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except  for dry matter content whose GEI sensitivities was  marginally significant as
reported in FW. We identified TMS14F1297P0019 and TMEB419 as two topmost
stable genotypes with sensitivities value of 0.63 and 0.66 respectively using FW model.
However, GGE and The AMMI stability value in conjunction with genotype selection
index revealed that IITA-TMS-IBA000070 and TMS14F1036P0007 are the top-ranking
genotypes combining both stability and yield performance measures. AMMI-2 model
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genotypes for fresh root yield. Alternatively, we identified 3 clusters of testing
environments based on genotypic blups derived from random GEI component.
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Abstract 17 

Variety advancement decisions for root quality and yield-related traits in cassava are 18 

complex due to the variable genotype patterns by environment interactions (GEI). Therefore, 19 

studies focused on the dissection of the existing patterns of GEI using linear-bilinear models such 20 

as Finlay-Wilkinson (FW), additive main effect and multiplicative interaction (AMMI), and 21 

genotype and genotype by environment interaction (GGE) models are critical in defining the target 22 

population of environments (TPEs) for future testing, selection, and advancement. This study 23 

assessed thirty-six elite cassava clones in nine locations over three cropping seasons in the cassava 24 

breeding program of IITA based in Nigeria with a view of quantifying the GEI effects for root 25 

quality and yield-related traits. Genetic correlations coefficients and heritability estimates among 26 

environments depicted mostly intermediate to high values indicating high correlations with the 27 

major TPE. There was a differential clonal rankings among the environments indicating existence 28 

of GEI as also revealed by likelihood ratio test (LRT) which further confirmed statistical model 29 

with heterogeneity of error variances across the environments fit better. For all fitted models, we 30 

found the main effects of environment, genotype and their interaction to be significant for all 31 

observed traits except  for dry matter content whose GEI sensitivities was  marginally significant 32 

as reported in FW. We identified TMS14F1297P0019 and TMEB419 as two topmost stable 33 

genotypes with sensitivities value of 0.63 and 0.66 respectively using FW model. However, GGE 34 

and The AMMI stability value in conjunction with genotype selection index revealed that IITA-35 
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TMS-IBA000070 and TMS14F1036P0007 are the top-ranking genotypes combining both stability 36 

and yield performance measures. AMMI-2 model clustered the testing environments into 6 mega-37 

environment based on winning genotypes for fresh root yield. Alternatively, we identified 3 38 

clusters of testing environments based on genotypic blups derived from random GEI component.  39 



 3 

Introduction 40 

Cassava (Manihot esculenta Crantz) is one of the most important food crops worldwide, 41 

particularly in sub-Saharan Africa [1,2]. It is known to be a significant source of carbohydrates in 42 

the diet of millions of people in developing countries. It is cultivated under diverse edaphic and 43 

climatic conditions throughout the world [3] due to its efficient carbohydrate production [4] among 44 

staple root crops. Cassava is a food security crop grown predominantly by smallholders for 45 

subsistence due to its adaptability to survive in drought-prone areas under marginal conditions 46 

where other crops may not thrive [1,5]. In comparison to other crops, Sayre et al. [5] reported that 47 

cassava is mostly grown under marginal conditions, making it produce more energy per unit area 48 

with limited human input than other crops. Cassava is getting much attention because of its 49 

mechanisms to cope with diverse environmental conditions [6]. Cassava shows a strong genotype 50 

by environment interaction (GEI) effects [7], which makes selection for superior genotypes a 51 

difficult task for cassava breeders. Therefore, selection for a superior genotype requires the cassava 52 

breeding program to take into consideration the GEI effect. Detailed evaluation of the magnitude 53 

and significance of GEI is of utmost importance to ensure greater precision in the release of high 54 

yielding and stable genotypes [7]. 55 

Crop phenotypes are well known to be influenced by environmental conditions [8]. This 56 

can result in differential genotypic responses across the testing environments resulting in GEI 57 

variability. The phenotypic panel for evaluating GEI is often called a multi-environment trial 58 

(MET). In METs where genetic lines are often evaluated over many years and locations within a 59 

target population of environments (TPE), there is usually an important cross-over interaction 60 

(COI), and a GEI term needs to be explored to study the non-additivity of effects. 61 

Among several statistical models devised for exploring the empirical genotypic mean 62 

response across environments and for studying and interpreting GEI in agricultural field trials are: 63 

Sticky Note
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 4 

Linear models, bilinear models, and linear-bilinear models [9]. Typical examples of fixed-effect 64 

linear-bilinear models such as the Sites Regression (SREG) [10] and the Additive Main Effect and 65 

Multiplicative Interaction (AMMI) models [11,12] are used for investigating patterns of genotypic 66 

response across environments. In these models, biplots can be used to visualize the patterns of 67 

genotypic responses and environments [13,14] that allow the breeders to identify high or low 68 

performing genotype(s) with broad or specific adaptation for a given trait of interest. A form of 69 

the fixed-effect linear model called a factorial regression (FR) model, and a form of the bilinear 70 

model, called partial least squares (PLS) regression, allow integrating external environmental and 71 

genotypic covariates into the model and can be used to identify weather conditions causing GEI 72 

or the genomic segments (e.g., molecular markers) influencing GEI [9]. 73 

AMMI is one of the commonly used fixed-effect linear-bilinear models that models the 74 

complex structure of GEI. It is a hybrid statistical model combining analysis of variance (ANOVA) 75 

to model main effects of genotype and environment and principal component analysis (PCA) to 76 

decompose complex GEI structure into Interactive Principal Component Axes (IPCAs) through 77 

singular value decomposition. In this model, the percentage of GEI variation explained by IPCAs 78 

decreases, with the first IPCA accounting for the highest percentage of GEI variation. The AMMI 79 

biplot of first IPCA scores against the mean of genotypic performance visualizes both genotypes 80 

and environments through which genotypes with broad or specific adaptation can be identified. 81 

Genotypes with IPCA score in the vicinity of zero are considered to be stable across environments. 82 

However, genotypes with scores that deviate from zero for a given IPCA are unstable relative to 83 

the determinants of that IPCA but may exhibit specific adaptation if they are identified as close to 84 

a particular environment in the AMMI biplot. AMMI is often preferable to a linear regression 85 

approach in the sense of being parsimonious as it requires fewer degrees of freedom to explain 86 
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GEI. The AMMI model can be further used to delineate the testing environments with the best 87 

genotypes into mega environment using principal component axes scores and AMMI stability 88 

values (ASV) [15]. The AMMI stability value (ASV) for a genotype is defined to be the distance 89 

from the coordinate point for that genotype to the origin in a two-dimensional space of the first 90 

two Interactive principal component analysis scores (IPCA1 and IPCA2, [16]. Because IPCA 91 

scores account for different amounts of variation in the GEI sum of squares a weighted value must 92 

be assigned in the assessment of stability using the AMMI model. Genotypic stability alone does 93 

not provide a sufficient yardstick for selection as stable genotypes might not necessarily give the 94 

highest yield performance. Mahmodi et al. [17] and Tumuhimbise et al. [2] used a genotype 95 

selection index (GSI) which is sum of genotypic yield rank across environments and ASV rank to 96 

identify high yielding and stable genotypes. This index implicitly values yield and stability equally. 97 

A low GSI value signifies a desirable genotype with high average yield performance and high 98 

stability [17]. 99 

The Site Regression (SREG) model, also called Genotype Main Effect plus Genotype-100 

Environment Interaction (GGE), is a modification of AMMI model where the bilinear term 101 

combines the genotype main effect (G) and the GEI effect in a multiplicative term. It allows 102 

breeders to explore total genetic rather than exclusively GEI variation. GGE allows the finding of 103 

GEI in terms of crossover resulting from changes in genotypic ranking across the environments 104 

[18]. Unlike AMMI biplots that approximate only GEI, the genotypic scores in a GGE model 105 

describe the G and GEI jointly to approximate overall performance of (G + GE) interaction. 106 

This study’s principal objectives were: (i) To identify stable and high-yielding cassava 107 

clones adapted to broad and/or specific environments; (ii) To determine the relative importance of 108 

sources of variation influencing key agronomic traits; and (iii) To identify mega environments for 109 
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Nigerian cassava; iv) To provide a clear road map for other researchers pursuing these types of 110 

objective. 111 

Materials and methods 112 

Clonal material and experimental field design 113 

Thirty-six (36) advanced cassava clonal lines were evaluated, corresponding to 31 114 

experimental lines and five standard checks (Table 1) as in the uniform yield trial (UYT), an 115 

advanced stage of the IITA breeding program. These clones were evaluated across 20 trials grown 116 

in nine (9) locations across different agro-ecological zones in Nigeria from 2017 to 2020 (Table 117 

2). The geographical coordinate system describing the location of each field trial in space is given 118 

in terms of latitude and longitude. Weather data were collected across the testing environments 119 

from an online database, www.awhere.com. Mean temperature over crop growth cycle across the 120 

environments ranged from 26.8 °C for Zaria20 to 28.9 °C  for Mokwa20. Meanwhile, the total 121 

precipitation varied between 944.2 for Kano19 and 3208.4 for Onne19.  Average relative humidity 122 

varied across Each trial was established as a Randomized Complete Block Design (RCBD) in three 123 

replicates. The experimental plot consisted of 6 rows of length 5.6 m with an inter-row spacing of 124 

1 m and intra-row spacing of 0.8 m. The locations used varied from one cropping season to another 125 

as did the number of trials, resulting in an unbalanced data structure. 126 

Table 1. Thirty-six cassava clonal lines evaluated across 20 environments in Nigeria 127 

Clone Pedigree 

IITA-TMS-IBA000070  

IITA-TMS-IBA30572 58308 X BRANCA DE SANTA CATARINA 

IITA-TMS-IBA980581  

IITA-TMS-IBA982101 IITA-TMS-IBA951181 

http://www.awhere.com/
Sticky Note
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TMEB419  

TMS13F1021P0008 IITA-TMS-IBA010903 X IITA-TMS-IBA030075 

TMS13F1114P0001 IITA-TMS-IBA070126 X IITA-TMS-IBA000355 

TMS13F1182P0002 IITA-TMS-IBA011412 X TMEB419 

TMS13F1461P0002 IITA-TMS-MM990268 X IITA-TMS-IBA000355 

TMS13F2061P0005 (IITA-TMS-IBA070004 X IITA-TMS-IBA070520 X SM3361-30)-11 

TMS13F2207P0001 IITA-TMS-KAN930061 X IITA-TMS-IBA960249 

TMS14F1001P0004 TMS13F1303P0001 X TMS13F1020P0002   

TMS14F1016P0006 TMS13F1307P0011 X TMS13F1108P0007  

TMS14F1022P0006 TMS13F1307P0020 X TMS13F1106P0006  

TMS14F1035P0004 TMS13F1095P0009 X TMS13F1307P0008   

TMS14F1035P0007 TMS13F1095P0009 X TMS13F1307P0008  

TMS14F1036P0007 TMS13F1109P0009 X TMS13F1307P0020  

TMS14F1049P0001 TMS13F1391P0039 X TMS13F1306P0003   

TMS14F1120P0003 TMS13F1309P0001 X TMS13F`1333P0003  

TMS14F1131P0001 TMS13F1087P0002 X TMS13F1176P0003  

TMS14F1194P0002 TMS13F1101P0007 X TMS13F1307P0020  

TMS14F1195P0005 TMS13F1106P0006 X TMS13F1307P0020  

TMS14F1208P0007 TMS13F1106P0006 X TMS13F1020P0002  

TMS14F1223P0007 TMS13F1106P0006 X TMS13F1108P0007 

TMS14F1224P0004 TMS13F1106P0006 X TMS13F1212P0055 

TMS14F1262P0002 TMS13F1063P0009 X TMS13F1307P0008 

TMS14F1285P0017 IITA-TMS-IBA961632 X IITA-TMS-IBA000070  

TMS14F1291P0011 IITA-TMS-IBA030055A X IITA-TMS-IBA961632 

TMS14F1297P0019 IITA-TMS-IBA020431 X IITA-TMS-MM970806 

TMS14F1300P0008 IITA-TMS-ZAR930151 X IITA-TMS-MM970043 

TMS14F1303P0012 I IITA-TMS-ZAR930151 X ITA-TMS-IBA930134  

TMS14F1306P0015 IITA-TMS-IBA030060 X IITA-TMS-MM970043 

TMS14F1306P0020 IITA-TMS-IBA030060 X IITA-TMS-MM970043 

TMS14F1310P0004 IITA-TMS-IBA030060 X IITA-TMS-IBA930265 

TMS14F1311P0020. IITA-TMS-IBA030060  X IITA-TMS-ZAR930151 

TMS14F1312P0003 IITA-TMS-IBA930134 X IITA-TMS-ZAR930151  

 128 



 1 

Table 2. Climatic characteristics of the experimental sites showing the geographical coordinates, range and mean of temperature, 129 

precipitation, and relative humidity. 130 

Climatic 

factors 

Abuja Ago-owu Ibadan Ikenne Kano Mokwa Onne Otobi Ubiaja Umudike Zaria 

Latitude (°) 9.67 N 7.25 N 7.37  N 6.87 N 12.00 N 9.28 N 4.72 N 7.10 N 6.64 N 5.48 N 11.09 N 

Longitude (°) 7.39 E 4.32 E 3.94 E 3.71 E 8.59 E 5.05 E 7.15 E 8.08 E 6.39 E 7.54 E 7.71 E 

Min - Max 

(Mean) 

temperature 

(C) 

           

2018 - 23.9 - 32.6 

(28.3) 

23.6 - 32.2 

(27.9) 

24.3 - 32.1 

(28.2) 

- 23.6 - 33.9 

(28.8) 

- - - - - 

2019 - 23.9 - 32.1 

(28.0) 

23.7 - 32.2 

(27.9) 

24.4 - 32.2 

(28.3) 

20.9 - 34.1 

(27.5) 

23.7 - 33.9 

(28.8) 

21.8 - 29.5 

(25.7) 

23.1 - 32.2 

(27.7) 

. 23.1 - 30.9 

(27.0) 

- 

2020 22.8 - 32.9 

(27.8) 

23.7 - 32.3 

(28.0) 

23.5 - 32.2 

(27.8) 

24.3 - 32.4 

(28.3) 

- 23.5 - 34.3 

(28.9) 

21.9 - 29.7 

(25.8) 

- 22.6 - 31.5 

(27.0) 

- 20.5 - 33.2 

(26.8) 

Total 

precipitation 

(mm) 

           

2018 - 1082.1 1175.9 1295.4 - 1215.7 - - - - - 

2019 - 1647.4 1439.0 1653.2 944.2 1250.5 3208.4 1409.1 - 2795.6 - 

2020 1920.0 1673.8 1479.1 1681.3 - 1068.5 3199.9 . 2050.0  1322.8 

Relative 

humidity (%) 

           

2018 - 56.9 - 88.5 

(72.7) 

57.5 - 88.4 

(72.9) 

61.6 - 91.0 

(76.3) 

- 46.3 - 77.9 

(62.1) 

- - - - - 

2019 - 59.4 - 90.9 

(75.2) 

58.2 - 90.1 

(74.2) 

62.3 - 92.5 

(77.4) 

31.2 - 68.3 

(49.8) 

45.4 - 78.9 

(62.1) 

62.8 - 95.0 

(78.9) 

53.8 - 86.8 

(70.3) 

- 62.1 - 93.5 

(77.8) 

- 
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2020 51.8 - 86.0 

(68.9) 

58.0 - 91.7 

(74.9) 

56.4 - 90.6 

(73.5) 

60.3 - 93.1 

(76.7) 

- 44.8 - 79.4 

(62.1) 

61.8 - 95.6 

(78.7) 

- 56.7 - 91.5 

(74.1) 

- 33.7 - 71.6 

(52.6) 

Agroecological 

Zone 

Southern 

Guinea 

savanna  

Derived 

savanna 

Forest 

savanna 

transition 

Humid 

forest 

Northern 

Guinea 

savanna 

Southern 

Guinea 

savanna  

Humid 

forest 

Southern 

Guinea 

savanna 

Humid 

forest 

Humid 

forest 

Northern 

Guinea 

savanna 

131 
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Statistical analysis 132 

Data quality control and single trial analysis 133 

Before formal genotype by environment analysis, the empirical distribution of the observed 134 

agronomic traits was visualized by individual environment (i.e., location by year combination) in 135 

boxplots using the ggplot2 package [19] in R [20]. A linear mixed model was fitted to the 136 

individual trials to estimate clonal variance components and broad-sense heritability. The Proc 137 

Mixed procedure of Statistical Analysis Software (SAS) software version 9.4 [21] was used to fit 138 

the following model: 139 

 𝑦 =  𝜇 +  𝑋1𝑟 +  𝑋2𝑐𝑜𝑣 +  𝑍1𝑔 +  𝜖 (1) 

where y is the vector (n × 1) of observed phenotypic values, in which n is the number of 140 

observations;  is the intercept (overall mean); r is the vector (j × 1) of fixed effects of j replicates; 141 

cov denotes the proportion of plant stands harvested, a covariate for all traits except dry matter 142 

content; g is the vector (i × 1) of random effects of ith genotype with its associated design matrix 143 

Z1, and   is a residual term which is assumed to follow Gaussian distribution. 144 

Quality of each trial was assessed by calculating the coefficient of variation (CV), broad-145 

sense heritability (H2), and experimental accuracy (Ac) proposed by [22] using the following 146 

expressions: 𝐶𝑉% =  
�̂�𝑒

�̅�
 ×  100, 𝐻2 =  

�̂�𝑔
2

�̂�𝑔
2+ �̂�𝑒

2, and 𝐴𝑐 =  √1 −  
𝑃𝐸𝑉

�̂�𝑔
2  147 

in which  σ̂e is the estimated residual standard deviation, ȳ is the estimated overall mean for a 148 

trait; σ̂2g is the estimated genetic variance σ̂2e is the estimated error variance, and 𝑃𝐸𝑉̅̅ ̅̅ ̅̅  is the 149 

average of prediction error variance. 150 

This analysis identified three trials with low heritability (H2 < 0.1), low accuracy (Ac < 0.4) and 151 

high CV (CV > 40.5). These trials were removed from further analysis (Figs 2 and 3). 152 
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Joint G×E analysis of multiple trials 153 

Following single trial analysis to identify and eliminate poor quality trials, we carried out 154 

a combined analysis of trials using a linear mixed model framework on data consisting of g 155 

genotypes evaluated across e environment in r replicates within each environment. The model 156 

fitted for each agronomic trait was: 157 

 𝑦𝑖𝑗𝑘 =  𝜇 +  𝑔𝑖 + 𝑒𝑗 + 𝑏𝑘(𝑗) +  𝑔𝑒𝑖𝑗 + 𝑐𝑜𝑣 + 𝜖𝑖𝑗𝑘 (2) 

where yijk is a phenotypic vector of the observed agronomic trait of ith genotype in kth replicate 158 

within jth environment;  is a fixed intercept, gi is the effect of ith genotype considered to be 159 

random, ej is the random effect of jth environment, bk(j) is the random block effect within jth 160 

environment, geij is the random interaction effect of ith genotype and jth environment, cov denotes 161 

the proportion of plant stands harvested as covariates; and ijk is the vector of the random residual 162 

term. The random effects in the model are postulated to follow a multivariate normal distribution 163 

with means and variances defined as: 164 

g ~N(0, 2
gI), e ~ N(0, 2

eI), b ~ N(0, 2
bI), ge ~N(0, 2

geI), and  ~ N(0, 2
I) 165 

where 0 is the expected value (mean) of zero; 2
g is the genetic variance; 2

e  is the 166 

environmental variance; 2
b is the block variance nested with jth environment; 2

ge is the variance 167 

of genotype-by-environment interaction 2
 is the residual variance; and I is the identity matrix, 168 

with order equal to the number of observations. We calculated the percentage of total phenotypic 169 

variance explained by each random effect to determine how significant it was in influencing the 170 

variability in each trait. Broad-sense heritability on plot mean basis across all environments was 171 

derived from variance components estimate as 172 
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𝐻2 =  

𝜎𝑔
2

𝜎𝑔
2 +  (𝜎𝑔𝑒

2 𝑒⁄ ) + (𝜎𝜖
2 𝑒𝑟⁄ )

 (3) 

where e is  the number of environment, r is the number of replicates of genotypes per environment, 173 

and other terms were described above.  Out of 17 trials, 12 had replicates of 3 and others have 2 174 

replicates each. Therefore, the harmonic mean was calculated to be approximately 2.6 and it was 175 

used as a good representative of the number of replicates across all the trials while computing the 176 

heritability. 177 

We further ascertained the presence or absence of GEI by fitting both the reduced model 178 

without the GEI term and a full model that included the GEI term. The likelihood ratio test (LRT) 179 

was carried out on each of the agronomic traits to determine if there was a significant improvement 180 

in fitting a full model. In the same manner, we tested for the homogeneity versus heterogeneity of 181 

error variance across trials. Finally, we further partitioned the GEI variance into a repeatable 182 

component as genotype by location (GL), and non-repeatable components as genotype by year 183 

(GY) and genotype by location by year (GLY). In the presence of significant GEI, we assessed its 184 

pattern by fitting Finlay Wilkinson (FW), Additive main effect and multiplicative interaction 185 

model (AMMI), and genotype and genotype by environment (GGE) models on the two-way 186 

genotype environment adjusted means using the statgenGxE package [23] in R [20], as described 187 

below. 188 

Finlay-Wilkinson regression 189 

The Finlay-Wilkinson regression approach [24] was used to model GEI by regressing mean 190 

phenotypic performance of individual genotypes on an environmental index and determine the 191 

heterogeneity of associated slopes. The environmental index was the mean of all clones for a trait 192 

in an environment. Without explicit environmental information, an environment can be 193 
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characterized by the mean performance of all genotypes in that environment [25]. This method 194 

requires two steps: (i) Compute the environmental mean, and (ii) Estimate intercept and slope for 195 

each genotype by regressing genotypic performance on the environmental index. Prior to fitting 196 

the Finlay Wilkinson model, trait values were scaled to mean of zero and standard deviation of 197 

one following the equation below to allow comparison of means square error (MSE) values across  198 

traits, which are measured in different scale of units as: 199 

 𝑦𝑖𝑗𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
=  [𝑦𝑖𝑗 − 𝑚𝑒𝑎𝑛(𝑌)] 𝑠𝑑(𝑌)⁄  (4) 

where yij is the adjusted phenotypic mean value of ith genotype in jth environment and Y is the 200 

overall mean of adjusted phenotypic response of all clones in all environments. This 201 

standardization of each trait necessitated that the MSE values reflected variability  and not the 202 

absolute scale of a given unit [26]. Then for each trait, we fitted the Finlay-Wilkinson model as  203 

 𝑦𝑖𝑗 =  𝜇 +  𝑔𝑖 +  𝛽𝑖𝑒𝑗 +  𝜖𝑖𝑗 (5) 

in which yij is as described above but scaled,  is overall mean, gi is the genotypic intercept, i is 204 

a slope representing the sensitivity of ith genotype. The average value of i is 1; i > 1 indicates 205 

genotypes with a higher than average sensitivity, and i < 1 indicates genotypes that are less 206 

sensitive than average, ej is the environment sample mean, and ij is a random error term associated 207 

with ith genotype evaluated in jth environment.  208 

The three key parameters arising from this approach are: the genotypic intercept, which 209 

expresses the general performance of a genotype, the slope which measures the sensitivity of a 210 

genotype, and the residual variance which is a deviation from the regression line denoting the 211 

stability. The residual is genotypic-specific. Therefore, some lines have high residual, while others 212 

are low. To quantify and compare  trait sensitivity to GEI, the variance of slope and that of MSE 213 

resulting from Finlay-Wilkinson model were used [26] 214 
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AMMI analysis 215 

The observed traits’ G×E interaction was analyzed using the Additive Main effect and 216 

Multiplicative interaction (AMMI) model. AMMI is a fixed effect linear-bilinear model which 217 

analyses the main effect of genotype and environment using ANOVA and the multiplicative effect 218 

using principal component analysis (PCA) in a single model [27]. Each of the agronomic traits 219 

was subjected to AMMI analysis by fitting the model  220 

 𝑦𝑖𝑗 =  𝜇 + 𝑔𝑖 +  𝑒𝑗 +   ∑(𝜆𝑘𝛼𝑖𝑘𝛾𝑗𝑘)

𝐾

𝑘=1

 +  𝜖𝑖𝑗  (6) 

where yij is the mean performance of ith genotype in jth environment;  is the intercept; gi is fixed 221 

effect of ith genotype; ej is the fixed effect of jth environment. The GEI component is decomposed 222 

into K multiplicative terms (k = 1, 2, …, K), each multiplicative term is a product of  kth eigenvalue 223 

(k); genotypic score (ik); and environmental scores (jk); and ij is the residual GEI not captured 224 

by the model and some error deviation. 225 

We computed AMMI Stability Value (ASV) for each genotype relative to the influence of 226 

IPCA1 and IPCA2 scores based on their interaction sum of squares according to Purchase [16] 227 

using the formula: 228 

 𝐴𝑆𝑉 =  √[(
𝑆𝑆𝐼𝑃𝐶𝐴1

𝑆𝑆𝐼𝑃𝐶𝐴2
) ×  𝐼𝑃𝐶𝐴1]

2

+  𝐼𝑃𝐶𝐴22 (7) 

where (SSIPCA1/SSIPCA2) was the weight assigned to the IPCA1 value by dividing the IPCA1 SS by 229 

the IPCA2 SS; and the IPCA1 and IPCA2 scores were the genotypic score derived from the AMMI 230 

model. A large positive ASV value indicates a genotype that is more adapted to particular 231 

environments. A small (close to zero) ASV value indicates a stable genotype across environments 232 

[16]. 233 
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We also calculated genotype selection index (GSI) for each genotype as the sum of genotypic rank 234 

based on mean yield across environments (RY) and rank of AMMI stability value (RASV): 235 

 𝐺𝑆𝐼𝑖 =  𝑅𝐴𝑆𝑉𝑖 +  𝑅𝑌𝑖  (8) 

The genotype with the lowest GSI value is considered the most valuable [28]. 236 

GGE analysis 237 

Genotype main effect and Genotype by Environment (GGE) analysis is a modification of 238 

AMMI analysis. Unlike AMMI, only the environment is fitted as a main effect in the GGE model. 239 

This brings about fitting principal component analysis jointly on genotype main effect and 240 

genotype by environment interaction as a sum of multiplicative terms. The GGE analysis does the 241 

job of fitting the principal component model with two components to the two-way genotype by 242 

environment table of mean centered per environment with genotypes as object and environments 243 

as variable [18]. Like AMMI, the principal component scores can be exploited in constructing 244 

biplots. The GGE model or AMMI analysis could be used at differentiating mega-environment 245 

[29] even though this is debated in the literature in terms of preference. The observed traits were 246 

subjected to GGE analysis by fitting GGE model as 247 

 𝑦𝑖𝑗 =  𝜇 +  𝑒𝑗 +   ∑(𝜆𝑘𝛼𝑖𝑘𝛾𝑗𝑘)

2

𝑘=1

+  𝜖𝑖𝑗 (9) 

where each term is similar to the AMMI model. 248 

Mega-environment delineation 249 

In the context of GEI, a mega-environment is defined to be a group of environments sharing 250 

a common best performing genotype. In principle, it also follows that different genotypes are 251 

adapted to different mega-environments and GEI variation between the mega-environments is 252 
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higher than variation within the mega-environments [30]. We determined mega-environments 253 

based on the AMMI-2 model of order 2. The environments were clustered using the gxeMegaEnv() 254 

function of the statgenGxE package [23] based on the fitted values from AMMI-2 model. 255 

Environments that share the common best genotype belong to the same mega-environment. 256 

The version of GGE biplot graphic called “which won where” plot is also a tool for the 257 

delineation of a mega-environment. In the case of delineating mega-environment through GGE 258 

biplot analysis, the resulting mean value in the graphics is related to mega-environment mean and 259 

not grand mean, and it supports in identifying genotypes with broad or narrow adaptation to some 260 

environments or groups of environments [31]. The “which won where” biplot includes an irregular 261 

polygon whose vertices mark the genotypes that are furthest from the origin in all directions such 262 

that the polygon encompasses all genotypes in the biplot. Lines are also drawn originating from 263 

the biplot’s origin and intercepting the polygon’s sides perpendicularly [32]. The lines originating 264 

from the origin split the biplot into sections and the genotype at the vertex of every section had the 265 

optimal yield performance in environments contained in that section. Each section in effect defines 266 

a mega-environment. 267 

Cultivar superiority index 268 

Further assessment of stability of each clone was determined after testing the significance 269 

of GEI. We quantified yield stability across the testing environments using a univariate stability 270 

estimate called cultivar-superiority measure [33]. It is a measure of stability by superiority index 271 

and it is defined as a function of the sum of the squared differences between a cultivar’s  mean 272 

performance and the best cultivar’s mean, where the sum is across trials.  Lin and Binns [33] 273 

proposed the calculation of superiority index using expression: 274 
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 𝑃𝑖 =  ∑ (𝑋𝑖𝑗 − 𝑀𝑗)
2

2𝑛⁄

𝑛

𝑗=1

 (10) 

where Pi is the superiority index of ith cultivar; Xij is the yield of ith cultivar in the jth environment; 275 

Mj is the highest yield response got among the cultivars in the jth environment; and n is the number 276 

of environments. This expression was further decomposed as 277 

 𝑃𝑖 =  [𝑛(�̅�𝑖. − �̅�)2 + ∑(𝑋𝑖𝑗 − 𝑀𝑗 + �̅�)
2

𝑛

𝑗=1

] 2𝑛⁄  (11) 

where X̄i. = n
j=1Xij/n, and M̅ = n

j=1Mj/n, X̄i. = mean yield of ith cultivar in n environments 278 

and M̅ = mean of maximum response in the n environments. According to Lin and Binns [33], 279 

the first section of Pi expression quantifies genetic deviation and the second section signifies 280 

GEI. Cultivars with the lowest values of the index Pi incline to be more stable, and in proximity 281 

to the best cultivar in each environment. 282 

Representative of target population of environments 283 

We considered all environments in the study to be the target population of environments 284 

(TPE). We identified testing environments that best represented the TPE by following these steps: 285 

i) calculate environment-specific genotypic BLUPs by fitting genotype effect as random, ii) 286 

calculate genotypic BLUPs across all environments which represent a TPE, iii) calculate the 287 

Pearson correlation between environment-specific genotypic BLUPs and genotypic BLUPs across 288 

all environments as a measure of breeding value accuracy, and iv) estimate environment-specific 289 

heritability based on the Cullis approach which involves the variance of a difference between 290 

genotypes. Cullis et al. [34] proposed to compute heritability as 291 
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 𝐻𝐶𝑢𝑙𝑙𝑖𝑠
2 = 1 − 

V̅𝛥..
𝐵𝐿𝑈𝑃

2𝜎𝑔
2

 (12) 

where V̅ Δ..
BLUP is the mean variance of a difference of two genotypic BLUPs and 2

g is the genetic 292 

variance, and v) rank heritability and Pearson correlation value and take the sum of their rank. We 293 

use both high genetic correlation and heritability estimate as indicators for identifying a good 294 

representative for the TPE. 295 

To determine the number of testing environments representing the entire TPE, we 296 

randomly sampled subsets of 1 to 16 environments from the phenotypic data repeatedly for 50 297 

times. For each sampling, a model was fitted to obtain genotypic best linear unbiased prediction 298 

(BLUP). Then, for each sampling environment, Pearson correlation was obtained between the 299 

BLUP and the BLUP derived from all the environments. We further calculated  the average 300 

correlation coefficient as a breeding value accuracy relative to overall environments. The  point at 301 

which the line plot showing the trends of breeding values accuracy relative to all TPE and sampled 302 

environments reaches a plateau is used to determine optimal number of environments to represent 303 

TPE. 304 

To provide further insights into the relatedness or grouping of the current testing environments 305 

based on key traits, we extracted environment-specific genotypic BLUPs from the random G×E 306 

effect component of the joint analysis. Then, we further carried out a Pearson correlation analysis 307 

among the environments. Thereafter, the clustering of the environments was carried out based on 308 

a distance matrix derived from correlation matrix using ward.D2 linkage method [35]. Intuitively, 309 

we examined the resulting dendogram from the clustering to identify environments that joined 310 

together with the smallest distance as a cluster group 311 
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Results 312 

Phenotypic data description and single trial analysis 313 

The distribution of the phenotypic values of observed traits of the 36 genotypes revealed 314 

that all observed traits approximated a normal distribution across the testing environments 315 

satisfying the assumption of normality in classical statistical methods (Fig 1). We observed a range 316 

in variation of fresh root yield (t/ha) from low performance environments (Onne19, Onne20, 317 

Ubiaja20), to high performance environments (Ibadan19, Otobi19, Ago-owu20, Ikenne20). The 318 

boxplots further revealed the heterogeneity of variability for the observed traits across the 319 

environments indicating the presence of GEI.  320 

Fig 1. Box plot displaying the distribution of dry matter content (dm %), dry yield (dyld 321 

t/ha), fresh root yield (fyld t/ha), harvest index (hi), and top yield (tyld t/ha) of 36 genotypes 322 

evaluated. 323 

The plots resulting from data quality control of single-trial analysis (S1 and S2 Figs.) showed that 324 

the three trials: 18UYT36setAKN, 19UYT36setAZA, and 19UYT36setAMK should be removed 325 

based on thresholds set for CV, H2, and Accr. The mean fresh root yield across the remaining 17 326 

trials ranged from 6.52 t/ha (19UYT36setAON) in Onne20 to 47.49 t/ha (18UYT36setAOT) in 327 

Otobi19 with an overall mean of 27.46 t/ha (S1 Table). The summary statistics for other traits like 328 

dry matter content, dry yield, top yield, and harvest index from each testing environment are also 329 

reported (S1 Table). In addition, visualization of the distribution of derived parameters such as 330 

broad-sense heritability, coefficient of variation, experimental accuracy, and residual variance for 331 

all traits across all trials were showed (S3 Fig). We observed smallest variability in dry matter 332 

content and then harvest index across all trials relative to other traits. 333 
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Combined analysis of multiple trials 334 

The likelihood ratio test (LRT) statistics identified presence of significant GEI and error 335 

variance heterogeneity across testing environments for all observed traits (S2 and S3 Tables). The 336 

percentage of phenotypic variance attributed to each model term for each trait was reported (Fig 2 337 

and S4 Table). The environment had a significant effect on all traits (P < 0.01) and captured largest 338 

percentage of total phenotypic variance ranging from 48.6% in harvest  index to 63.9% in top 339 

yield. The genotypic effect was highly significant (P < 0.001) for each trait and explained 340 

percentage of phenotypic variance between 2.6% (harvest index) and 12.6% (dry matter content). 341 

The GEI term was also highly significant  (P < 0.001) and accounted for 5.3% (top yield) to 12.5% 342 

(harvest index) of phenotypic variance. We observed relatively high GEI variance compared to 343 

genetic variance for fresh root yield. In contrast, genetic variance for top yield was higher than 344 

GEI variance indicating environmental conditions played a lesser role in influencing top yield (Fig 345 

2 and S4 Table). The replication nested within environment captured between 2.3-5.6% of the 346 

phenotypic variance, which was the smallest relative to other source of variation. It was highly 347 

significant (P < 0.01) for all traits. Residual term was the second largest source of variation after 348 

the environment effect. It accounted between 18.8-30.8% of the phenotypic variance (Fig 2 and 349 

S4 Table). The broad-sense heritability estimates varied from 0.64 for harvest index to 0.92 for 350 

dry matter content (S4 Table). 351 

Fig 2 Barchart plot displaying the percentage of total phenotypic variance attributed to each 352 

effect for each trait across 17 trials. 353 

Further decomposition of GEI term into repeatable component (GL) and non-repeatable 354 

component (GY and GLY) revealed that GY component was not significant for all traits except 355 

dry matter content (P < 0.001). It accounted for the smallest portion of phenotypic variance ranging 356 

from approximately 0.2 to 5.6% (S5 Table). Repeatable GL component explained between 3.7-357 
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48.6% percentage of phenotypic variance. In comparison to GL and GY components, the GLY 358 

term was highly significant (P < 0.001) and accounted for largest portion of  phenotypic variance 359 

for all traits except for harvest index where GL explained largest portion of phenotypic variance. 360 

The significance of GLY is an indication that for all traits, genotypic response  to conditions 361 

particular to a specific location depends on year of evaluation and vice versa.. 362 

Finlay-Wilkinson regression 363 

The genotypic and environmental main effects of the Finlay-Wilkinson (FW) model were 364 

highly significant (P <= 0.001) for all observed traits (S6 Table). Significant differences in 365 

regression slope (sensitivity) among genotypes on the environmental mean was found for all traits 366 

except dry matter content (S6 Table). In other words, there was variation in genotypic response 367 

for all traits but not dry matter with respect to changes in environment mean.  368 

The genotypic sensitivity values were ranked from the most stable (low sensitivity value) to the 369 

least stable (high sensitivity value) for each trait (S7 Table). The FW model identified 370 

TMS14F1297P0019, TMEB419, TMS14F1120P0003, TMS13F1461P0002, and 371 

TMS14F1312P0003 as the top 5 most stable genotypes for fresh root yield with sensitivities values 372 

of 0.638, 0.663, 0.721, 0.786, and 0.813 respectively. 373 

Trait sensitivity to GEI was quantified by the variance of the slopes and the variance of 374 

MSEs. The top yield had the lowest median MSE of all traits (median = 0.146) and the variance 375 

of MSE (variance=0.007) (Fig 3 and  S8 Table). Meanwhile, the slope variance varied from 0.023 376 

(top yield) to 0.058 (harvest index) with the corresponding  slope median values of 1.001 and 1.010 377 

respectively, (Fig 3 and S9 Table). 378 

Fig 3. Boxplots showing distribution of  MSE and slope  resulting from Finlay Wilkinson 379 

model for the evaluation of 36 elites cassava clones across 17 environments for 5 traits. 380 
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AMMI analysis 381 

The AMMI analysis revealed significant variation in the main effects of genotype (G), 382 

environment (E) and their interactions (GEI) (P < 0.001) for all observed traits (S10 Table). The 383 

partition of total sum of squares (TSS) showed that the environment main effect accounted for 384 

highest amount of variation varying from 48.2% (harvest index) to 76.1% (top yield).  385 

The decomposition of variation in GEI for fresh root yield showed that the first and the second 386 

interactive principal components (IPCs) captured 21.6% and 15.7% and accounted for 4.5% and 387 

3.3% of the TSS. For dry matter content, the first two IPCs accounted for 21.0% and 15.9% of 388 

GEI SS and 4.3% and 3.3% of TSS. Finally, the partition of variation in GEI for top yield revealed 389 

the first and second principal components explained 26.5% and 17.6% and accounted for 4.0% 390 

and 2.7% of TSS respectively (S10 Table). 391 

The AMMI-2 biplot revealed how the genotypes and environment are interrelated based 392 

on fresh root yield (Fig 4a). The genotypes close to each other in this biplot have a tendency to 393 

have a relatively similar yield in the tested environments. Meanwhile, genotypes far apart within 394 

the plot tend to differ in yield or have a unique pattern of yield response across the environments. 395 

Genotypes in the vicinity of the origin are not sensitive to environmental interaction and those 396 

distant from the origin are sensitive and have large interaction. 397 

Fig 4. Polygon view of (a) AMMI2 model and (b) GGE2 model for fresh root yield (t/ha). 398 

The mean fresh root yield (t/ha) value of cassava genotypes averaged over testing 399 

environments indicated that genotype IITA-TMS-IBA000070 had the highest fresh root yield 400 

(37.9 t/ha) and genotype TMS14F1120P0003 had the lowest yield (22.5 t/ha, S11 Table). The 401 

IPC1 and IPC2 scores signify the adaptability of a genotype over environments and the relationship 402 

between genotype and environment (S11 Table). Genotypes with large scores in absolute value 403 
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(e.g., TMS14F1297P0019 and TMEB419) have high interactions and are unstable, whereas 404 

genotypes with scores close to zero (IITA-TMS-IBA000070, TMS14F1036P0007) have low 405 

interactions and are stable. 406 

The AMMI stability value (ASV) ranged from 2.60 to 40.34, averaging 15.39 across the 407 

36 cassava genotypes. The genotypes IITA-TMS-IBA000070 (2.60), TMS14F1306P0020 (3.28), 408 

TMS14F1223P0007 (3.88), and TMS14F1306P0015 (5.68) had the lowest ASV values, while 409 

TMEB419 (40.34), TMS14F1297P0019 (39.21), and TMS14F1300P0008 (30.41) had the highest 410 

values (S11 Table). Stability is not the only yardstick for selection, as the most stable genotype 411 

would not necessarily give the best yield performance. Therefore, the genotype selection index 412 

showed that IITA-TMS-IBA000070 and TMS14F1036P0007 were the two best when combining 413 

both stability and yield performance measures (S11 Table). 414 

Identifying mega environments 415 

The fitted fresh root yield values from the AMMI2 model were used to cluster the 416 

seventeen testing environments into six mega environments, one for each of the winning genotypes 417 

“IITA-TMS-IBA000070”, “IITA-TMS-IBA980581”, “TMS14F1016P0006”, 418 

“TMS14F1036P0007”, “TMS14F1285P0017”, and “TMS14F1300P0008’ (S12 Table). The 419 

genotypes IITA-TMS-IBA000070 and TMS14F1016P0006 had broad adaptation to eight and four 420 

environments, respectively. However, genotypes IITA-TMS-IBA980581, TMS14F1285P0017, 421 

and TMS14F1300P0008 had specific adaptation to environments Abuja20, Mokwa18, and 422 

Ibadan18, respectively. TMS14F1036P0007 was the best genotype in environments Ago-Owu19 423 

and Ibadan20. 424 
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GGE analysis 425 

The GGE model showed a significant main effect of environment and combined genotype 426 

and genotype by environment interaction effect (P <= 0.001) for the observed traits (S13 Table). 427 

The partition of TSS which includes sum of squares (SS) of environment and genotype and 428 

genotype by environment interaction indicated that environment explained a larger percentage of 429 

variation for all observed traits relative to GGE component except for harvest index. The variation 430 

explained by the GGE component ranged from 23.9% (top yield) to 51.8% (harvest index). For 431 

fresh root yield, the first and second IPCs accounted for 9.6% and 4.4% of TSS and explained 432 

33.3% and 15.3% of GGE variation, respectively with a cumulative total of 48.6%. For dry matter 433 

content, the first two IPCs captured 17.4% and 4.3% of TSS and explained 47.6% and 11.8% of 434 

GGE variation, with a cumulative total of 59.4%. For the top yield, the first two IPCs explained 435 

11.3% and 3.1% of TSS and captured 47.4% and 12.8% of GGE variation resulting to cumulative 436 

total of 60.2%. 437 

GGE biplots based on symmetric scaling of genotype and environment were used to 438 

estimate the pattern of environments in relation to genotypes (Fig 4b). The first principal 439 

component of environment had both negative and positive scores indicating a difference in yield 440 

performance across environments resulting in cross-over GEI. 441 

Fig 4. Polygon view of (a) AMMI2 model and (b) GGE2 model for fresh root yield (t/ha). 442 

The three models revealed that environment effect accounted for almost the same percentage of 443 

total phenotypic variation for the observed traits (Fig 5).  Likewise, the genotypic effect of FW 444 

and AMMI models explained nearly the same percentage of total phenotypic variation for each 445 

measurable trait. The interaction factor of GGE model includes main effect of genotype and 446 

genotype by environment interact resulting in a larger percentage of total phenotypic variation in 447 
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comparison to other models. The GEI component of AMMI captured larger percentage of variation 448 

than FW, which explained relatively low variation for all the traits. For all the observed traits, the 449 

residual term of the AMMI model was the lowest while for FW it was the highest (Fig 5). 450 

Fig 5. Percentage of total variation captured by each factor from fitting additive main effect 451 

and multiplicative interaction (AMMI), Finlay Wilkinson (FW), and genotype and genotype 452 

by environment (GGE) models to yield related traits on 36 elite cassava genotypes evaluated 453 

in 17 environments. Note that the variation attributed to  genotype x environment factor for 454 

GGE model includes that of genotype. 455 

Cultivar superiority index 456 

Mean performance and index values of cultivar-superiority stability estimates were 457 

presented for fresh root yield, dry matter content, and dry yield to assess genotypes’ stability  458 

across the testing environments (S14 Table). Among the 36 cassava genotypes, 19 had mean fresh 459 

root yield above grand mean of 29.5 t/ha. The remaining genotypes had average fresh root yield 460 

below grand mean. Dyke et al. [36] pointed out that  a stable genotype tends to sustain a constant 461 

yield performance across testing environments. Consequently, genotypes with above mean 462 

performance and are stable by outcome of this stability measures are desirable. 463 

Superiority index value Pi  is defined as the deviation of the ith genotype relative to the genotype 464 

with maximum performance in each environment. The top ranked 5 stable genotypes for fresh root 465 

yield that tends to be closer to the best genotype in each environment  were identified with lowest 466 

Pi value include IITA-TMS-IBA000070, TMS14F1036P0007, TMS14F1016P0006, 467 

TMS14F1262P0002, and TMS14F1035P0004, most of which would be attributed to genetic 468 

deviation [33]. These genotypes also have relatively high  fresh root yield above grand average 469 

yield of 29.5 t/ha and their corresponding dry matter ranged from  31.3%  for TMS14F1016P0006  470 

to 37.4% for TMS14F1035P0004 (S4 Fig and S14 Table). Top ranked 5 genotype  showing 471 
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consistent performance for dry matter content include TMS14F1035P0004, TMS14F1306P0015, 472 

TMS14F1291P0011, TMS14F1195P0005, and TMS14F1049P0001 (S5 Fig and S14 Table). 473 

However, it is superiority index associated to dry yield that showed genotypes with consistent 474 

performance for both fresh root yield and dry matter content and top ranked 5 genotypes were 475 

TMS14F1036P0007, IITA-TMS-IBA000070, TMS14F1035P0004, TMS14F1262P0002, and 476 

TMS13F2207P0001 (S6 Fig and S14 Table). 477 

Representative of target population of environments 478 

The correlation coefficient of each environment’s BLUPs with genotypic BLUPs of all 479 

environments in the TPE for fresh root yield ranged from 0.33 (Ibadan18) to 0.73 (Ago-Owu19) 480 

with corresponding heritability estimates of 0.71 and 0.80, respectively (Table 3). The top ranked 481 

5 environments showing high correlation with TPE and high heritability estimate include Ago-482 

Owu19 (0.73, 0.80), Ikenne18 (0.69, 0.82), Ibadan19 (0.68, 0.73), Ago-Owu18 (0.56, 0.74), and 483 

Ikenne20 (0.67,0.68) (Table 3). 484 

Table 3. Correlation coefficient (r) of environment_specific BLUPs with all target population of 485 

environment (TPE) and environment-specific heritability (H2) based on the Cullis method [34] for 486 

fresh root yield (t/ha). 487 

 488 

Environment  r  (H2)  rank(r) rank(H2 ) Sum ranks 

Ago-Owu19 0.73 0.80 1 2 3 

Ikenne18 0.69 0.82 2 1 3 

Ibadan19 0.68 0.73 4 5 9 

Ago-Owu18 0.56 0.74 9 4 13 

Ikenne20 0.67 0.68 5 8 13 

Onne19 0.67 0.69 6 7 13 

Ago-Owu20 0.68 0.61 3 11 14 

Mokwa18 0.47 0.74 12 3 15 
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Ibadan20 0.61 0.51 7 15 22 

Umudike19 0.61 0.56 8 14 22 

Ibadan18 0.33 0.71 17 6 23 

Ikenne19 0.54 0.57 10 13 23 

Mokwa19 0.46 0.61 13 10 23 

Ubiaja20 0.42 0.62 15 9 24 

Otobi19 0.44 0.58 14 12 26 

Abuja20 0.49 0.27 11 16 27 

Onne20 0.40 0.26 16 17 33 

 489 

As for dry matter content, the environments revealed a higher range of correlation coefficient with 490 

TPE relative to fresh root yield varying from Onne20 (0.48) to Ikenne20 (0.85) with corresponding 491 

heritability estimate of 0.57 and 0.88, respectively (S15 Table). The top ranked 5 environments to 492 

represent the TPE for showing high correlation and high heritability included Ikenne20 (0.85, 493 

0.88), Ikenne18 (0.79, 0.78), Onne19 (0.72, 0.87), Ubiaja20 (0.73, 0.82), and Umudike (0.78, 494 

0.77). For top yield there was higher variability in the correlation coefficient with TPE ranging 495 

from 0.14 (Mokwa19) to 0.83 (Ubiaja20) with heritability estimates of 0.32 and 0.71, respectively 496 

(S16 Table). The top ranked 5 environments to represent the TPE were Ikenne19 (0.82, 0.81), 497 

Otobi19 (0.83, 0.78), Ikenne18 (0.79, 0.82), Ago-Owu20 (0.79, 0.76), and Ubiaja20 (0.83, 0.71). 498 

A line graph provides further insights into the number of environment(s) that is likely to be 499 

sampled to represent TPE and their corresponding breeding value accuracy compared to all the 500 

environment for fresh root yield, dry matter content, and top yield (Fig 6). Regardless of the 501 

number of environments sampled, the breeding value accuracy of fresh root yield is lower 502 

compared to dry matter content and top yield. As revealed in Fig 6, sampling of five (5) 503 

environments is likely to represent TPE where fresh root yield has an approximate breeding value 504 
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accuracy of 0.84 lower than dry matter content and top yield with breeding value accuracy of 0.92 505 

and 0.91 respectively. 506 

Fig 6. A line graph showing the estimated breeding value accuracy against the number of 507 

sampling environments for dry matter content (dmc), fresh root yield (fyld), and top yield 508 

(tyld). 509 

The relatedness among the testing TPE for fresh root yield revealed the grouping of the testing 510 

TPE into three cluster groups such that environments within a cluster are more similar and 511 

dissimilar from environments in other cluster (S7 Fig). As for dry matter content, the TPEs were 512 

grouped into 4 clusters (S8 Fig). However, 6 cluster groups of TPE were identified for top yield 513 

out of which 3 clusters have one environment each (S9 Fig).  514 
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Discussion 515 

This study demonstrated the application of classical ANOVA in a linear mixed model 516 

framework and linear-bilinear models such as Finlay-Wilkinson, additive main effect and 517 

multiplicative interaction model, and genotype plus genotype environment models towards 518 

identifying stable genotypes, mega-environments and environments representative of the TPE. 519 

The large sum of squares and significant effect of environment on the observed agronomic 520 

traits as shown by FW, AMMI, and GGE models demonstrated that the field trials were conducted 521 

under diverse environmental conditions causing variation in cassava genotypes yield and other 522 

yield-related traits. The significant variation of GEI effect found for the observed agronomic traits 523 

indicated that neither genotype nor environment effect can independently capture all the variation 524 

observed. This resulted in diverse performance of the genotypes in the testing environments. This 525 

variation is useful when proposing to examine GEI, as well as to assess the stability of genotypes. 526 

We found that the AMMI model attributed largest percentage of treatment sum of squares to 527 

environment (71.1%) for fresh root yield. This finding was contrary to Tumuhimbise et al. [2] who 528 

reported that genotype accounted for largest percentage of treatment sum of squares (48.5%). The 529 

disparity in the result may be due to the fact that our study evaluated 36 genotypes in 17 530 

environments compared to 12 genotypes in 3 environments in (Tumuhimbise et al. [2]. Also 531 

contrary to our findings, Jiwuba et al. [37] reported that GEI accounted for largest percentage of 532 

treatment sum of squares (43.80%) in their study where 60 genotypes were evaluated over 6 533 

environments. 534 

As for top yield, the environment captured largest percentage of total variability (76.1%) 535 

from the AMMI model. This was contrary to findings from Jiwuba et al. [37] who reported that 536 

environment accounted for the lowest percentage of total variation (11.9%) for the biomass. The 537 
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disparity in the result may be because they evaluated fewer environments (6) in their study 538 

compared to 17 environments in our study. Unlike fresh root yield and top yield, the percentage 539 

of total sum of squares attributed to G (16.1%) was relatively close to GEI (20.6%) for dry matter 540 

content, indicating that there was similarity in dry matter response of some of the genotypes across 541 

environments. However, all the linear bilinear models explored in this study revealed that the 542 

environment accounted for much greater variation on DMC compared to genotypic effect. This 543 

may be due to the fact this is a UYT study, so that genotypes have already been strongly selected, 544 

so that genetic variability is reduced. In contrast, Benesi et al. [38] reported that genotypic 545 

influence on dry matter content is much higher than for the environment. 546 

AMMI, like the FW model, revealed a significant genotypic effect for the observed 547 

agronomic traits, signifying the presence of genetic variation in IITA cassava germplasm. This is 548 

similar to what Nduwumuremyi et al. [39] reported about the existence of significant genetic 549 

variation in Rwandan germplasm. 550 

The limitation of classical ANOVA is that it does not provide insight into the complex 551 

pattern of GEI, which necessitates further use of linear bilinear models. The strength of AMMI 552 

and GGE models is that they concurrently visualize genotypes and environments using biplots that 553 

expedite the interpretation of GEI. On biplots, a genotype in the vicinity of an environment with a 554 

large IPC score is expected to display a higher performance in that environment in comparison to 555 

its mean performance, and conversely for genotypes located far from that environment on the 556 

biplot. 557 



 22 

Conclusion 558 

The classical statistical methods used in this study found highly significant genotype x 559 

environment interaction, a major challenge confronting cassava breeders in the course of breeding 560 

for high yielding and stable varieties. We also observed highly diverse environments, with 561 

environment effects accounting for a large percentage of observed variation in the agronomic traits 562 

as these traits are polygenic in nature. There were 6 mega-environments identified from 17 testing 563 

environments as a function of winning genotypes. 564 

The Finlay-Wilkinson, AMMI, and GGE are fixed effect models and they may not be an 565 

appropriate approach to use when estimating quantitative genetic parameters in the presence of 566 

unbalanced data and/or when jointly analyzing heterogeneous trial designs. Such circumstances 567 

require a mixed model approach where different variance covariance structures can be explored. 568 

In addition, these models assumed homogeneity of error variances across the testing environments 569 

which may be misleading as error variances were heterogeneous as revealed through likelihood 570 

ratio tests. None of these linear bilinear models can account for relatedness among the genotypes, 571 

e.g., using relatedness matrices from pedigree and/or molecular data. 572 

Though the same genotypes were evaluated across the testing environments (trials or 573 

location by year combination), there were locations (Abuja, Otobi, Umudike, and Ubiaja) where 574 

this study was carried out in just one out of three cropping seasons. This caused unbalancedness 575 

in the data structure. Therefore, the outcome of delineating the testing environments into mega-576 

environments may be misleading. In future studies, it may be advisable to have more than one 577 

cropping season of data from such locations to ensure having well-defined mega environments. 578 

To get a clearer picture of locations that are representative of the TPE, future studies may require 579 
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many years of historical data. To better understand the factors influencing the GEI, it is advisable 580 

to explicitly exploit soil and weather data.  581 
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Supporting information 687 

S1 Fig. This is the scatter plot of coefficient of variation and heritability. 688 

S2 Fig. This is the scatter plot of experimental accuracy and heritability. 689 

S3 Fig. This is the boxplot showing distribution of observed traits for some parameter estimates. 690 

S4 Fig. This is the scatter plot of cultivar superiority index and mean fresh root yield. 691 

S5 Fig. This is the scatter plot of cultivar superiority index and mean dry matter content. 692 

S6 Fig. This is the scatter plot of cultivar superiority index and mean dry yield. 693 

S7 Fig. This is clustering of environments  based on genotypic blups of fresh root yield. 694 

S8 Fig. This is clustering of environments  based on genotypic blups of dry matter content. 695 

S9 Fig. This is clustering of environments  based on genotypic blups of top yield. 696 

S1 Table. This is the summary statistics of individual trials 697 

S2 Table. This is the likelihood ratio test of absence versus presence of GEI 698 

S3 Table. This is the likelihood ratio test of homogeneity versus heterogeneity of error 699 

variances. 700 

S4 Table. This is the ANOVA table showing the variance component estimates. 701 

S5 Table. This is ANOVA table showing the partition of GEI variance component. 702 

S6 Table.This is the ANOVA table resulting from Finlay-Wilkinson (FW) model. 703 

S7 Table. This is the genotypes ranking based on sensitivities values from FW model. 704 

S8 Table. This is minimum, median, maximum, and variance of MSE from FW model. 705 

S9 Table. This is minimum, median, maximum, and variance of slopes from FW model. 706 

S10 Table. This is the combined ANOVA table resulting from AMMI model. 707 

S11 Table. This is the ranking of genotypes based on AMMI stability value and genotype 708 

selection index. 709 

S12 Table. This is the table showing mega-environment based on AMMI2 model. 710 
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S13Table. This is the combined ANOVA table resulting from GGE model. 711 

S14 Table. This is the assessment of stability of genotypes based on cultivar superiority index. 712 

S15 Table. This is the ranking of testing environments for dry matter content based on 713 

correlation and Cullis heritability. 714 

S16 Table. This is the ranking of testing environments for top yield based on correlation and 715 

Cullis heritability. 716 
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