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Supplemental Results 

Comparisons of the mutation spectrum to the rare variant spectrum 

We compared the cat mutation spectrum to the spectrum of rare polymorphisms from a 

published study of cat variation. To calculate the rare variant spectrum, we considered variants 

from the 99 Lives dataset (Buckley et al. 2020) at frequencies less than 5% in the folded 

frequency spectrum. We excluded singletons to reduce potential sequencing errors. Table S1 

shows a comparison of this calculated spectrum to the mutation spectrum. A>G transitions are 

significantly overrepresented while A>T transversions are significantly underrepresented (both 

p < 0.05) in the rare variant spectrum relative to the mutation spectrum. 

We performed the same comparison in humans, using extremely rare variants from 

Carlson et al. (2018) to calculate the polymorphism spectrum and mutations from Jónsson et al. 

(2017) to calculate the mutation spectrum. There is more power to detect differences with the 

larger number of mutations in the human dataset. We find that all but the proportion of A>T 

transversions are significantly different at the p < 0.05 level between the rare variant spectrum 

and the mutation spectrum for humans (Table S1). 

Table S1. Comparison of mutation and variant spectra in cat and human 

  mutation class (percent) 

cat spectrum  A>C A>G A>T C>A C>G C>T 

mutation  6.44 18.88 11.59 9.01 6.44 47.64 

rare variant  7.38 27.31 5.70 8.54 7.48 43.59 

human spectrum  
      

mutation  7.04 26.81 6.80 7.59 9.60 42.15 

rare variant  7.30 27.23 6.98 10.19 8.81 39.49 
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Supplemental Figures 

 

Figure S1. Phased mutation counts with parental age 

The number of phased mutations from ten trios of the domestic cat with a maternal (blue) and 

paternal origin (red), as identified by read-pair phasing. There is a positive relationship between 

the number of phased mutations and increasing parental age, though fewer maternal mutations 

limit the significance of its p-value (Poisson regression, paternal p = 0.032, maternal p = 0.116). 

Shaded areas show regression 95% CI.  
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Figure S2. Mutation rates estimated with increasing filter stringency 

The number of mutations and the callable size of the genome decline with increasing filter 
stringency for (left) minimum genotype quality (GQ), while maintaining allelic balance > 0.35, 
and (right) minimum allelic balance, while GQ > 70. Error bars show 95% CI on estimates of the 
per generation, per bp rates under a Poisson model. 
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Figure S3. Cat mutation spectrum 

(A) Proportion of each mutation class from mutations detected in all 11 trios. Asterisks (purple) 

show a comparison to the polymorphism spectrum for each mutation class (see Supplemental 

Results). (B) Proportion of each mutation class from only phased mutations. Shaded regions 

show the proportion of mutations occurring at CpG sites. 55% of phased C>T mutations 

occurred at CpG sites: 47% of these were of paternal origin and 8% were of maternal origin. 

Error bars show binomial 95% CI (Wilson score interval) for respective classes.  
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Figure S4. Mutation rate per generation and parental age in mammals 

Comparison of the per-generation mutation rate from the domestic cat (red) to rates from other 

pedigree studies in mammals. There is a significant relationship between the mutation rate and 

average parental age of animals used in each study (p = 0.02). Because these studies use 

different sampling approaches, we show a point estimate at the average age of animals used in 

each study to make the comparison. The blue dotted line shows a linear regression of the per-

generation mutation rate with parental age from all presented estimates (95% CI in gray). 

References for each of these estimates: 

Mouse, Lindsay et al. (2019); Wolf, Koch et al. (2019); Marmoset, Yang et al. (2021); Gray mouse lemur, Campbell et 

al. (2021); Owl monkey, Thomas et al. (2018); Rhesus macaque, Wang et al. (2020); Baboon, Wu et al. (2020); 

Chimpanzee, Besenbacher et al. (2019); Gorilla, Besenbacher et al. (2019); Orangutan, Besenbacher et al. (2019); 

Human, Jónsson et al. (2017). 
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