Supporting Information

An innovative non-PrP-targeted drug strategy designed to enhance prion clearance

Arianna Colini Baldeschi ^{1, §}, Marco Zattoni ¹, Silvia Vanni ^{1, †}, Lea Nikolic ¹, Chiara Ferracin ¹, Giuseppina La Sala ^{2, #}, Maria Summa ³, Rosalia Bertorelli ³, Sine Mandrup Bertozzi ⁴, Gabriele Giachin ⁵, Paolo Carloni ^{6, 7, 8}, Maria Laura Bolognesi ⁹, Marco De Vivo ² and Giuseppe Legname ^{1, *}

AUTHOR ADDRESS

1 Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

2 Molecular Modeling & Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy

3 Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy

4 Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy

5 Department of Chemical Sciences (DiSC), University of Padua, Via F. Marzolo 1, 35131 Padova, Italy

6 Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, , "Computational Medicine" Forschungszentrum Jülich, 52428 Jülich, Germany

7 Institute for Neuroscience and Medicine (INM)-11, "Molecular Neuroscience and Neuroimaging " Forschungszentrum Jülich, 52428 Jülich, Germany

8 Department of Physics, RWTH-Aachen University, Aachen, Germany

9 Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy

Corresponding Author

* Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136 Trieste, Italy. Email: legname@sissa.it

Present Addresses

§ Institute of Biomedicine, Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.

⁺ Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.

Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

Table of contents

able S1	53
igure S1	57
igure S2	58
igure S3 S	59
igure S4 S	10
igure S5 S	511
igure S6 S	12
igure S7 Si	13
igure S8 S	14
igure S9 S	15
igure S10S1	16
igure SuS	17
igure S12	18
urity of compound 5	19

CODE	COMMERCIAL NAME	IUPAC NAME	CAS
A	ARN8755_Z_01	3-[[(5,5-dioxido-6H-dibenzo[c,e][1,2]thiazin- 9-yl)amino]methyl]-7-methyl-2(1H)- Quinolinone	1026706-74-0
В	ARN5608_Z_01	2-(3-Oxo-2,3-dihydro-1H-isoindol-1-yl)-N- [2-(5-p-tolyl-2H-[1,2,4]triazol-3-yl)-ethyl]- acetamide	1214449-38-3
С	ARN2053_Z_01	1-(2-Fluoro-phenyl)-3- [1-(5-pyridin-3-yl-2H-[1,2,4]triazol-3-yl)- ethyl]-urea	1000355-25-8
D	ARN5896_Z_01	3-{[2-(3,5-Dimethyl-pyrazol-1-yl)- ethylamino]- methyl}-5-phenyl-1H-pyridin-2-one	1381725-39-8
E	ARN5158_Z_01	2-(6-chloro-2-oxo-1,3-benzoxazol-3-yl)- N-[(3-phenyl-1,2,4-oxadiazol-5- yl)methyl]acetamide	1214533-39-7
F	ARN2996_J_01	(3,5-Dimethyl-1H-indol-2-ylmethyl)-methyl- (1-methyl-2-pyridin-2-yl-ethyl)-amine	1287460-72-3 (cas of neutral form)
G	ARN2356_Z_01	[5-Amino-1-(4-fluoro-phenyl)-1H-pyrazol-4- yl]- (1H-pyrrol-2-yl)-methanone	1381295-34-6

Н	ARN2357_Z_01	[5-Amino-1-(2,4-difluoro-phenyl)- 1H-pyrazol-4-yl]-(1H-pyrrol-2-yl)-methanone	1381407-09-5
I	ARN10184_A_01	5-[2-(3-Chloro-phenyl)-ethyl]-3- {[(piperidin-4-ylmethyl)-amino]-methyl}- pyrazolo[1,5-a]pyrimidin-7-ol	2058940-45-5 (cas of neutral form)
L	ARN1510_Z_01	4'-Fluoro-biphenyl-3-carboxylic acid (1H-imidazol-2-ylmethyl)-amide	1381337-70-7
M	ARN5864_Z_01	1-(5-Pyridin-3-yl-2H-[1,2,4]triazol-3- ylmethyl) -3-(2-trifluoromethyl-phenyl)-urea	1000354-89-1
N	ARN8628_Z_01	5-Isopropyl-2H-pyrazole-3-carboxylic acid [2-(5-pyridin-3-yl-2H-[1,2,4]triazol-3-yl)- ethyl]-amide	1029834-71-6
0	ARN5863_Z_01	1-(3-Methoxy-phenyl)-3-(5-pyridin-3-yl-2H -[1,2,4]triazol-3-ylmethyl)-urea	1000353-70-7
Ρ	ARN11880_Z_01	3-(5-Chloro-1-methyl-1H-benzoimidazol-2-yl) -N-(3-[1,2,4]triazol-1-ylmethyl-phenyl)- propionamide	1214586-09-0
Q	ARN1609_Z_01	(5-Fluoro-1H-indol-2-yl)- (3-imidazo[4,5-b]pyridin-3-yl-pyrrolidin-1-yl)- methanone	1381040-70-5 (racemate)
R	ARN9565_Z_01	1-[1-(4-Fluoro-phenyl)-1H-pyrazol-4- ylmethyl] -4-thiazol-2-yl-piperazine	1214413-13-4

5	ARN10145_Z_01	Benzyl-(7-methoxy-2H-chromen-3-ylmethyl) -(6-methyl-pyridin-2-ylmethyl)-amine	1214435-09-2
Т	ARN11752_Z_01	1-Pyrimidin-2-yl-piperidine-4-carboxylic acid (1-methyl-1H-imidazol-2-ylmethyl)-amide	2059666-43-0
U	ARN8304_Z_01	2-(3,5-Dimethyl-pyrazol-1-yl)-N- [2-(5-pyridin-3-yl-2H-[1,2,4]triazol-3-yl)- ethyl]-acetamide	958609-69-3
1	ARN11457_Z_01	[4-(5-Amino-1-p-tolyl-1H-pyrazole-4- carbonyl)-piperidin-1-yl]- (4-methyl-thiazol-5-yl)-methanone	1381325-24-1
2	ARN11512_Z_01	(5-Amino-1-p-tolyl-1H-pyrazol-4-yl)- (1-cyclobutanecarbonyl-pyrrolidin-3-yl)- methanone	1381388-32-4
3	ARN12643_Z_01	(5-Amino-1-phenyl-1H-pyrazol-4-yl) -(1H-indol-3-yl)-methanone	1015939-70-4
4	ARN12924_Z_01	[4-(5-Amino-1-phenyl-1H-pyrazole-4- carbonyl) -piperidin-1-yl]-isoxazol-5-yl-methanone	1381478-56-3
5	ARN1468_Z_01	[5-Amino-1-(4-trifluoromethoxy-phenyl)- 1H-pyrazol-4-yl]-piperidin-4-yl-methanone	1381459-14-8
6	ARN1585_Z_01	1-{4-[5-Amino-1-(3-fluoro-phenyl)- 1H-pyrazole-4-carbonyl]-piperidin-1-yl}- ethanone	1381429-03-3

7	ARN2275_Z_01	1-(4-Fluoro-phenyl)-1H -pyrazole-4-carboxylic acid (tetrahydro- pyran-3-yl)-amide	958625-69-9
8	ARN3623_Z_01	N-[(3,5-dimethyl-1H-pyrazol-4-yl)methyl]- 1-(4-fluorophenyl)-1H-Pyrazole-4- carboxamide	1287426-60-1

Table S1. Compounds. The table lists code, commercial name, IUPAC name, and CAS number of each compound used in the present study

Figure S1. SerpinA₃n expression in uninfected and prion-infected GT1 cell lines. A, B, C Gene expression analysis of SerpinA₃n in RML- (n=5) and 22L-infected GT1 cell lines (n=5) compared to uninfected cells (n=5), normalized on *Gapdh* (A), *Actb* (B) and *Tubb*₃ (C) as reference genes. The relative expression ratio (fold change, FC) was calculated using the $2^{-\Delta\Delta C_T}$ method. ΔC_T was calculated by subtracting the C_T of the reference genes (*Gapdh*, *Actb*, *Tubb*₃) from the C_T of the target one (*SerpinA*₃n). $\Delta\Delta C_T$ values were obtained with the ΔC_T of each sample from the infected cell group (either with RML or 22L), minus the mean ΔC_T of the population of calibrator samples (uninfected cells). **D** Representative WB image of intracellular and secreted SerpinA₃n on uninfected and RML- and 22L-infected GT1. Ponceau staining of the membrane for secreted SerpinA₃n was used as a protein loading control. SerpinA₃n and β-actin were developed on the same membrane, sequentially. PrP^{Sc} signal was developed on another membrane after PK-digestion of cell lysates. WB image has been cropped to improve the clarity of the signal. Molecular weight was represented on the right (kDa). **E** Densitometric analysis of intracellular SerpinA₃n levels normalized on β-actin WB signal between uninfected (n=3) and RML- (n=3) and 22L-infected GT1 cell lines (n=5). Statistical significance was performed using the Kruskal-Wallis test with Dunn's multiple comparisons compared to uninfected cells. *p<0.05, ** p<0.01.

Figure S2. SerpinA3n expression in uninfected and prion-infected N2a cell lines. A, B, C. Gene expression analysis of SerpinA3n in RML- (n=5) and 22L-infected N2a cell lines (n=5) compared to uninfected cells (n=5), normalized on *Gapdh* (A), *Actb* (B) and *Tubb3* (C) as reference genes. The relative expression ratio (fold change, FC) was calculated using the $2^{-\Delta\Delta C_T}$ method. ΔC_T was calculated by subtracting the C_T of the reference genes (*Gapdh*, *Actb*, *Tubb3*) from the C_T of the target one (*SerpinA3n*). $\Delta\Delta C_T$ values were obtained with the ΔC_T of each sample from the infected cell group (either with RML or 22L), minus the mean ΔC_T of the population of calibrator samples (uninfected cells). **D** Representative WB image of intracellular and secreted SerpinA3n on uninfected and RML- and 22L-infected N2a. Ponceau staining of the membrane for secreted SerpinA3n was used as a protein loading control. SerpinA3n and β-actin were developed on the same membrane, sequentially. PrP^{Sc} signal was developed on another membrane after PK-digestion of cell lysates. WB image has been cropped to improvthe e clarity of the signal. Molecular weight was represented on the right (kDa). **E** Densitometric analysis of intracellular SerpinA3n levels normalized on β-actin WB signal between uninfected (n=3) and RML- (n=3) and 22L-infected N2a cell lines (n=5). Statistical significance was performed using the Kruskal-Wallis test with Dunn's multiple comparisons compared to uninfected cells. *p<0.05, ** p<0.01.

Figure S3. Cell viability assay of tested molecules. A MTT analysis of ScGT1 RML treated with the vehicle (CTRL) or the drugs (compounds A-U) at 20µM. **B** MTT analysis of ScGT1 RML treated with the vehicle (CTRL) or the drug (F, G, and H) at 40µM. **C** MTT analysis of ScGT1 RML treated with the vehicle (CTRL) or the drug (compounds 1-8) at 20µM. The experiment has been performed in six technical replicates.

Figure S4. **Anti-prion effect of first library molecules. A** Western blotting of PrP^{Sc} , Total PrP and β -actin in lysates from ScGT1 RML treated with vehicle (CTRL) or drug (compounds A-U) at 20 μ M. Molecular weight is represented on the right (kDa). **B** densitometric analysis of normalized PrP^{Sc} levels in ScGT1 RML treated with the vehicle or the drug.

Figure S5. Anti-prion effect of second library molecules. A Western blotting of PrP^{Sc} , Total PrP and β -actin in lysates from ScGT1 RML treated with vehicle (CTRL) or drug (compounds 1-8) at 20 μ M. The experiment has been performed in triples. Molecular weight is represented on the right (kDa). **B** Densitometric analysis of normalized PrP^{Sc} levels in ScGT1 RML treated with the vehicle or the drug.

Figure S6. Binding mode of compound 5. Left: the structure of SerpinA₃n (pdb: 1AS₄) is shown in cartoon style, with beta-sheet A in pink, beta-sheet B in light blue, beta-sheet C in green, and the helix H in sand. Compound 5 is shown in orange sticks. The sB/sC pocket is highlighted with a lemon circle. Right: Close up on the sB/sC pocket. The latter is represented in grey surface. Compound 5 is represented as orange sticks. Residues in the binding pocket are shown in grey sticks.

Figure S7. **Compound 5 inhibitory activity on SerpinA3n-chymotrypsin complex formation.** SDS-PAGE Coomassie blue staining of increasing concentrations (10nM to 1mM) compound 5 or vehicle (DMSO) incubated with SerpinA3n (8 μ M) and chymotrypsin (2 μ M), showing SDS-stable SerpinA3n-chymotrypsin complexes (asterisk), active SerpinA3n (white arrowhead), and cleaved SerpinA3n (black arrowhead).

Figure S8. ITC measurements. A A representative raw titration data obtained from the titration of 16 μ M SerpinA3n with 160 μ M compound 5. **B** Wiseman plot of integrated data (black circles) and fitted isothermal binding curve. From two independent experiments, an apparent mean KD of 26 μ M for the single macroscopic dissociation constant was obtained, with a 1:1 stoichiometry. In the inset, the signature shows a mean Δ G, Δ H and $-T\Delta$ S of approximately -27.3, -23.5 and -3.73 kJ/mol, respectively. **C**, **D** Representative raw titration data obtained from the titration of 160 μ M compound 5 (C), and 16 μ M SerpinA3n (D) with buffer, as controls.

Figure S9. Dose-survival curve of compound 5 on RML- and 22L-infected GT1 and N2a cell lines. MTT analysis after 6 days treatment with increasing concentration of compound 5 in ScGT1 RML (A, LD50=55.17), ScGT1 22L (B, LD50=41.68) ScN2a RML (C, LD50=44.17) and ScN2a 22L (D, LD50=34.03) (n=3).

Figure S10. *De novo* **infection with compound 5.** Western blotting analysis of PrP^{Sc} in lysates from *de novo* infected GT1 cell line treated with vehicle (CTRL) or the drug (compound 5) for several passages at 20µM. β -actin has been performed as a loading control. Molecular weight is represented on the right (kDa).

Figure S1. Cell viability assay and PrP^{C} amount in compound 5-treated not-infected cells and PrP^{C} aggregation propensity in presence of compound 5. A, D Representative Western Blot image of PrP^{C} and β -actin in lysates from GT1 (A) N2a (D) treated with vehicle (CTRL) or compound 5 at 20µM. Molecular weight is represented on the right (kDa). B, E Densitometric analysis of normalized PrP^{C} levels GT1 (B) and N2a cells (E) treated with the vehicle (CTRL) or compound 5. Experiments have been performed in duplicates (n=3). C, F MTT analysis of GT1 (C) and N2a (F) treated with the vehicle (CTRL) or compound 5 at 20µM. The experiment has been performed in six technical replicates. G RT-QuIC analysis of PrP-compound 5 interaction. The presence of "seed" (PrP^{Sc}) is responsible for an increased formation of ThT fluorescent PrP aggregates in presence (green line) or absence of compound 5 (orange line). Incubation of recombinant mouse PrP (moPrP) alone (blue line) or in presence of DMSO (red line) has been performed as negative control. A positive control is represented by moPrP in presence of DMSO to which "seed" has been added (purple line).

Figure S12. PrP^{C} **localization upon compound 5 treatment.** Immunofluorescence staining of PrP^{C} (experiment performed at $37^{\circ}C$) and membrane only PrP^{C} (experiment performed at $4^{\circ}C$, to block PrP recycling) in N2a cells treated with compound 5 compared to control cells (treated with vehicle only, DMSO).

Purity of compound 5

