
across all three runs. 
 
Data-Driven Social Cognitive Subnetwork Detection 
Community detection is a data-driven method of defining densely connected subgroups of nodes, 
or modules, which have high intramodular connectivity and lower intermodular connectivity (19). 
Social cognitive subnetworks (or communities) were identified for each participant using the 
Louvain community detection algorithm for signed networks (positive and negative weights) from 
the Brain Connectivity Toolbox (20), which divides nodes into modules while maximizing within-
module connections and minimizing between-module connections. This was done at network 
densities ranging from the top 20-70% of connections (5% intervals). To generate consensus 
partitions for each participant at each density, this algorithm was run 100 times per participant at 
each density, after which consensus clustering was performed using the Louvain algorithm (1000 
iterations; 21) across the 100 partitions per participant at agreement thresholds of 30, 40, 50, and 
60% (19), at each density. A group-level partition was then generated by performing the same 
consensus clustering procedure across the individual partitions at each density. Consensus 
clustering produces an agreement matrix based on the individual partitions (indicating the 
proportion of partitions where a pair of nodes were assigned to the same module). The agreement 
matrix is then thresholded by a given level of agreement and consensus partitions are created by 
running the algorithm iteratively on the agreement matrix, and repeating this until a single 
representation is achieved. The consistency of these consensus partitions was then examined across 
the 11 densities at each of the four agreement thresholds, and an overall parcellation was generated 
based on the most frequently assigned module across all consensus partitions. 
 
Division of Sample Based on Social Cognitive Performance 
The lower- and higher-level social cognition factor scores were estimated for each participant 
using multiple regression in the R package lavaan (22), based on our previous two-factor model 
of social cognition which demonstrated very good fit across individuals with SSDs and healthy 
controls (CFI = 1.00, RMSEA = 0.00; 23). We also tested this two-factor model in the current 
sample using confirmatory factor analysis, confirming good fit for the data across participants (CFI 
= .990, RMSEA = .042). Model fit was assessed using ranges of acceptable fit values outlined by 
Hu and Bentler (24), including comparative fit index (CFI) ≥ .95 and root mean square error of 
approximation (RMSEA) ≤ .06 to suggest that the hypothesized model fits the observed data 
relatively well. 
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Statistical Analysis 
 
Figure S1: Representative example of total connectivity strength across network densities 
demonstrating consistent patterns by lower-level social cognitive performance group and 
connection-type 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Oliver et al.  Supplement 

5 

Supplemental Results 
 

 
Table S1: Participant demographic and clinical characteristics by lower-level social cognitive 
performance group 
 

  Poor Lower-Level 
Social Cognition 

Good Lower-Level 
Social Cognition 

  

  (N = 141) (N = 140)   

  N % N % p 

Diagnostic Group (control) 31 22.0 86 61.4 < .001 

Higher-Level Social Cognition Group 
(good) 22 15.6 118 84.3 < .001 

Gender (male) 94 66.7 80 57.1 .128 

  Mean SD Mean SD p 

Age 33.09 9.99 30.71 9.72 .044 

Education (highest grade) 13.51 2.18 15.31 1.96 < .001 

WTAR (standard score) 102.81 13.92 116.55 8.39 < .001 

BSFS Total 143.20 29.92 163.39 27.07 < .001 

Lower-Level Social Cognition Score -0.67 0.65 0.74 0.33 < .001 

Higher-Level Social Cognition Score -0.61 0.80 0.69 0.39 < .001 

SD = standard deviation, WTAR = Wechsler Test of Adult Reading, BSFS = Birchwood Social 
Functioning Scale                                     
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Table S2: Participant demographic and clinical characteristics by higher-level social cognitive 
performance group 
 

  Poor Higher-Level 
Social Cognition 

Good Higher-Level 
Social Cognition 

  

  (N = 141) (N = 140)   

  N % N % p 

Diagnostic Group (control) 31 22.0 86 61.4 < .001 

Lower-Level Social Cognition Group 
(good) 22 15.6 118 84.3 < .001 

Gender (male) 90 63.8 84 60.0 .590 

  Mean SD Mean SD p 

Age 33.14 9.46 30.65 10.22 .035 

Education (highest grade) 13.61 2.21 15.21 2.02 < .001 

WTAR (standard score) 103.23 14.31 115.82 8.78 < .001 

BSFS Total 142.43 29.20 164.16 27.26 < .001 

Lower-Level Social Cognition Score -0.57 0.78 0.63 0.45 < .001 

Higher-Level Social Cognition Score -0.69 0.70 0.76 0.29 < .001 

SD = standard deviation, WTAR = Wechsler Test of Adult Reading, BSFS = Birchwood Social 
Functioning Scale                                      

 
 
Network Connectivity 
 
Within-Network Connectivity (Table 2) 
The ANCOVAs comparing within-network connectivity values between groups all demonstrated 
a main effect of network (Table 2). Pairwise comparisons revealed that overall within-network 
connectivity was significantly greater in the mentalizing (t(546) = 8.11, p < .0001) and motor 
resonance (t(546) = 6.84, p < .0001) networks than the affect sharing network, but there was no 
difference between the mentalizing and motor resonance networks (t(546) = 1.27, p > .1). There 
was also a main effect of connection-type, driven by greater within-network positive connectivity 
than negative connectivity (t(273) = 80.25, p < .0001). Further, there was a significant network x 
connection-type interaction. This was characterized by greater positive within-network 
connectivity in the mentalizing (t(1055) = 12.8, p < .0001) and motor resonance (t(1055) = 10.9, 
p < .0001) networks than the affect sharing network, and marginally greater positive within-
network connectivity in the mentalizing than the motor resonance network (t(1055) = 1.95, p = 
.052). In contrast, greater negative within-network connectivity was seen in the affect sharing 
network than both the mentalizing (t(1055) = 2.52, p = .036) and motor resonance (t(1055) = 2.19, 
p = .043) networks, but there was no difference between the mentalizing and motor resonance 
networks (t(1055) = -.325, p > .1). 
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Between-Network Connectivity (Table 2) 
Across group comparisons of between-network connectivity, there was a significant main effect 
of network (Table 2). This was driven by greater mentalizing-motor resonance connectivity, than 
both motor resonance-affect sharing (t(546) = 2.90, p = .004) and mentalizing-affect sharing 
connectivity (t(546) = 16.7, p < .0001) and greater motor resonance-affect sharing connectivity 
than mentalizing-affect sharing (t(546) = 13.8, p < .0001). A main effect of connection-type was 
also observed, characterized by greater positive versus negative between-network connectivity 
(t(273) = 7.77, p < .0001). Additionally, there was a significant network x connection-type 
interaction. Motor resonance-affect sharing positive connectivity was greater than both 
mentalizing-motor resonance (t(843) = 4.19, p < .0001) and mentalizing-affect sharing (t(843) = 
34.7, p < .0001) positive connectivity, and mentalizing-motor resonance positive connectivity was 
greater than mentalizing-affect sharing (t(843) = 30.5, p < .0001). The opposite pattern was seen 
for negative between-network connectivity, with lower motor resonance-affect sharing than 
mentalizing-motor resonance (t(843) = -6.96, p < .0001) and mentalizing-affect sharing (t(843) = 
-21.45, p < .0001) negative connectivity, and lower mentalizing-motor resonance than 
mentalizing-affect sharing negative connectivity (t(843) = -14.49, p < .0001). 
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Figure S2: Within- and between-network connectivity strength by connection-type and lower-level social cognitive performance, 
higher-level social cognitive performance, and diagnostic groups 
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Prisma Subsample Connectivity 
Regression analyses including positive and negative within- and between-network connectivity 
strengths in the Prisma subsample revealed that increased motor resonance-affect sharing negative 
connectivity was significantly associated with greater lower-level social cognition factor scores 
(β=0.44, p=.045, R2=0.250), as in the full sample, though this was not a significant predictor of 
higher-level social cognition factor scores in the subsample (β=0.30, p=.26, R2=0.219).  
 
The same ANCOVA analyses in the Prisma subsample also revealed very similar effects to those 
found in the full sample (Table S3). Significant main effects and interactions coincided with 
findings in the full sample for between-network connectivity, including a significant connection-
type x lower-level social cognitive performance group interaction and a network x connection-
type x higher-level social cognitive performance group interaction. For within-network 
connectivity, though lower- and higher-level social cognitive performance group effects and 
interactions were not statistically significant, the network x connection-type x higher-level social 
cognitive performance group interaction effect size was larger than that in the full sample. There 
also remained to be no significant main effects of, or interactions with, diagnostic group for within- 
or between-network connectivity. 
 
Table S3: Prisma subsample within- and between-network connectivity results by lower-level 
social cognitive performance, higher-level social cognitive performance, and diagnostic groups 
 
 df F p partial eta2 
Within-Network Connectivity 
Lower-Level Social Cognitive Performance Group Comparisons 
Network 2.00, 159.61 13.52 *** <.0001 .145 
Connection-type 1, 80 2281.77 *** <.0001 .966 
Group 1, 80 0.25 .616 .003 
Network x Connection-type 2.00, 159.84 17.33 *** <.0001 .178 
Network x Group 2.00, 159.61 0.29 .748 .004 
Connection-type x Group 1, 80 0.62 .435 .008 
Network x Connection-type x Group 2.00, 159.84 0.28 .754 .004 

     
Higher-Level Social Cognitive Performance Group Comparisons 
Network 2.00, 159.72 13.74 *** <.0001 .147 
Connection-type 1, 80 2264.35 *** <.0001 .966 
Group 1, 80 0.02 .900 .000 
Network x Connection-type 2.00, 159.97 17.64 *** <.0001 .181 
Network x Group 2.00, 159.72 1.62 .201 .020 
Connection-type x Group 1, 80 0.00 .997 .000 
Network x Connection-type x Group 2.00, 159.97 1.68 .190 .021 

     
Diagnostic Group Comparisons 
Network 1.99, 159.38 13.60 *** <.0001 .145 
Connection-type 1, 80 2267.47 *** <.0001 .966 
Group 1, 80 0.37 .543 .005 
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Network x Connection-type 2.00, 159.83 17.28 *** <.0001 .178 
Network x Group 1.99, 159.38 0.76 .470 .009 
Connection-type x Group 1, 80 0.11 .741 .001 
Network x Connection-type x Group 2.00, 159.83 0.05 .953 .001 

     
Between-Network Connectivity 
Lower-Level Social Cognitive Performance Group Comparisons 
Network 1.97, 157.43 63.83 *** <.0001 .444 
Connection-type 1, 80 20.64 *** <.0001 .205 
Group 1, 80 2.51 .117 .030 
Network x Connection-type 1.62, 129.31 215.54 *** <.0001 .729 
Network x Group 1.97, 157.43 0.85 .426 .011 
Connection-type x Group 1, 80 6.49 * .013 .075 
Network x Connection-type x Group 1.62, 129.31 1.05 .341 .013 

     
Higher-Level Social Cognitive Performance Group Comparisons 
Network 1.96, 157.12 63.21 *** <.0001 .441 
Connection-type 1, 80 19.13 *** <.0001 .193 
Group 1, 80 0.01 .910 .000 
Network x Connection-type 1.64, 131.49 223.96 *** <.0001 .737 
Network x Group 1.96, 157.12 0.08 .923 .001 
Connection-type x Group 1, 80 0.17 .686 .002 
Network x Connection-type x Group 1.64, 131.49 4.22 * .023 .050 

     
Diagnostic Group Comparisons 
Network 1.96, 156.63 64.25 *** <.0001 .445 
Connection-type 1, 80 19.09 *** <.0001 .193 
Group 1, 80 0.05 .815 .001 
Network x Connection-type 1.61, 128.85 214.42 *** <.0001 .728 
Network x Group 1.96, 156.63 1.39 .252 .017 
Connection-type x Group 1, 80 0.01 .915 .000 
Network x Connection-type x Group 1.61, 128.85 0.63 .503 .008 

 
 
Nodal Connectivity (Table S4) 
Regions exhibiting greater positive within-network connectivity in poor versus good lower-level 
social cognitive performers (Figure 2) included the left dorsal anterior cingulate cortex (ACC) and 
posterior temporoparietal junction (TPJ; mentalizing network). Greater positive between-network 
connectivity was demonstrated in poor performers in bilateral inferior parietal lobule (IPL) nodes 
(affect sharing network), whereas greater negative between-network connectivity was seen in good 
performers in the right IPL/intraparietal sulcus (affect sharing network) and bilateral 
supplementary motor area (SMA) and inferior frontal gyrus (IFG; motor resonance network). 
 
Fewer nodes showed higher-level social cognitive performance group-based differences (Figure 
3), though greater positive within-network connectivity in poor versus good performers was also 
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seen in left posterior TPJ (mentalizing network), and between-network negative connectivity was 
greater in right IPL/intraparietal sulcus (affect sharing network) in better performers. 
 
No nodes demonstrated significant diagnostic group differences in positive or negative within-
network connectivity strength. However, cases showed greater between-network positive 
connectivity in bilateral IPL nodes (affect sharing network) than controls, whereas the right IPL 
(affect sharing network) exhibited greater between-network negative connectivity in controls (see 
Table S4 for details). 
 
Table S4: Nodal connectivity results by lower-level social cognitive performance, higher-level 
social cognitive performance, and diagnostic groups 
 
  t p FDR   Direction of Effect Network 
Lower-Level Social Cognitive Performance Group Comparisons   
Positive Within-Network Connectivity Strength       
L dACC -3.23 .036 * Poor > Good Mentalizing 
L pTPJ -3.74 .012 * Poor > Good Mentalizing 
            
Negative Within-Network Connectivity Strength       
No regions with significant differences         
            
Positive Between-Network Connectivity Strength       
R SMG -4.50 .001 ** Poor > Good Affect Sharing 
L IPL/SMG -3.98 .002 ** Poor > Good Affect Sharing 
L IPS -3.46 .011 * Poor > Good Affect Sharing 
            
Negative Between-Network Connectivity Strength       
R SMA 3.71 .007 ** Good > Poor Motor Resonance 
L SMA 4.62 .0003 *** Good > Poor Motor Resonance 
R IFG BA44 3.02 .029 * Good > Poor Motor Resonance 
L IFG BA45 1 3.19 .020 * Good > Poor Motor Resonance 
R IPL/IPS 3.34 .017 * Good > Poor Affect Sharing 
            
            
Higher-Level Social Cognitive Performance Group Comparisons   
Positive Within-Network Connectivity Strength       
L pTPJ -3.51 .028 * Poor > Good Mentalizing 
            
Negative Within-Network Connectivity Strength       
No regions with significant differences         
            
Positive Between-Network Connectivity Strength       
R SMG -3.60 .019 * Poor > Good Affect Sharing 
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Negative Between-Network Connectivity Strength 
R IPL/IPS 3.25 .034 * Good > Poor Affect Sharing 
R mPFC/ACC -3.39 .034 * Poor > Good Mentalizing 
            
            
Diagnostic Group Comparisons     
Positive Within-Network Connectivity Strength       
No regions with significant differences         
            
Negative Within-Network Connectivity Strength       
No regions with significant differences         
            
Positive Between-Network Connectivity Strength       
R IPL/IPS -3.23 .036 * Case > Control Affect Sharing 
R SMG -4.63 .0003 *** Case > Control Affect Sharing 
            
Negative Between-Network Connectivity Strength       
R IPL/IPS 3.72 .013 * Control > Case Affect Sharing 

R = right, L = left, Good = good social cognitive performance group, Poor = poor social cognitive 
performance group, BA = Brodmann area, dACC = dorsal anterior cingulate cortex, pTPJ = posterior 
temporoparietal junction, SMG = supramarginal gyrus, IPL = inferior parietal lobule, IPS = intraparietal 
sulcus, SMA = supplementary motor area, IFG = inferior frontal gyrus, mPFC = medial prefrontal cortex 
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