CLINICAL STUDY OF SINGLE STRANDED OLIGONUCLEOTIDE R07062931 IN HEALTHY VOLUNTEERS AND PATIENTS WITH CHRONIC HEPATITIS B

Supporting Information

Title: Clinical Study of Single Stranded Oligonucleotide RO7062931 in Healthy Volunteers and Patients with Chronic Hepatitis B

Authors: Man-Fung Yuen¹, Edward Gane^{2*}, Dong Joon Kim³, Henry Lik-Yuen Chan⁴, Bernadette Surujbally⁵, Vedran Pavlovic⁵, Sudip Das⁵, Miriam Triyatni⁶, Remi Kazma⁶, Joseph F. Grippo⁷, Simon Buatois⁶, Annabelle Lemenuel-Diot⁶, Ben-Fillippo Krippendorff⁶, Henrik Mueller⁶, Yuchen Zhang⁸, Hyung Joon Kim⁹, Apinya Leerapun¹⁰, Tien Huey Lim¹¹, Young-Suk Lim¹², Tawesak Tanwandee¹³, Won Kim¹⁴, Wendy Cheng¹⁵, Tsung-Hui Hu¹⁶, Cynthia Wat⁵

*Co-first authors who contributed equally

Affiliations: ¹Queen Mary Hospital, The University of Hong Kong, Hong Kong, ²Auckland Clinical Studies, Auckland, New Zealand, ³Hallym University College of Medicine, Chuncheon, South Korea, ⁴Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, ⁵Roche Innovation Centre, Welwyn Garden City, United Kingdom, ⁶Roche Innovation Centre, Basel, Switzerland, ⁷Roche Innovation Centre, New York, USA, ⁸Roche Innovation Centre, Shanghai, China, ⁹Department of Internal Medicine, The Institute of Evidence-based Clinical Medicine, College of Medicine, Chung-Ang University, Seoul, South Korea, ¹⁰Division of Gastroenterology Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, ¹¹Middlemore Hospital, Auckland, New Zealand, ¹²Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea, ¹³Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, ¹⁴Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea, ¹⁵Linear Clinical Research, Perth, Australia, ¹⁶Chang Gung Memorial Hospital, Kaohsiung, Taiwan

2

Table of contents

	Page
Supplementary methods	
Participants	5
Safety assessments	6
Pharmacokinetic assessments	6
Pharmacodynamic assessments	7
Modelling and simulation	7
Statistical analysis	9
Supplementary tables	
Supplementary Table 1. Demographics of healthy volunteers in Part 1 of	10
the study	
Supplementary Table 2. Adverse events occurring in \geq 5% of healthy	11
volunteers overall in Part 1 of the study	
Supplementary Table 3. RO7062931 plasma and urine pharmacokinetic	12
parameters following single doses in healthy volunteers in Part 1 of the	
study	
Supplementary Table 4. Pharmacokinetic parameters for RO7062931 in	14
patients with CHB (Part 2 of the study)	
Supplementary Table 5. Summary of MMRM Analysis: Change from	15
baseline in HBsAg with RO7062931 versus placebo in patients with	
CHB (Part 2 of the study)	

Supplementary figures	
Supplementary Figure 1. Mechanistic PK/PD model for simulating HBsAg	17
decline	
Supplementary Figure 2. Laboratory profiles in two patients (A and B) with	20
ALT flares (>3 × ULN) who received RO7062931 3.0 mg/kg QW in Part	
2b of the study	
Supplementary Fig 3. Mean change from baseline in viral PD markers:	21
HBV RNA in log_{10} copies/mL (Panel A) and HBcrAg in log_{10} U/mL (Panel	
B) and HBsAg in log_{10} IU/mL (Panel C)	
2b of the study Supplementary Fig 3. Mean change from baseline in viral PD markers: HBV RNA in log ₁₀ copies/mL (Panel A) and HBcrAg in log ₁₀ U/mL (Panel B) and HBsAg in log ₁₀ IU/mL (Panel C)	21

Supplementary Methods

Participants

In Part 1, exclusion criteria included a history of alcohol or other substance abuse in the past 6 months, any major illness within the month before the screening visit, or any febrile illness within the 2 weeks before the screening visit. Volunteers were required to have no evidence of active or chronic disease on the basis of a detailed medical and surgical history, physical examination, vital signs, electrocardiogram, blood chemistry, serology, and urinalysis. Other than hormone replacement therapy, concomitant drug use was not permitted (including herbal remedies, vitamins, fish oils, and protein powders) within 2 weeks before administration of study drug.

In Part 2, a liver biopsy, Fibroscan® or equivalent test obtained within the past 6 months demonstrating liver disease consistent with chronic hepatitis B infection (CHB) without evidence of bridging fibrosis or cirrhosis was required. Any patients with hepatitis A, hepatitis C, HIV, or documented history of hepatitis D infection, active or suspected cancer or a history of malignancy other than adequately treated basal cell carcinoma, or a history or evidence of a medical condition associated with chronic liver disease other than hepatitis B infection were excluded. Patients with abnormal renal function (serum creatinine >upper limit of normal [ULN] or calculate creatinine clearance <70 mL/min) were also excluded, as were those with a history or evidence of alcohol abuse and/or drug abuse within 1 year of randomization. Patients must not have had any significant acute infection or other clinically significant illness within 2 weeks

5

of randomization.

Safety Assessments

For Part 1 in healthy volunteers, treatment-emergent elevated alanine transaminase (ALT) or aspartate transaminase (AST) $>3 \times$ ULN in combination with either total bilirubin $>2 \times$ ULN or clinical jaundice was classified as an adverse event (AE). For Part 2 in CHB patients, treatment-emergent ALT $>3 \times$ baseline and $>3 \times$ ULN in combination with total bilirubin $>2 \times$ ULN or clinical jaundice was classified as an AE.

Pharmacokinetic Assessments

For healthy volunteers in Part 1 of the study, plasma samples for analysis of RO7062931 levels and determination of pharmacokinetic (PK) parameters were collected pre-dose, and post-dose at 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 18, 24, 30, 36, 48, 72, 96, 120, and 168 hours. Urine collection periods were at 0–4 hours, 4–8 hours, 8–12 hours, and 12–24 hours post-dose.

For CHB patients in Part 2 of the study, plasma samples for analysis of RO7062931 levels and determination of PK parameters were collected pre-dose, and post-dose at 0.5, 1, 2, 4, 6, 8, 24, 168, 336, and 504 hours. Urine collection periods were at 0–4 hours and 4–8 hours after the first dose. To directly compare PK data in healthy volunteers and CHB patients, patient plasma PK assessment time points were used.

Plasma and urine PK parameters included maximum plasma concentration (C_{max}), time to reach maximum plasma concentration (t_{max}), area under the plasma concentrationtime curve from time zero to infinity (AUC_{0-inf}), AUC up to 24 hours post-dose (AUC₀₋ $_{24}$), terminal half-life ($t_{1/2}$), cumulative amount of drug excreted in urine (Ae).

Pharmacodynamic Assessments

Plasma HBV DNA was quantitatively assessed at Cenetron Diagnostics (Austin, USA) using the COBAS® AmpliPrep/COBAS® TaqMan® HBV Test, v2.0 (Roche Diagnostics) with a linear range from 20 IU/mL to 1.7 x 10⁸ IU/mL. Circulating HBV RNA was quantified by real-time PCR using the Roche HBV RNA investigational assay (IA) for use on the cobas[®] 6800/8800 Systems (Roche Diagnostics International Ltd, Rotkreuz, Switzerland). The HBV RNA assay is a quantitative nucleic acid test (LLOQ 10 cp/ml; linearity range 10 to 10⁹cp/ml on armored RNA template) to enable the detection and quantification of HBV RNA in EDTA plasma or serum of HBV-infected patients. Serum HBcrAg was quantitatively assessed at DDL Diagnostic Laboratory (Rijswijk, The Netherlands) using the Lumipulse® G HBcrAg assay (Fujirebio) with an LOD of 2.6 log₁₀ U/mL, an LLOQ of 3.0 log₁₀ U/mL and a ULOQ of 7.0 log₁₀ U/mL. Serum levels of HBsAg and HBeAg were quantitatively or qualitatively assessed at Q2 Solutions (Singapore) using their respective Elecsys® assays as described by the manufacturer (Roche Diagnostics): HBsAg II, HBsAg II quant II, HBeAg.

Modelling and Simulation

A mechanistic modelling approach has been developed and implemented to better understand the PK/PD relationship (Supplementary Figure 1A) as well as project longer term effect. With regards to the PK component, the model describes the key processes

that determine plasma, liver, and kidney exposure. It was found that a combination of an empirical 2-compartment model with first-order absorption from the subcutaneous compartment plus the liver and kidney compartment performs best. The liver and kidney are modeled as compartments by fixing their volume to the physiological values for the different species. This makes the model a mix of a physiologically based and empirical model.

The uptake into the kidney is modeled as a first-order process while the uptake in the liver is described by a Vmax, Km model to represent the saturable uptake via the ASGPR. The clearance of the molecule is described by a first-order rate from the central compartment as well as first-order processes from the liver and kidney.

The PK component has then been plugged into the model as driving the effect of the drug in a PD viral kinetic model. Disease parameters such as clearance of HBsAg, production rate, and clearance of hepatocytes have been estimated, showing good agreement with literature values. The drug effect has been added as inhibiting the production rate of HBsAg in an expected liver concentration-dependent manner, this concentration being derived from the PK model.

Simulations could show that the model was able to describe the observed individual time course of HBsAg, the mean time course, the variability in the data (baseline and effect size) with a very good overlap with the observed data as illustrated for 3.0 mg/kg weekly cohort in Supplementary Figure 1B. And, because of the mechanistic component integrating the disease underlying processes, long-term effect could be projected for this similar dosing regimen as illustrated in Supplementary Figure 1C.

8

Statistical Analysis

In the Power model, a regression model was fitted, in which the log-transformed PK parameter (AUC) was fitted as the response variable and the log-transformed dose, treated as continuous data, was fitted as a fixed effect. Dose-proportional increases in exposure to RO7062931 could be concluded if 90% CIs of the estimated slope of the linear regression of the log-transformed PK variable versus the log-transformed dose were within acceptance ranges.

Supplementary Tables

Supplementary Table 1. Demographics of healthy volunteers in Part 1 of the study.

	RO7062931							
Characteristics	0.1 mg/kg (n = 8)	0.3 mg/kg (n = 8)	1.0 mg/kg (n = 8)	2.0 mg/kg (n = 8)	3.0 mg/kg (n = 8)	4.0 mg/kg (n = 8)	Placebo (n = 12)	
Age, mean (SD) years	30 (12)	29 (11)	34 (11)	30 (14)	25 (18)	23 (4)	32 (9)	
Weight, mean (SD) kg	73 (9)	78 (11)	81 (15)	75 (12)	69 (4)	70 (11)	75 (12)	
BMI, mean (SD) kg/m ²	24 (3)	23 (3)	26 (3)	23 (3)	23 (2)	23 (2)	24 (3)	
Male, n (%) Ethnicity, n (%)	8 (100)	8 (100)	7 (88)	8 (100)	8 (100)	8 (100)	12 (100)	
Asian	1 (13)	1 (13)	1 (13)	2 (25)	3 (38)	4 (50)	3 (25)	
White	4 (50)	5 (63)	6 (75)	5 (63)	4 (50)	4 (50)	9 (75)	
Other ^a	3 (37)	2 (25)	1 (13)	1 (13)	1 (12)	0	0	

^aBlack or African American, Native Hawaiian or other Pacific Islander, multiple or unknown.

BMI, body mass index.

Study BP39405 of RO7062931_Supporting Information

November 2020

Patients with ≥ 1	RO7062931						
adverse event, n (%)	0.1 mg/kg	0.3 mg/kg	1.0 mg/kg	2.0 mg/kg	3.0 mg/kg	4.0 mg/kg	Placebo
	(n = 8)	(n = 8)	(n = 8)	(n = 8)	(n = 8)	(n = 8)	(n = 12)
Total	6 (75.0)	7 (87.5)	3 (37.5)	6 (75.0)	7 (87.5)	4 (50.0)	7 (58.3)
Mild	6 (75.0)	7 (87.5)	3 (37.5)	6 (75.0)	7 (87.5)	4 (50.0)	7 (58.3)
Moderate	1 (12.5)	0	1 (12.5)	0	0	0	1 (8.3)
Treatment-related	1 (12.5)	0	1 (12.5)	1 (12.5)	4 (50.0)	4 (50.0)	1 (8.3)
Mild	0	0	1 (12.5)	1 (12.5)	4 (50.0)	4 (50.0)	1 (8.3)
Moderate	1 (12.5)	0	0	0	0	0	0
Injection site reaction	0	0	1 ^a (12.5)	1 ^a (12.5)	4 ^a (50.0)	4 ^a (50.0)	1 ^a (8.3)
URTI	2 (25.0)	1 (12.5)	0	1 (12.5)	0	1 (12.5)	1 (8.3)
Headache	1 (12.5)	2 (25.0)	0	1 (12.5)	0	0	1 (8.3)
Vessel puncture site	2 (25.0)	0	0	0	0	1 (12.5)	0
bruise							
Vessel puncture site	0	1 (12.5)	1 (12.5)	0	0	1 (12.5)	0
hematoma							
Back pain	1 (12.5)	0	2 (25.0)	0	0	0	0

Supplementary Table 2. Adverse events occurring in \geq 5% of healthy volunteers overall in Part 1 of the study.

^aMild treatment-related.

URTI, upper respiratory tract infection.

Study BP39405 of RO7062931_Supporting Information

November 2020

Supplementary Table 3. RO7062931 plasma and urine pharmacokinetic parameters following single doses in healthy volunteers in Part 1 of the study.

	RO7062931						
	0.1 mg/kg (n = 8)	0.3 mg/kg (n = 8)	1.0 mg/kg (n = 8)	2.0 mg/kg (n = 8)	3.0 mg/kg (n = 8)	4.0 mg/kg (n = 8)	
Plasma PK parameters ^a							
C _{max} (nmol/L)	7.78 (40.2%)	19.53 (28.1%)	41.69 (30.8%)	103.68 (34.0%)	153.53 (25.3%)	312.53 (22.2%)	
T_{max} (h) ^b	1.75 (1.00– 3.00)	2.00 (1.50– 2.00)	3.00 (1.50– 6.00)	2.00 (2.00– 6.00)	2.00 (2.00– 6.00)	3.00 (2.00– 6.00)	
AUC_{0-24} (h·nmol/L)	38.95 (13.5%)	92.34 (14.0%)	307.81 (13.3%)	778.99 (19.6%)	1240.08 (19.3%)	2417.98 (7.9%)	
AUC_{inf} (h·nmol/L)	39.21 (14.0%)	92.72 (14.1%)	308.48 (13.2%)	792.36 (19.1%)	1257.23 (19.4%)	2478.56 (8.7%)	
t _{1/2} (h)	3.77 (65.4%) ^d	3.99 (38.3%) ^d	44.32 (170.4%) ^d	97.06 (35.9%)	85.70 (29.7%)	115.24 (60.4%)	
Urine PK parameters ^c							
Ae_{0-8h} (nmol)	9.97 (4.88)	26.26 (6.01)	131.02 (64.89)	234.47 (97.16)	467.54 (100.75)	998.87 (399.56)	
Ae _{0-12h} (nmol)	11.14 (4.58)	29.20 (7.39)	154.25 (64.12)	282.70 (105.70)	597.62 (82.25)	1217.34 (443.41)	
Ae_{0-24h} (nmol)	11.76 (4.59)	30.18 (8.02)	165.25 (62.92)	309.12 (110.48)	651.54 (79.58)	1294.43 (420.83)	
Fe_{0-8h} (%)	0.98 (0.52)	0.77 (0.18)	1.17 (0.61)	1.10 (0.50)	1.59 (0.39)	2.49 (0.89)	
Fe_{0-12h} (%)	1.08 (0.48)	0.86 (0.26)	1.37 (0.61)	1.32 (0.51)	2.03 (0.34)	3.03 (0.95)	
Fe_{0-24h} (%)	1.14 (0.48)	0.89 (0.29)	1.47 (0.60)	1.44 (0.52)	2.22 (0.33)	3.21 (0.87)	

^aPresented as geometric mean (coefficient of variation). ^bPresented as median (range).

Study BP39405 of RO7062931_Supporting Information

November 2020

^cPresented as mean (SD).

^dValue reported is mixed half-life of distribution and terminal phase.

Ae, cumulative amount excreted unchanged in urine; AUC_{0-24} , area under concentration time curve up to 24 hours post-dose; AUC_{inf} , area under concentration time curve extrapolated to infinity; Fe, fraction of cumulative amount excreted unchanged in urine over total dose; PK, pharmacokinetic; $t_{1/2}$, terminal half-life.

	RO7062931 QM dosing (Part 2a)			RO7062931 Q2W or QW dosing (Part 2b)			
	0.5 mg/kg	1.5 mg/kg QM	3.0 mg/kg QM	3.0 mg/kg QW	3.0 mg/kg Q2W	4.0 mg/kg QW	
Parameter	$\mathbf{QM} (\mathbf{n} = 6)$	(n = 7)	(n = 6)	(n = 14)	(n = 7)	(n = 4)	
C_{max}^{a} (nmol/L)	21.2 (46.4)	72.4 (57.8)	169.6 (43.9)	218.0 (64.4)	158.6 (37.9)	232.5 (10.6)	
$T_{max}^{b}(h)$	3.0 (0.5-7.9)	2.0 (2.0-4.0)	2.0 (1.9-8.0)	4.0 (1.9-5.9)	4.0 (1.9-6.0)	2.0 (1.9-2.0)	
AUC ₀₋₂₄ ^a	145.9 (28.4)	512.6 (37.3)	1510.8 (30.2)	1858.0 (41.2)	1434.4 (13.6)	2371.7 (15.2)	
(h·umol/L)							
$R_{acc}AUC_{0-24}$ ^c	1.0 (6.4)	1.1 (26.7)	1.0 (38.2)	0.8 (61.9)	1.0 (31.8)	1.0 (23.4)	
Ae 0–8h ^d (nmol)	48.4 (22.5)	183.4 (67.5)	587.0 (294.6)	790.5 (402.1)	615.3 (432.8)	1146.0 (177.6)	
Fe $0-8h^{d}(\%)$	0.9 (0.5)	1.3 (0.6)	1.9 (0.8)	2.7 (1.7)	2.1 (1.6)	2.9 (0.6)	

Supplementary Table 4. Pharmacokinetic parameters for RO7062931 in patients with CHB (Part 2 of the study).

^aGeometric mean (coefficient of variation) first dose.

^bMedian (range) first dose.

^cGeometric mean (coefficient of variation) last dose/first dose.

^dArithmetic mean (standard deviation) first dose.

Ae, cumulative amount of drug excreted in urine; AUC_{0-24} , area under the plasma concentration-time curve up to 24 hours post-dose; CHB, chronic hepatitis B; Fe, fraction of unchanged drug excreted in urine; Q2W, once every 2 weeks; QM, once monthly; QW, once weekly; $R_{acc}AUC_{0-24}$, accumulation ratio of AUC_{0-24} equals AUC of last dose/AUC of first dose.

Supplementary Table 5. Summary of MMRM	Analysis: Change from ba	aseline in HBsAg with	RO7062931 vers	sus placebo in patients with	1
CHB (Part 2 of the study).					

Change in HbsAg	RO7062931 QM dosing (Part 2a)		RO7062931 Q2W or QW dosing (Part 2b)			
versus placebo,	0.5 mg/kg QM	1.5 mg/kg QM	3.0 mg/kg QM	3.0 mg/kg QW	3.0 mg/kg Q2W	4.0 mg/kg QW
difference in	(n = 6)	(n = 6)	(n = 6)	(n = 14)	(n = 6)	(n = 4)
adjusted ^a mean						
(90% CI) log ₁₀						
IU/mL						
Day 8	-0.01 (-0.13, 0.1)	-0.14 (-0.25, -	-0.14 (-0.25, -	-0.07 (-0.16,	-0.11 (-0.23, 0)	-0.03 (-0.16,
		0.02)	0.02)	0.02)		0.11)
Day 15	-0.03 (-0.14,	-0.20 (-0.31, -	-0.20 (-0.32, -	-0.22 (-0.31, -	-0.14 (-0.26, -	-0.10 (-0.23,
	0.09)	0.08)	0.09)	0.13)	0.03)	0.04)
Day 22	-0.02 (-0.13, 0.1)	-0.17 (-0.29, -	-0.18 (-0.3, -	-0.28 (-0.37, -	-0.21 (-0.33, -	-0.09 (-0.22,
		0.06)	0.07)	0.19)	0.09)	0.05)
Day 29	-0.01 (-0.12,	-0.13 (-0.25, -	-0.15 (-0.27, -	-0.34 (-0.43, -	-0.19 (-0.31, -	-0.10 (-0.23,
	0.11)	0.01)	0.04)	0.25)	0.08)	0.03)
Day 36 ^b	-0.05 (-0.17,	-0.31 (-0.42, -	-0.24 (-0.35, -	-0.40 (-0.49, -	-0.34 (-0.45, -	-0.11 (-0.25,
	0.06)	0.19)	0.12)	0.31)	0.22)	0.02)
Day 43 ^b	-0.04 (-0.15,	-0.31 (-0.42, -	-0.25 (-0.36, -	-0.39 (-0.48, -	-0.25 (-0.36, -	-0.13 (-0.26,
	0.08)	0.19)	0.13)	0.3)	0.13)	0.01)
Day 50 ^b	-0.05 (-0.16,	-0.22 (-0.34, -	-0.22 (-0.33, -	-0.33 (-0.42, -	-0.21 (-0.33, -	-0.15 (-0.28, -
	0.07)	0.11)	0.1)	0.24)	0.1)	0.02)
Day 57 ^b	-0.02 (-0.14, 0.1)	-0.19 (-0.31, -	-0.21 (-0.33, -	-0.28 (-0.37, -	-0.13 (-0.24, -	NE
-		0.08)	0.09)	0.19)	0.01)	
Day 78/85 ^b	0.00 (-0.12, 0.11)	-0.06 (-0.18,	-0.08 (-0.20,	-0.12 (-0.22, -	-0.06 (-0.17,	-0.12 (-0.38,
		0.06)	0.04)	0.03)	0.06)	0.14)

Study BP39405 of RO7062931_Supporting Information				er 2020		
Day 106/113 ^b	-0.03 (-0.14, 0.09)	-0.05 (-0.17, 0.07)	-0.02 (-0.14, 0.09)	-0.08 (-0.17, 0.02)	0.00 (-0.11, 0.12)	-0.15 (-0.41, 0.14)

^aMMRM with treatment, visit, and treatment by visit interaction fitted as fixed effects (between subject effects), baseline HBsAg and baseline body weight as covariates and visit within subject fitted as a random effect (within subject effect).

^bPost-treatment follow-up.

MMRM, mixed model for repeated measures; NE, not evaluable; Q2W, once every 2 weeks; QM, once monthly; QW, once weekly

Supplementary Figures

Supplementary Fig 1. Mechanistic PK/PD model for simulating HBsAg decline. A) One model for monkey and humans developed based on preclinical and clinical data, including interindividual variability and describing the PK of LNAs. B) Simulation of HBsAg decline for RO7062931 3.0 mg/kg QW, compared to observed data C) Extrapolation of long term effect for RO7062931 3.0 mg/kg QW

LNA, locked nucleic acid; PD, pharmacodynamics; PK, pharmacokinetics; QW, once weekly.

Supplementary Fig 2. Laboratory profiles in two patients (A and B) with ALT flares $(>3 \times ULN)$ who received RO7062931 3.0 mg/kg QW in Part 2b of the study. Left panels illustrate the liver function tests and right panels compare ALT with HBsAg and HBeAg levels.

ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate aminotransferase; BILI, bilirubin; BILDIR, direct bilirubin; INR, international normalized ratio; ULN, upper limit of normal.

