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DATASET USED 

To build the model described in the paper we used dataset size of ~66,000 molecules, more than 

90% of the dataset is made of publicly available structures  https://doi.org/10.5281/zenodo.4555770 
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Figure S1 (A) dEmin vs QM EP correlation for the N1 atom type of the test set. In red, atoms belonging to ligands 

CDA, CDD, ROI. (B) Structures of ligands CDA, CDD, ROI. 

 

MODELS BUILDING: CONSIDERATIONS ON POSSIBLE OUTLIERS 

 

https://doi.org/10.5281/zenodo.4555770


Outliers from the observed correlation can be rationalized with two considerations. First of all, the fingerprint description 

is undoubtedly more detailed than the only AT classification, thus leading to significant improvements in terms of wider 

representation of chemical spaces, better fit to the training set, and more accurate prediction on the test set (Table 2 and 

Figure 1).
1
 However, the MEP can be seen as an electronic picture of the whole molecule, while the fingerprint, having 

a limited length, might not describe necessarily all of it and this could account for discrepancies especially for bigger 

molecules. Secondly, the work principles of the proposed PLS projection are: (i) a recognition of the scaffold (as described 

by the fingerprint) and (ii) association to an estimation of the dEmin, accordingly to what the model has learnt from the 

training set. That is, if the projected scaffold was not covered in the training set, the estimation is likely to be wrong. For 

instance, in the N1 correlation (Figures 1B and S1), among the most underestimated we find CDA and CDD, both of 

them containing a fluorine atom in γ position of the aminic atom that may influence the HB ability in a fashion not 

covered, thus not correctly estimated, in the training set. For these reasons, the models can be periodically enriched in 

structures with the aim of covering the full chemical space thus increasing the predictive efficacy.



 

Table S1 Data used for demonstrating the correlation between experimental hydrogen-bond basicity values and the 

proposed dEmin. AT atom type; pKBHX experimental equilibrium constant for acid-base complexation (as in Kenny’s 

database, 20162). https://zenodo.org/record/4091341#.X4hmB5MzZTY 

 

Table S2 Data used for demonstrating the correlation between experimental hydrogen-bond basicity values and the 

proposed dEmin. AT atom type; KBH experimental equilibrium constant for acid-base complexation (as in Abraham’s 

database, 19903). https://zenodo.org/record/4091341#.X4hmB5MzZTY 

 

Table S3 Data used for demonstrating the correlation between experimental hydrogen-bond acidity values and the 

proposed dEmin. AT atom type; KAH experimental equilibrium constant for acid-base complexation (as in Abraham’s 

database, 19894). https://zenodo.org/record/4091341#.X4hmB5MzZTY 
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Figure S2 Novel dEmin versus H-bond basicity scale (A: 140 atoms; R – PEARSON = -0.90 ; Colour palette: N:# grey, 

N:= yellow, O cyan, O= red, OC2 salmon, OS pink) and H-bond acidity scale (B: 8 atoms; R – PEARSON = -0.86; Colour 

palette: N1 grey, N2 green, O1 yellow, OH cyan). Source: Abraham 1989, 1990.3,4 

 



AT HB type Slope m  Intercept q dEmin range 

of values 

N: HB-acceptor 45.45 828.80 Min = -6.491 
Max = 0.000 

N1: HB-acceptor 45.45 828.80 Min = -5.310 
Max = 0.000 

N1: HB-donator -45.45 -833.80 Min = -9.302 

Max = -0.690 

N2: HB-acceptor 45.45 829.80 Min = -5.767 

Max = 0.000 

N2: HB-donator -45.45 -833.80 Min = -7.476 
Max = -0.233 

ON HB-acceptor 45.45 1010.80 Min = -4.709 

Max = 0.000 

N:= HB-acceptor 45.45 828.80 Min = -6.846 

Max = 0.000 

N:: HB-acceptor 45.45 828.80 Min = -3.297 
Max = 0.000 

N:# HB-acceptor 45.45 831.30 Min = -5.327 
Max = 0.000 

O1 HB-acceptor 45.45 1010.80 Min = -4.718 

Max = 0.000 

O1 HB-donator -45.45 -1016.80 Min = -7.238 
Max = -1.282 

OC1 HB-acceptor 45.45 1010.80 Min = -3.497 

Max = 0.000 

OC2 HB-acceptor 45.45 1010.80 Min = -4.350 

Max = 0.000 

OC= HB-acceptor 45.45 1010.80 Min = -2.645 
Max = 0.000 

OES HB-acceptor 45.45 1010.80 Min = -3.644 

Max = 0.000 

OFU HB-acceptor 45.45 1009.80 Min= -2.578 

Max = 0.000 

OH HB-donator -45.45 -1016.80 Min = -3.069 

Max = 0.000 

OH HB-acceptor 45.45 1010.80 Min = -7.463 

Max = 0.000 

O=S HB-acceptor 45.45 1010.80 Min = -5.828 
Max = 0.000 

OS HB-acceptor 45.45 1011.80 Min = -6.385 
Max = -0.777 

O= HB-acceptor 45.45 1011.80 Min = -6.779 

Max = 0.000 

O HB-acceptor 45.45 1010.80 Min = -7.180 

Max = 0.000 

 

Table S4: Slope and intercept for each AT as defined in equations 4 and 5.  For each AT we determined a slope and an 

intercept so that all the dEmin values will be an acceptable range for the GRID force field.5 Note the maximum allowable 

value of dEmin is always forced to be zero. 

AT Slope m  Intercept q 

C3 17.18 252.45 

C2 17.18 252.45 

C2= 17.18 252.45 

C1 17.18 252.45 

C1= 17.18 252.45 

CH 17.18 252.45 

C1# 17.18 252.45 

C0 17.18 252.45 

C= 17.18 252.45 

C 17.18 252.45 

C# 17.18 252.45 

C:# 17.18 252.45 

BR 23.78 4180 



CL 9.8 630.3 

F 21.78 576.4 

F3 21.78 576.4 

 
Table S5: Slope and intercept for each AT as defined in equations 4 and 5 for AtomTypes non included in Table S4 and 

used to define the GC values used in Section 4.3 

 

CASE STUDY II: THE MODEL DEVELOPMENT WORKFLOW  

 

The chemical structures were retrieved from the drug database DrugCentral6,7 as sdf format and imported into VolSurf 

by keeping all default settings except for the protonation that was fixed to pH=7.4. A total of 121 molecular, 

physiochemical and ADME descriptors were computed and exported. Fraction excreted unchanged in urine values were 

coded into categories by fixing a threshold at 50 %. 220 drugs having values ≥ 50 % were classified as poorly metabolized 

and 734 drugs having values < 50 % were classified as extensively metabolized. Successively, the categorical property 

values were matched with the previously generated descriptors for each drug. Data was split into training and test set by 

random selection and by keeping even percentages across the two categories (see Figure S2): 67% of both poorly and 

extensively metabolized drugs compose the training set; the remaining 33% of both poorly and extensively metabolized 

drugs compose the test set. The model was trained with the random forest algorithm available in scikit-learn.8 Algorithm 

parameters were manually adjusted to achieve optimal performances for both training and test sets (see Table S4 for 

details). Finally, the model performances in fitting and validation were evaluated (see Figure 4). 

 

 

Table S6. The parameters used for building the random forest models and their values. 

Parameter Value 

bootstrap TRUE 

class_weight balanced 

criterion entropy 

max_depth 4 

max_features log2 

max_leaf_nodes 15 

min_impurity_decrease 0 

min_impurity_split None 

min_samples_leaf 1 

min_samples_split 2 

min_weight_fraction_leaf 0 

n_estimators 60 

oob_score FALSE 

random_state 666 

warm_start FALSE 

 



 

Figure S3. Training and test set composition. For both poorly and extensively metabolized classes, the number of drugs 

composing each set is 67% for the training and 33% for the test. 
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