1	
2	Pharmacological properties of TRPM3 isoforms are determined by the length of the pore
3	Ιοορ
4	
5 6	SUPPLEMENARY INFORMATION
7	
8	Katharina Held ^{1,2,3} , Vincenzo Davide Aloi ^{1,2} , Ana Cristina Nogueira Freitas ² , Annelies Janssens ² ,
9	Andrei Segal ² , Julia Przibilla ⁴ , Stephan Ernst Philipp ⁴ , Yu Tian Wang ³ , Thomas Voets ² and Joris
10	Vriens ^{1, #}
11	
12	Author affiliations:
13	¹ Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of
14	Development and Regeneration, KU Leuven, Belgium
15	² Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research,
16	and KU Leuven Department of Molecular Medicine, Leuven, Belgium
17	³ DM Centre for Brain Health, Department of Medicine, UBC, Canada
18	⁴ Experimental and Clinical Pharmacology and Toxicology / Center for Molecular Signaling
19	(PZMS), Saarland University, Homburg, Germany.
20	

22 FIGURE S1

23 Mean fluorescence ratio (Fura₃₄₀/Fura₃₈₀) of HEK293T cells transfected with TRPM3 α 1 - α 6 or 24 of non-transfected cells during treatment with PS (40 μ M) and Nif (50 μ M) (N = 3 cover slips 25 for each experiment).

27 FIGURE S2

A) Time course of calcium fluorimetric measurements in HEK293T cells transiently expressing TRPM3 α 1 upon application of different concentrations of PS (50, 100 and 200 μ M) and Clt (10 μ M). B) As in A) during application of different concentrations of Nif (100 and 200 μ M) and Clt (10 μ M). C) Statistics of calcium increases that occur during the different treatments in A) and B) with n = 366 for PS treatment and n = 393 for Nif treatment with N = 3 cover slips for both experiments. * < 0.05 with Kruskal-Wallis ANOVA.

FIGURE S3

A - D) Time courses and corresponding *I-V* curves of whole-cell currents recorded in
HEK293T cells transiently transfected with *A*) TRPMα3, *B*) TRPMα4, *C*) TRPMα5, *D*) TRPMα6
during treatment with PS and Clt. E) Current increases of the different TRPM3α variants at ±
80 mV upon chemical treatment as shown in *B*) – *E*) (n = 5 for TRPM3α3, n = 3 for TRPM3α4
and n = 5 for TRPM3α5 and n = 4 for TRPM3α6).

43A) Current ratios for HEK293 cells expressing the different TRPM3α isoforms calculated for44values at ±145 mV during application of PS (40 µM). B) Current ratios at ±145 mV for45TRPM3α1 and TRPM3α2 during Clt (10 µM) application and for TRPM3α2- α6 during PS (4046µM) + Clt (10 µM) co-application. For both graphs: n = 5 for TRPM3α1, n = 11 for TRPM3α2,47n = 5 for TRPM3α3, n = 3 for TRPM3α4 and n = 5 for TRPM3α5 and n = 4 for TRPM3α6)

A) Time course of whole-cell patch clamp recording in HEK293T cells transiently transfected with TRPM3 α 1 upon application of Clt (10 μ M). At the indicated time points all monovalent ions in the extracellular solution were replaced by NMDG⁺. **B**) Time course of inside-out patch clamp recording in HEK293T expressing TRPM3 α 1 in presence of Clt (10 μ M). Mean current increase in TRPM3 α 1 after stimulation by Clt (Δ I _{+80mV}: 67.3 ± 23.7 pA; Δ I _{-80mV}: -58.9 ± 20.3 pA) (n=8).

A) Current traces obtained with a step protocol ranging from -200 mV to +200 mV in +50 mV
 steps for HEK293T cells transiently transfected with TRPM3α1 (black, upper panel) or stably
 transfected with TRPM3α2 (orange, lower panel). B) Normalized *G-V* relation for TRPM3α1
 Clt-induced and TRPM3α2 CIM0216-induced currents obtained from current traces as in *A*),

64	n = 6 for both conditions. C) Relative currents at -150 mV carried by monomethylammonium
65	(MMA ⁺) for TRPM3 α 1 Clt-induced currents (black) and TRPM3 α 2 PS-induced currents and
66	CIM0216-induced currents in the presence of Lanthanum (La ³⁺ , orange). MMA ⁺ currents were
67	normalized to the currents carried by Na ⁺ ; PS (40 μ M), Clt (10 μ M), ClM0216 (1 μ M) and La ³⁺
68	(100 μ M), n = 5 for all conditions. * < 0.05, One-way ANOVA. D and E) Time course of whole-
69	cell patch clamp recordings showing the effect of La ³⁺ on TRPM3 α 1 Clt-induced currents D)
70	and TRPM3 α 2 CIM0216-induced currents <i>E</i>). F) Percentage of La ³⁺ -induced block for
71	experiments as in D) and E) for $n = 6$ cells for each experiment. * < 0.05 with students two-
72	tailed unpaired t-test. G and H) Time course of whole-cell patch clamp recordings showing
73	the effect of calcium on TRPM3 α 1 Clt-induced currents G) and TRPM3 α 2 ClM0216-induced
74	currents H). I) Percentage (%) of calcium-induced block for experiments as in G) and H) for n
75	= 5 cells. * < 0.05 with Mann-Whitney test.

78 **FIGURE S7**

79 A) Time course of whole-cell patch clamp recording at \pm 80 mV in HEK293T cells transiently expressing TRPM3 α 1 upon application of different concentrations of CIM0216 (in μ M). B) 80 Concentration-response curve for CIM0216 on TRPM3 α 1 extracted from experiments as in A) 81 82 for n = 9 cells. C) Time course of whole-cell patch clamp recording at \pm 80 mV in HEK293T cells 83 transiently expressing TRPM3 α 1 upon co-application of CIM0216 and Clt. **D)** Statistics of the inhibiting effects of PS and CIM0216 on Clt-induced TRPM3 α 1 currents for n = 5 cells per 84 85 treatment. E) Time course of whole-cell patch clamp recording at ± 80 mV in HEK293T cells 86 stably expressing TRPM3 α 2 upon application of CIM0216 (1 μ M). F) *I-V* traces for time points 87 indicated in E).

89 **FIGURE S8**

A) I-V Traces of whole-cell patch clamp recording in HEK293 cells transiently expressing 90 TRPM3 α 1 upon application of CIM0216 (1 μ M) in standard extracellular solution (black) and 91 in 100 mM extracellular Ca^{2+} (red trace). B) Reversal potentials of n = 6 individual cells 92 measured in A) in 150 mM extracellular Na⁺ and 100 mM extracellular Ca²⁺, mean values 93 94 represented in black squares. C) As in panel A) but for TRPM3 α 2. D) Reversal potentials of n 95 = 6 individual cells (grey circles) measured in C) in 150 mM extracellular Na⁺ and 100 mM 96 extracellular Ca²⁺; mean values represented in black squares. * < 0.05 with student two-tailed 97 unpaired t-test.

99

100 **FIGURE S9**

A) Time course of whole-cell patch clamp recording at \pm 80 mV in HEK293T cells transiently expressing TRPM3 α 1 upon application of CIM0216 (1 μ M) and the TRPM3 antagonists isosakuranetin (Iso; 5 μ M), diclofenac (Dic; 100 μ M) and primidone (Pri; 25 μ M). **B**) Time course of whole-cell patch clamp recording at \pm 80 mV in HEK293T cells transiently expressing TRPM3 α 1 upon application of different concentrations of Isosakuranetin (1 - 100 μ M) during Clt-treatment (10 μ M). **C**) Concentration-response curve for Isosakuranetin on TRPM3 α 1 at +80 mV (red) and -80 mV (black trace) extracted from experiments shown in *B*) (n = 4).

111 **FIGURE S10**

112 **A)** Time course of whole-cell patch clamp recording at \pm 80 mV in HEK293T cells co-expressing 113 TRPM3 α 1 and μ -opioid receptors upon application of DAMGO (1 μ M), CIM0216 (5 μ M) and 114 Clt (10 μ M). **B)** *I-V* Traces for time points indicated in *A*). **C)** Percentage of block induced by 115 DAMGO in experimental conditions of panel *A*) (n = 8). * < 0.05 with student two-tailed 116 unpaired t-test.

117

119 FIGURE S11

A) Time course of a whole-cell patch clamp recording at ± 80 mV in HEK293T cells transiently 120 121 expressing deletion mutant TRPM3 α 1 Δ 3d upon application of Clt (10 μ M) and different 122 TRPM3 antagonists (isosakuranetin (Iso; 5 µM), diclofenac (Dic; 100 µM), primidone (Pri; 25 123 μ M)). B) As in A) but for the deletion mutant TRPM3 α 1 Δ 6b. C) Percentage of block calculated 124 from experiments in A) and B) and compared to results of TRPM3 α 1 and insertion mutant 125 TRPM3 α 2 +1; n = 5 for TRPM3 α 1, n = 3 for TRPM3 α 1 Δ 3d, n = 4 for TRPM3 α 1 Δ 6b and n = 6 126 for TRPM3 α 2 +1. **D**) Statistics of calcium increases induced by hypotonicity (HTS) and heat in HEK293T cells transfected with TRPM3 α 1, TRPM3 α 2 or the mutant channels TRPM3 α 2 +1 127 128 and TRPM3 α 2 +3. For HTS: n = 678 for TRPM3 α 1, n = 547 for TRPM3 α 2, n = 539 for TRPM3 α 2 129 +1 and n = 788 for TRPM3 α 2 +3. For heat: n = 484 for TRPM3 α 1, n = 651 for TRPM3 α 2, n = 130 751 for TRPM3 α 2 +1, n = 487 for TRPM3 α 2 +3. N = 3 independent recordings for each 131 experiment. * < 0.05, Kruskal-Wallis ANOVA with Dunn's posthoc test.