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Table S1. Repartition of trials kept for analysis 

Participant 
Behavioral 

group 
Total number 

of trials 
Learning 

Trials 
Control 
Trials 

Probe 
Trials 

P01 Allocentric 86 (91) 33 (37) 26 (27) 27 (27) 

P02 Allocentric 85 (89) 32 (35) 27 (27) 26 (27) 

P03 Allocentric 88 (90) 34 (36) 27 (27) 27 (27) 

P04 Allocentric 80 (88) 27 (34) 26 (27) 27 (27) 

P05 Egocentric 80 (84) 26 (30) 27 (27) 27 (27) 

P06 Egocentric 80 (84) 27 (30) 27 (27) 26 (27) 

P07 Allocentric 73 (86) 25 (32) 27 (27) 21 (27) 

P08 Allocentric 81 (84) 27 (30) 27 (27) 27 (27) 

P09 Allocentric 79 (88) 26 (34) 26 (27) 27 (27) 

P10 Allocentric 81 (89) 27 (35) 27 (27) 27 (27) 

P11 Allocentric 78 (84) 25 (30) 27 (27) 26 (27) 

P12 Allocentric 81 (89) 28 (35) 27 (27) 26 (27) 

P13 Allocentric 82 (90) 28 (36) 27 (27) 27 (27) 

P14 Allocentric 79 (88) 27 (34) 27 (27) 25 (27) 

P15 Allocentric 76 (85) 22 (31) 27 (27) 27 (27) 

P16 Allocentric 80 (85) 26 (31) 27 (27) 27 (27) 

Total Allocentric group 1129 (1226) 387 (470) 375 (378) 367 (378) 

Global dataset 1289 (1394) 440 (530) 429 (432) 420 (432) 

Repartition of the trials per participant kept for the zone-based and EEG analyses. We 

indicate in parentheses the initial number of trials before rejection. We discarded outlier trials 

that did not comply with the chosen sequence of events and those lasting too long to be 

consistently incorporated in the analysis. The effective duration cut-off (computed from the 

distribution of escape latency) was 12956 ms.  



4 

 

Figure S1. Group behavioral results 

Behavioral results – Group behavior across trials. (a) Strategy assignment. Outcome of the 

control (left) and probe (right) trials showing the participant-wise count of Goal and Error arm 

choices. Each test part of the experiment (control and probe conditions) comprised a total of 

27 trials across blocks. Probe trial outcomes were used to assign each participant a strategy 

preference: 14 participants had a majority of allocentric responses (choosing the Goal arm in 

probe trials) and 2 participants had a majority of egocentric responses (choosing the Error arm 

in probe trials). (b) Group-level time to goal per condition. The evolution of the time to goal 

across trials, presented for each condition (learning, control, probe) and averaged across blocks. 

Data were averaged across participants in the allocentric group (bars indicate standard error of 

the mean). For the two egocentric participants, individual data are showed. For the learning 

trials, we considered the first 3 trials, irrespectively of their outcome.  
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Figure S2. Egocentric participants’ behavior 

Behavioral metrics – Walking speed, horizontal head rotations variability, and landmark 

visibility for the egocentric participants. (a, c, e) Participant 5. (b, d, f) Participant 6. For all 

plots, we divided each trial according to the same sequence of events: walking onset, followed 

by the first passage in the starting branch (S) then in the finish branch (F), being either the goal 

or the error branch. Events are horizontally spaced according to the median duration between 

each event. All plots represent data in the learning, the control and the probe conditions, 

averaged between separating events across all trials and blocks for each egocentric participant. 

(a, b) Average standard deviation of horizontal head rotations. (c, d) Average instantaneous 

walking speed. (e, f) Average landmark visibility. Color code corresponds to the percentage of 

time each landmark was visible at the screen.  
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Table S2. 3-way ANOVA on Landmark visibility 

Factor 
Degrees of 

freedom 
F-statistic p-value 

Main effects 

Condition (2;819) 1.61 0.2 

Zone (6;819) 95.43 < 0.00001 

Landmark (2;819) 263.50 < 0.00001 

2-way interaction effects 

Condition 
& Zone 

(12;819) 0.13 1 

Condition 
& Landmark 

(4;819) 181.26 < 0.00001 

Zone 
& Landmark 

(12;819) 23.54 < 0.00001 

3-way interaction effect 

Condition 
& Zone 

& Landmark 
(24;819) 25.31 < 0.00001 

Complete output of the 3-way ANOVA test on Landmark visibility. Effects and interactions 

for which the p-value was found below 0.01 were followed by post-hoc analyses involving 

pairwise t-tests between groups, corrected for multiple comparisons with Tukey’s honest 

significant difference criterion method.  
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Methods S1. Motion Sickness questionnaire 

All participants answered a motion sickness questionnaire at the end of the experiment, adapted 

from Kennedy et al., (1993). They had to rate the following symptoms as none, slight, 

moderate, or severe. 

• General Discomfort 

• Fatigue 

• Eye Strain 

• Headache 

• Difficulty Focusing 

• Salvation Increasing  

• Sweating 

• Nausea 

• Difficulty concentrating 

• Fullness of Head 
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Methods S2. BeMoBIL pipeline - Klug et al., (2018) 

Bad channels detection 

EOG channels are excluded from the dataset at this step since they are likely to be considered 

as artifacts by the pipeline. Additionally, in preparation for the detection of bad channels, we 

removed portions of the continuous dataset that were not part of the actual trials to avoid taking 

them into account for the detection of abnormal channel behavior. To that purpose, 4 criteria 

are inspected: 

• Deviation criterion. Find channels with extreme amplitudes. Extreme amplitudes are 

the sign of channels affected by large artifacts, suffering from poor contact with the 

scalp, etc... 

• Noisiness criterion. Find channels with large high-frequency power. The signal of 

interest obeys a 1/f power function, therefore channels exhibiting abnormal power in 

the high-frequency band are likely to contain unusable signal. 

• Correlation criterion. Find channels lacking correlation with any other channels. 

Because of scalp electrical conduction, channels should have a high level of correlation. 

When a channel has a signal very different from its neighbors, it is likely to be 

dysfunctional. 

• Predictability criterion. Find channels lacking predictability by other channels. When 

group of channels are dysfunctional together, they might pass the previous criterion. A 

prediction drawn from other channels (not necessarily next to each other) should also 

respect a certain level of correlation with the original channel (again because of volume 

conduction). 

We implemented this step with the findNoisyChannels function, taken from the PREP pipeline 

(Bigdely-Shamlo et al., 2015). We set parameters numerical values according to default 

recommendations from Bigdely-Shamlo et al., (2015). 

Noisy temporal segment detection 

The detection and removal of noisy temporal segments is particularly important for ICA 

decomposition as some periods affected by general artifacts may be interpreted as single ICs 

by the ICA algorithm (Delorme et al., 2012; da Cruz et al., 2018). Some portions of the 

continuous dataset were irrelevant to the scientific questions of this experiment (e.g. 
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disorientation phases). In our experiment, they are not necessarily noisier than other portions: 

for example, in disorientation phases, the participant walks but keeps his eyes closed and head 

relatively steady. This may be a particularly interesting situation to isolate artifacts generated 

by walking that will be similarly observed in the trials, in a messier situation. Hence, the 

possibility to use these portions was kept open (if they are not rejected by the noisiness 

detection), unlike for bad channels detection.  

The BeMoBIL pipeline introduces an additional step before the actual detection of noisy 

temporal segments: artifacts are isolated and excluded from eye movements. The motivation 

for this lies in the fact that eye related artifacts yield large amplitude variations in the signal, 

hiding other artefacts to most metrics used for noisiness detection. Eye components are 

identified with ICA decomposition (AMICA, Palmer et al., 2008) and automatic IC labelling 

(ICLabel, Pion-Tonachini et al., 2019). To save computational time, we selected a smaller 

portion of the data to train the AMICA algorithm. This portion corresponded to the exploration 

phase plus the long baselines. We chose these phases because (1) they are equally defined for 

all participants; (2) their total duration (9 min) seemed suitable for training the ICA model in 

reasonable computational time; (3) they should provide examples of a variety of eye-related 

artifacts: blinks and slow eye movements when the participant finds himself immersed in the 

dark, large and fast eye movements, saccades to objects (paired with head movements) in the 

exploration phase. Eventually, we rely on the prediction given by the ICLabel algorithm to 

automatically identify eye components. Any IC for which the prediction exclusively exceeds 

the 'Eye' threshold is considered as an eye component. All eye components contribution to the 

channel-based dataset are removed with the pop_subcomp function from EEGLAB. 

After this step, we band-pass filter the continuous stream between 1 and 40 Hz and then epoch 

the data into non-overlapping windows of 1 s. For each of these epochs, we compute 3 different 

quantities to evaluate their noisiness. 

I. Mean signal of the epoch (averaged over channels and time). Large values point 

towards general impedance inflation or large artifacts affecting a large proportion of 

channels. 

II. Channel SD of epoch mean. This is a simple measure of channel heterogeneity in the 

epoch. Large values indicate that some channels are affected by artifacts at an 

individual level in this period of time. 
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III. Mahalanobian distance (MD) of epoch mean. MD is a more robust estimation of 

channel heterogeneity than channel SD since it considers the variances and covariances 

between channels. Large values are also indicative of a noisy epoch. 

Those quantities form a single score computed with a weighted sum giving more importance 

to the MD [w(I) = 1; w(II) = 1; w(III) = 2]. Then the epochs are sorted according to their score 

and the 15% highest scores are pinned for removal. Neighboring noisy epochs are merged to 

form blocks of rejection. Finally, each block is extended by 200 ms on both sides to account 

for artifact contamination of neighboring sections. We set parameters numerical values 

according to default recommendations from the authors of the pipeline. 

 

Figure S3. Manual inspection of ICs labelling 

Example of IC manual inspection during the assignment of IC labels. This IC from 

participant P09 would have been assigned to the Brain class without manual inspection.  The 

IC was eventually labelled ‘Heart’ by the experimenter (heart beat clearly identifiable, gradient 

shape activation map and very deep ECD). This panel was extracted with the 

pop_prop_extended EEGLAB function. 
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Methods S3. Pipeline comparison 

Pipeline evaluation 

To compare the performance of the BeMoBIL and the APP (da Cruz et al., 2018) pipelines, we 

evaluated different metrics of the preprocessing process. 

First, we inspected cleaning metrics: number of channels removed, percentage of data assigned 

to noisy temporal segments, percentage of brain labels among the retrieved ICs and the 

meaningfulness of these ICs quantified by the explained percentage of variance in the overall 

decomposition.  

Second, as introduced by Delorme et al., (2012), we chose 2 metrics to evaluate how well ICA 

achieved its independent decomposition objective. 

● Mutual Information Reduction (MIR). It measures the difference between the mutual 

information in the original dataset (EEG channels) and the mutual information in the 

post-ICA dataset (ICs). 

● Mean remaining Pairwise Mutual Information (PMI). The mutual information between 

a pair of ICs averaged over all pairs. 

We employed non-parametric statistical tests to evaluate the pipelines against each other. When 

directly comparing the 2 main pipelines, we used the Wilcoxon signed rank test (WSRT) to 

assess the equality of medians (paired observations) and the Brown-Forsythe test (BFT) to 

assess the equality of spreads around median. We set the alpha level for significance at p < 0.01 

for more conservative results. 

Comparison results 

We present the principal metrics for pipelines comparison on Supplementary Figure 3. 

We first inspected the outcome of the cleaning steps where pipelines implemented different 

methods. There was no significant difference (WRST: p = 0.12) between the median number 

of channels removed by each pipeline (Supp. Fig. 3a), around 5 channels per subject. However, 

we found that the artefactual channel detection performed by the BeMoBIL pipeline was 

significantly more regular across subjects, with a distribution exhibiting a lower spread along 

the median than APP pipeline (BFT: p = 0.005). Moreover, the pipelines performed very 

different channel rejections: excluding the 3 subjects where the APP pipeline did not find any 

channels to reject, the median common percentage of rejection (expressed with respect to the 
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pipeline rejecting less channels) is 33%. A detailed inspection of individual rejection criteria 

shows that the different implementation of similar criteria has a great impact: the deviation 

criterion as defined in the APP pipeline is significantly more sensitive than in the BeMoBIL 

pipeline (WRST: p = 2e-4, Supp. Fig. 3c) while we observe the opposite effect for the 

implemented correlation criterion (WRST: p = 3e-3, Supp. Fig. 3d). 

On the contrary, we observed a significantly different cleaning behavior between pipelines at 

the bad temporal segment detection step (Supp. Fig. 3b). The APP pipeline rejected a median 

of about 5% of the total recording time per subject, against 17.5% for the BeMoBIL pipeline 

(WRST: p = 3e-5). The variability around this median is also significantly different between 

the pipelines (BFT: p = 2e-5) with a greater variability from APP than from BeMoBIL. A 

median of 80% of the time portions rejected by the APP pipeline were also rejected by the 

BeMoBIL pipeline. 

Subsequently, we investigated the effect of each pipeline on the efficiency of ICA algorithm, 

measured by the reduction of mutual information. On a pairwise level, the mean remaining 

PMI (Supp. Fig. 3e) revealed a significantly greater performance of ICA after cleaning the data 

with the BeMoBIL pipeline than with the APP pipeline (WRST: p = 3e-5). We observe the 

same tendency at the scale of the global dataset (MIR, Supp. Fig. 3f) but with no significant 

difference (WRST: p = 0.14). 

In conclusion, the BeMoBIL pipeline demonstrated more robustness and conservativeness than 

the APP pipeline in the artefact detection steps. The underlying adaptability proposed by APP 

pipeline is not advisable as its performance proved to be very inconsistent across participants. 

When released, this pipeline had not been tested on mobile data (da Cruz et al., 2018) and the 

particularities of such recordings, prone to withhold a large spectrum of unusual artifacts 

(related to gait, large head movements, cable pulling, …) had not been considered. More 

importantly, according to the mutual information reduction metrics, the BeMoBIL pipeline 

provided a better preparation for the ICA decomposition than APP pipeline, enabling a greater 

independence between the resulting ICs. 
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Figure S4. Pipeline comparison results 

Pipeline comparison metrics. (a) Artefactual channels outcome. Histogram plots showing the 

distribution of number of artefactual channels identified by each pipeline for each subject 

(N=16). WSR test (BeMoBIL-APP): U = 77.5; p = 0.12. BF test: F(1;30) = 9.10; p = 0.005. 

subfigures (c) and (d) show the detail of this identification depending on the criteria used: the 

deviation criterion (c) and the correlation criterion (d) are implemented differently in the 

pipelines. (b) Temporal artefacts detection outcome. Histogram plots showing the distribution 

of the percentage (with respect to total recording time) of time segments detected as artefactual 
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by each pipeline for each subject (N=16). WSR test (BeMoBIL-APP): U = 136; p = 3e-5. BF 

test: F(1;30) = 24.28; p = 2e-5. (e) Remaining Pairwise Mutual Information after ICA 

decomposition. Histogram plots showing the distribution of the mean remaining PMI for the 

ICA decomposition after each pipeline. For each subject, we first computed the PMI of all pairs 

(separately in the channel and the component spaces) and then averaged over all pairs in each 

space. Remaining PMI is the ratio of ICs mean over channels mean, presented as a percentage. 

WSR test (BeMoBIL-APP): U = 0; p = 3e-5. BF test: F(1;30) = 2.37; p = 0.13. (f) Mutual 

Information Reduction achieved by ICA decomposition. Histogram plots showing the 

distribution of the MIR for the ICA decomposition after each pipeline. MIR is the difference 

of global mutual information contained in the dataset between the IC representation and the 

channel representation. WSR test (BeMoBIL-APP): U = 39; p = 0;14. BF test: F(1;30) = 0.19; 

p = 0.67. 
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Methods S4. Choice of the clustering design parameters 

Designs definition - Parameters inspected 

To inspect the influence of k-means clustering algorithm parameters, we compared four sets of 

parameters: number of formed clusters could alternatively be 50 or 60 and threshold for outliers 

was either 3 or 4 SD. Setting the number of clusters below the number of ICs per participant is 

common practice (Luu et al., 2017b; Gramann et al., 2018; Nordin et al., 2019) as there is no 

guarantee for the activity associated with a cortical region to be represented by a unique IC. 

Additionally, we evaluated the best clustering solution with respect to four different possible 

RSC coordinates as ROI. We took the first location (RSC1, [0,-45,10]) from Gramann et al. 

(2018) , the second one (RSC2, [0,-56,9]) from Lin et al. (2015), the third one (RSC3, [0,-47,7]) 

from Shine et al. (2016) and we chose the last one close to the anatomical region BA30 (RSC4, 

[0,-55,15]). We set the first coordinate (x) to 0 because we did not have any expectation for 

lateralization. Coordinates are expressed in MNI format. 

Metrics for ranking solutions within design 

For each design, we scored the clustering solutions following the procedure described in 

Gramann et al. (2018). For each of the 10000 clustering solutions, we first identified the cluster 

whose centroid was closest to the target ROI. Then, we inspected it using 6 metrics: (1) number 

of participants represented in the cluster, (2) ratio of ICs per participant, (3) cluster spread 

(normalized to the number of ICs in the cluster), (4) mean RV, (5) distance between cluster 

centroid and ROI coordinates and (6) Mahalanobis distance to the median of the solutions. We 

combined these metrics (after normalization) in a single score using a weighted sum [w1=2, 

w2=-3, w3=-1, w4=-1, w5=-3, w6=-1] and eventually clustering solutions were ranked 

according to their score. 

Metrics for design comparison 

We compared designs (i.e. set of parameters) based on the evaluating metrics for their highest 

rank solution and the stability of these metrics across the 11 best ranking solutions. We 

computed a design score out of the evaluation metrics for the highest rank solution, normalized 

across the 16 designs, with the same weights (supplementary Equation 1). For each metric, we 

also assessed how stable the value of the highest rank solution was among the 10 following 

solutions found with the same design parameters, using the variability index in supplementary 

Equation 2. We summarized the overall variability with a single score computed from the 
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weighted average of the variability for each measure (supplementary Equation 3). Finally, we 

selected the design with 50 clusters, 3 SD as threshold for outliers and RSC4 set of coordinates 

for target ROI. 

Equation S1: 

 Summary solution score. 

𝑺𝑪𝑶𝑹𝑬(𝑫𝒊) = ∑ 𝒘𝒋 ∗ 𝑴𝒋
𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅

𝟔

𝒋=𝟏
 

𝒘𝒊𝒕𝒉 𝑫𝒊 = 𝒅𝒆𝒔𝒊𝒈𝒏 𝒊, 𝑴𝒋
𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒋 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝒂𝒄𝒓𝒐𝒔𝒔 𝒅𝒆𝒔𝒊𝒈𝒏𝒔 𝒂𝒏𝒅  

𝒘𝒋 = 𝒘𝒆𝒊𝒈𝒕𝒉 𝒇𝒐𝒓 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒋  

Equation S2: 

Variability index assessing the stability of a best rank solution measure across the following 

best ranked solutions. 

𝑽𝑨𝑹𝟏𝟏(𝑴𝒊) = 𝟏𝟎𝟎 ∗
𝒎𝒆𝒂𝒏𝒋=𝟐→𝟏𝟏(|𝑴𝒊(𝑺𝒐𝒍𝒋) − 𝑴𝒊(𝑺𝒐𝒍𝟏)|)

𝑴𝒊(𝑺𝒐𝒍𝟏)
 

𝒘𝒊𝒕𝒉 𝑴𝒊 = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒊 𝒂𝒏𝒅 𝑺𝒐𝒍𝒋 = 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒐𝒇 𝒓𝒂𝒏𝒌 𝒋 

Equation S3: 

Summary variability index. 

𝑽𝑨𝑹(𝑫𝒊) =
∑ |𝒘𝒋| ∗ 𝑽𝑨𝑹𝟏𝟏(𝑴𝒋)𝟔

𝒋=𝟏

∑ |𝒘𝒋|𝟔
𝒋=𝟏

⁄  

𝒘𝒊𝒕𝒉 𝑫𝒊 = 𝒅𝒆𝒔𝒊𝒈𝒏 𝒊, 𝑴𝒋 = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒋 𝒂𝒏𝒅 𝒘𝒋 = 𝒘𝒆𝒊𝒈𝒕𝒉 𝒇𝒐𝒓 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒋 

  



17 

 

Choice of clustering parameters 

We present the scores comparing the different clustering parameters in supplementary Table 

3. Increasing the SD threshold (σ in the table) for outliers unequivocally yield worse solutions 

for this dataset, mainly due to the fact that the 1:1 ratio between number of ICs and number of 

participants is lost. Within designs with 3 SD threshold, RSC1 set of coordinates outputted 

very singular solutions, with fewer participants than other ROIs and associated with a high 

variability score indicating that those solutions were not representative of the pool of best ranks 

solutions for these designs. The solutions coming from designs with other ROIs were generally 

more stable. RSC2, RSC3 and RSC4 solutions retrieved almost identical clusters but the set of 

coordinates consistently closest to the centroid of this cluster was RSC4. We therefore opted 

for a design with this parameter. The remaining 2 designs (50 or 60 clusters with 3SD and 

RSC4) were associated to similar scores (highest ones amongst the 16 designs) and variability 

scores (low variability in each case). We eventually chose the 50 clusters design to favor the 

analysis of bigger clusters, potentially regrouping ICs from a larger share of participants and 

therefore more representative of our population. Choosing the RSC coordinates without any 

reference, has to be put in perspective with the high variability across literature of RSC 

functional location (Epstein, 2008) and the poorer spatial resolution of source localization with 

respect to fMRI scans. 
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Table S3. Results of the cluster design comparison 

Measures for the best solution outputted by each clustering design. The first 3 columns 

introduce the clustering design parameters (see “Designs definition - Parameters inspected” 

section), namely the target number of clusters, the outliers’ threshold and the ROI coordinates. 

The middle 6 columns show the evaluation of each design along a single metric, as presented 

in the “Metrics for ranking solutions within design”. BEST sub-column corresponds to the 

metric value associated to the best of the 10000 solutions for the given design parameters. 

VAR11 sub-column corresponds to a variability index assessing the stability of a best rank 

solution measure across the following 10 best ranked solutions (see Supplementary Equation 

2). The last 2 columns present summary scores aggregating the weighted contribution of all 

metrics to the ranking of design parameters. SCORE column corresponds to the summary 

solution score (see Supplementary Equation 1) and VAR column corresponds to the summary 

variability index (see Supplementary Equation 3). The rank sub-column evaluates the ordering 

of clustering parameters according to the given summary column (ranked from 1 to 16 with 1 

associated to the best performance). 

  

Design Measures 

Nb. of 
clusters 

σ ROI 

Nb of 
Participants 

Mean 
IC/Part. 

Cluster 
spread 

Mean RV (%) 
Centroid-ROI 

distance 

Mahalanobis 
distance 

SCORE VAR 

BEST VAR11 BEST VAR11 BEST VAR11 BEST VAR11 BEST VAR11 BEST VAR11 value rank value rank 

60 3 RSC1 5 66,0 1 0,0 171,6 20,4 3,29 10,6 8,05 48,9 29,63 43,8 -3,681 3 32,145 16 

60 3 RSC2 12 2,5 1 1,5 215,0 1,7 4,36 1,3 18,11 1,6 9,75 5,9 -3,744 4 2,117 1 

60 3 RSC3 12 18,3 1 0,8 215,0 6,6 4,36 7,8 18,86 13,8 9,16 92,0 -3,844 7 16,990 13 

60 3 RSC4 12 2,5 1 1,5 215,5 1,7 4,11 6,7 13,23 1,9 11,66 15,5 -2,980 1 3,575 2 

50 3 RSC1 9 27,8 1 3,3 213,3 2,2 3,58 22,8 12,86 23,7 25,22 40,9 -3,798 6 18,404 14 

50 3 RSC2 12 0,8 1 7,4 215,0 2,2 4,36 2,2 18,11 2,4 10,46 10,7 -3,768 5 4,207 5 

50 3 RSC3 12 2,5 1 5,0 215,0 1,5 4,36 2,5 18,86 3,3 16,83 18,2 -4,103 8 4,745 7 

50 3 RSC4 12 0,8 1 7,4 215,0 2,2 4,36 2,2 13,10 1,3 10,84 10,1 -2,985 2 3,855 4 

60 4 RSC1 12 5,8 1,083 2,2 246,5 7,4 3,87 13,5 14,19 11,1 11,76 9,8 -4,828 10 7,480 10 

60 4 RSC2 13 7,7 1,077 0,6 224,8 2,4 4,52 1,2 17,98 1,7 21,47 21,0 -5,512 13 4,255 6 

60 4 RSC3 12 4,2 1,083 2,1 246,5 8,0 3,87 14,9 16,84 7,4 11,98 7,6 -5,258 12 6,109 8 

60 4 RSC4 13 7,7 1,077 0,6 224,8 2,4 4,52 1,2 12,98 0,0 19,47 21,2 -4,649 9 3,811 3 

50 4 RSC1 11 11,8 1,091 5,0 238,9 17,1 3,75 16,4 13,63 15,5 18,42 36,5 -5,240 11 14,108 12 

50 4 RSC2 13 13,1 1,154 4,2 234,0 8,7 4,49 4,6 18,46 7,6 24,33 16,3 -7,214 16 8,282 11 

50 4 RSC3 8 40,0 1,125 4,8 255,0 20,6 4,18 12,3 11,02 44,4 16,58 41,8 -6,130 15 27,483 15 

50 4 RSC4 13 9,2 1,154 6,4 234,0 11,4 4,49 4,0 13,19 2,7 12,40 13,3 -5,974 14 6,761 9 
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Table S4. Brain cluster selection 

Clust. 
ID 

Nb. 
allo. 
part. 

Nb 
allo. 
ICs 

Mean Position Mean 
dist. to 

centroid 
(mm) 

Mean 
RV 

STD 
RV 

Talairach Client: Closest Gray Matter region 
Kept for 

later 
analysis 

x y z Level 1 Level 2 Level 3 Level 4 Level 5 
Range 
(mm) 

1 
10 

(12) 
10 

(12) 
7,67 -46,84 24,47 13,6 4,4% 2,4% 

Right 
Cerebrum 

Limbic 
Lobe 

Posterior 
Cingulate 

Gray 
Matter 

Brodmann 
area 23 

2 YES 

2 
11 

(12) 
21 

(22) 
15,19 -81,61 35,00 9,8 6,4% 2,4% 

Right 
Cerebrum 

Occipital 
Lobe 

Cuneus 
Gray 

Matter 
Brodmann 

area 19 
0 YES 

3 
9 

(11) 
13 

(15) 
38,96 -50,54 32,91 10,9 7,3% 4,1% 

Right 
Cerebrum 

Parietal 
Lobe 

Supramarginal 
Gyrus 

Gray 
Matter 

Brodmann 
area 40 

4 YES 

4 
11 

(12) 
14 

(15) 
-2,38 9,63 21,89 15,6 3,5% 3,1% 

Left 
Cerebrum 

Limbic 
Lobe 

Anterior 
Cingulate 

Gray 
Matter 

Brodmann 
area 33 

2 YES 

5 
11 

(13) 
15 

(17) 
33,26 -9,74 52,04 14,6 7,1% 5,1% 

Right 
Cerebrum 

Frontal 
Lobe 

Precentral 
Gyrus 

Gray 
Matter 

Brodmann 
area 6 

1 YES 

6 
10 

(11) 
12 

(13) 
-37,34 -27,53 48,87 11,7 6,5% 4,4% 

Left 
Cerebrum 

Parietal 
Lobe 

Postcentral 
Gyrus 

Gray 
Matter 

Brodmann 
area 3 

0 YES 

7 
8 

(9) 
10 

(11) 
-10,50 -55,98 39,15 10,7 5,4% 2,1% 

Left 
Cerebrum 

Parietal 
Lobe 

Precuneus 
Gray 

Matter 
Brodmann 

area 7 
2 NO 

8 
8 

(8) 
8 

(8) 
26,04 29,69 26,20 14,3 5,2% 2,0% 

Right 
Cerebrum 

Frontal 
Lobe 

Middle Frontal 
Gyrus 

Gray 
Matter 

Brodmann 
area 9 

4 NO 

9 
8 

(8) 
11 

(11) 
1,33 -30,51 60,23 11,5 7,1% 5,1% 

Right 
Cerebrum 

Frontal 
Lobe 

Paracentral 
Lobule 

Gray 
Matter 

Brodmann 
area 6 

3 NO 

10 
8 

(10) 
11 

(13) 
4,28 -17,39 0,35 15,4 5,2% 4,2% 

Right 
Cerebrum 

Sub-
lobar 

Thalamus 
Gray 

Matter 
* 0 NO 

11 
7 

(8) 
7 

(8) 
-30,74 -58,97 23,64 13,1 6,9% 3,0% 

Left 
Cerebrum 

Temporal 
Lobe 

Middle 
Temporal 

Gyrus 

Gray 
Matter 

Brodmann 
area 39 

3 NO 

12 
5 

(7) 
5 

(7) 
55,87 -20,08 -27,43 14,4 9,6% 1,9% 

Right 
Cerebrum 

Temporal 
Lobe 

Fusiform Gyrus 
Gray 

Matter 
Brodmann 

area 20 
1 NO 

Selection among the 12 Brain clusters. For the rest of the analysis, we chose to keep only the 

clusters containing ICs from at least 9 out of the 14 allocentric participants (~65%). This table 

presents all 12 brain clusters retrieved from the clustering procedure described above. In the 

order of the columns from left to right: 

- Cluster ID (clusters 1 to 6 are presented in Fig. 7 & Fig. 8 in the main document), 

- Number of allocentric participants (resp., in parenthesis, total number of participants) 

presenting at least one IC in the cluster, 

- Number of ICs accumulated by allocentric (resp., in parenthesis, all) participants in the 

cluster, 

- Mean position of the cluster centroid in TAL coordinates, 

- Mean distance of the cluster ICs to the centroid (mm), 
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- Mean residual variance (%), 

- Standard deviation to the residual variance (%), 

- Closest gray matter region as located by the Talairach Client (Lancaster et al., 2000), 

- Decision to keep the clusters for the rest of the analysis. Cluster 1 to 6 were kept. 
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