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A DETAILS MODEL ESTIMATION

The Method of Moments (MoM) may be used to obtain moment estimates for the prior parameters, e.g. for obtaining group
prior variance estimates for linear and logistic regression1. Whereas the theoretical moments needed for MoM are analytical
for linear regression, Taylor approximations2 are used and generalised to derive approximations for other generalised linear
models (GLMs) using first and second order derivatives for GLMs3. Besides, the approximation is extended to include moment
estimations for group prior mean parameters as well. This could be used if one would want to shrink all � not to 0, but to a target4
where the target itself now is estimated based on the data. By default, we use a ridge penalty on the group level to ensure stable
group variance estimates that are automatically shrunk towards an ordinary ridge prior weight when co-data is non-informative.
Differences in group sizes are taken into account when shrinking group variance estimates. The penalty matrices used will first
be assumed to be of full rank, which doesn’t hold in particular when unpenalised covariates are to be included. However, we
can show that the MoM estimating equations can be derived independently of unpenalised covariates.
Below, we derive moment-estimates for group prior means and variances �,  ∈ ℝG, keeping notation similar to previous

notation3 in order to retrieve estimating equations general for all GLMs. We then fill in details for linear, logistic and Cox
survival regression, and show how to use the same estimating equations to obtain co-data weights when combining multiple
co-data sets. After showing how to handle unpenalised covariates, we give the details of the ridge hyperpenalty function, of
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handling continous co-data and of implemented posterior covariate selection approaches. Lastly, we provide an interpretation
of the hyperparameter estimates.

A.1 Generalised linear models and derivatives
Consider one co-data set coded by the co-data matrix Z ∈ ℝp×G, leaving out all superscripts (d) for notational convenience.
Each �k is a priori Gaussian distributed with some covariate-specific mean �k and variance �2k which are a function of the group
specific prior mean vector �G×1 ∈ ℝG and overall and local prior variance �2overall,  ∈ ℝG:

�k
ind.∼ N(�k, �2k) ∶= N(Zk�, �2globalZk), k = 1, .., p.

Reparameterise by �2G×1 = �2global, assume (an estimate of) �2global to be given. Denote the prior mean vector and precision
matrix in p dimensions by

�p×1 = Z�G×1 ∈ ℝp, Ωp×p = diag(Z�2G×1)
−1 ∈ ℝp×p, (S.1)

with diag(v) for a vector v ∈ ℝp denoting the diagonal matrix with elements vk on the diagonal. Assume that Ωp×p is of full
rank.
The penalised log likelihood, denoted by l�(�) in3, is, up to a constant c independent of �, the same as the log of the joint

distribution over Y and � given the penalty or prior parameters �G×1, �G×1: �(Y , �|�G×1, �G×1):

l�(�) = l(�) − 1
2
[� − �p×1]TΩp×p[� − �p×1] + c

= log�(Y |�) + log�(�|�G×1, �G×1) +
p
2
log |2�Ωp×p|

= log�(Y , �|�G×1, �G×1) +
p
2
log |2�Ωp×p|.

A.1.1 Derivatives of penalised likelihood
Denote the first (partial) derivative of a function to a vector � by ∇� and the second derivative by the Hessian H� . As given
in3 and extended to including the target or prior mean vector �, for a GLM with canonical link function, there exists a diagonal
weight matrix W (�) = VarY |�(Y ), which is usually a function of �, such that the first and second derivative of the penalised
likelihood are given by:

)l�(�)
)�

∶= ∇�l�(�) = ∇� log�(Y , �|�G×1, �G×1) = ∇� log�(�|Y ,�G×1, �G×1)

= XT [y − Ey|�(y)] − Ωp×p[� − �p×1]. (S.2)
)2l�(�)
)�)�T

∶= H�l
�(�) = H� log�(Y , �|�G×1, �G×1) = H� log�(�|Y ,�G×1, �G×1)

= −XTW (�)X − Ωp×p. (S.3)

A.2 Moment estimating equations
A.2.1 Approximate mean and variance of penalised MLE
As used previously for logistic regression2, one may use a first order Taylor approximation of the score function in �̃(y, �overall)
around � to find approximations for themean and variance of the first smoothened estimate �̃ using first estimates �̃, �̃2, Ω̃, W̃ ∶=
W (�̃). Here we repeat some of the details, extended for GLMs with a target.
The first order Taylor approximation is given by

∇� log�(y, �̃|�̃G×1, �̃2G×1) = ∇� log�(y, �|�̃G×1, �̃
2
G×1)

+H� log�(y, �|�̃G×1, �̃2G×1)[�̃ − �] + O(||�̃ − �||
2).

(S.4)

As the score function is equal to 0 in the penalised maximum likelihood estimate �̃, we find the following first-order
approximation for �̃:

�̃ ≈ � − [H� log�(y, �|�̃G×1, �̃2G×1)]
−1∇� log�(y, �|�̃G×1, �̃2G×1). (S.5)
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For GLMs, this equation can be rewritten as:

�̃ ≈ [XTW (�)X + Ω̃p×p]−1[XT [y − Ey|�(y)] − Ω̃p×p[� − �̃p×1] + [XTW (�)X + Ω̃]�]
= [XTW (�)X + Ω̃p×p]−1[XT [y − Ey|�(y)] + Ω̃p×p�̃p×1 +XTW (�)X�].

The mean with respect to the likelihood �(y|�) is then given by:

Ey|� �̃ ≈ Ey|�
[

[XTW (�)X + Ω̃p×p]−1[XT [y − Ey|�(y)] + Ω̃p×p�̃p×1 +XTW (�)X�]
]

= [XTW (�)X + Ω̃p×p]−1[XT [Ey|�(y) − Ey|�(y)] + Ω̃p×p�̃p×1 +XTW (�)X�]
= [XTW (�)X + Ω̃p×p]−1[Ω̃p×p�̃p×1 +XTW (�)X�]
= �̃p×1 + [XTW (�)X + Ω̃p×p]−1XTW (�)X[� − �̃p×1]
≈ �̃p×1 + [XT W̃ X + Ω̃p×p]−1XT W̃ X[� − �̃p×1], (S.6)

and the variance is given by the diagonal of the covariance matrix:

Covy|� �̃ ≈ Covy|�
[

[XTW (�)X + Ω̃p×p]−1[XT [y − Ey|�(y)]
+ Ω̃p×p�̃p×1 +XTW (�)X�]

]

= [XTW (�)X + Ω̃p×p]−1XTCovy|� [y]X[XTW (�)X + Ω̃p×p]−1

= [XTW (�)X + Ω̃p×p]−1XTW (�)X[XTW (�)X + Ω̃p×p]−1

≈ [XT W̃ X + Ω̃p×p]−1XT W̃ X[XT W̃ X + Ω̃p×p]−1. (S.7)

Note that we approximate the sample variance matrix W , which is still a function of �, by W̃ . For linear regression this
approximation is in fact exact sinceW does not depend on �.

A.2.2 Moment equations for prior mean
The prior mean vector �G×1 can be computed by using the first moment. Denote PG←p ∈ ℝG×p as the matrix that averages the
moments over each group, i.e. [PG←p]gk ∶= |g|−11k∈g . The system of moment estimating equations is given by:

⎧

⎪

⎨

⎪

⎩

1
|1|

∑

k∈1
�̃k =

1
|1|

∑

k∈1
E�|�G×1,�G×1

[

EY |�
[

�̃k
]]

,
⋮
1

|G|
∑

k∈G
�̃k =

1
|G|

∑

k∈g
E�|�G×1,�G×1

[

EY |�
[

�̃k
]]

,
(S.8)

⇔

PG←p�̃ = PG←pE�|�G×1,�G×1
[

EY |�
[

�̃
]]

. (S.9)

Plugging in the mean of Equation (S.6) and further rewriting gives:

PG←p�̃ = PG←pE�|�G×1,�G×1
[

EY |�
[

�̃
]]

≈ PG←pE�|�G×1,�G×1
[

�̃p×1 + [XT W̃ X + Ω̃p×p]−1XT W̃ X[� − �̃p×1]
]

= PG←p
[

�̃p×1 + [XT W̃ X + Ω̃p×p]−1XT W̃ X[Z�G×1 − �̃p×1]
]

.

If we define a matrix C as follows then we can write the above as follows:

C ∶= [XT W̃ X + Ω̃p×p]−1XT W̃ X, (S.10)
PG←p[�̃ − �̃p×1] = PG←pCZ[�G×1 − �̃G×1]. (S.11)

So we find the following linear system:

A��G×1 = b�, (S.12)
A� ∶= PG←pCZ, (S.13)
b� ∶= A��̃G×1 + PG←p[�̃ − �̃p×1] = PG←p[�̃ − [Ip×p − C]�̃p×1]. (S.14)
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Note that A� ∈ ℝG×G for G ≪ p. Lastly, we can write each element of A� and b� in the format of summing over groups as:

[A�]g,ℎ =
1

|g|
∑

k∈g

∑

l∈ℎ

[C]k,l
|l|

, (S.15)

[b�]g =
1

|g|
∑

k∈g

[�̃ − [Ip×p − C]�̃p×1]k. (S.16)

Remark 1. In high-dimensional data, by default we will shrink to 0, so �̃G×1 = 0 = �G×1.

A.2.3 Moment equations for prior variance
The prior variance vector �G×1 can be computed by using the second moment equations and the estimate for �G×1. Use the
same notation as above to denote PG←p ∈ ℝG×p as the matrix that averages the moments over each group, where .2 denotes
element-wise squaring:

⎧

⎪

⎨

⎪

⎩

1
|1|

∑

k∈1
�̃2k =

1
|1|

∑

k∈1
E�|�G×1,�G×1

[

EY |�
[

�̃2k
]]

,
⋮
1

|G|
∑

k∈G
�̃2k =

1
|G|

∑

k∈g
E�|�G×1,�G×1

[

EY |�
[

�̃2k
]]

,
(S.17)

⇔

PG←p�̃.2 = PG←pE�|�G×1,�G×1
[

EY |�
[

�̃.2
]]

. (S.18)

Use diag(M) ∶= ([M]11, [M]22, .., [M]pp)T to denote the diagonal vector of some matrix M ∈ ℝp×p. Then we can derive,
plugging in expressions of Equations (S.6) and (S.7):

PG←p�̃.2 = PG←pE�|�G×1,�G×1
[

VarY |�
[

�̃
]

+
[

EY |�
[

�̃
]]

.2
]

= PG←p
{

E�|�G×1,�G×1
[

VarY |�
[

�̃
]]

+Var�|�G×1,�G×1
[

EY |�
[

�̃
]]

+ E�|�G×1,�G×1
[

EY |�
[

�̃
]]

.2
}

= PG←p
{

E�|�G×1,�G×1
[

diag
(

[XT W̃ X + Ω̃p×p]−1XT W̃ X[XT W̃ X + Ω̃p×p]−1
)]

+Var�|�G×1,�G×1
[

[XT W̃ X + Ω̃p×p]−1[Ω̃p×p�̃p×1 +XT W̃ X�]
]

+E�|�G×1,�G×1
[

[XT W̃ X + Ω̃p×p]−1[Ω̃p×p�̃p×1 +XT W̃ X�]
]

.2
}

= PG←p
{

diag
(

[XT W̃ X + Ω̃p×p]−1XT W̃ X[XT W̃ X + Ω̃p×p]−1
)

+ diag
(

[XT W̃ X + Ω̃p×p]−1XT W̃ XCov�|�G×1,�G×1 [�]

⋅ XT W̃ X[XT W̃ X + Ω̃p×p]−1
)

+
[

[XT W̃ X + Ω̃p×p]−1[Ω̃p×p�̃p×1 +XT W̃ XZ�G×1]
]

.2
}

.

Again using the matrix C as above, and ṽ as vector for the variance, we can write:

C ∶= [XT W̃ X + Ω̃p×p]−1XT W̃ X, (S.19)
ṽ ∶= diag

(

[XT W̃ X + Ω̃p×p]−1XT W̃ X[XT W̃ X + Ω̃p×p]−1
)

, (S.20)
PG←p�̃.2 = PG←p[ṽ + C.2Z�G×1 + [[I − C]�̃p×1 + CZ�G×1].2], (S.21)

and then we find the linear system

A��G×1 = b� , (S.22)
A� ∶= PG←pC.2Z, (S.23)
b� ∶= PG←p[�̃.2 − [[I − C]�̃p×1 + CZ�G×1].2 − ṽ]. (S.24)
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Note that A� ∈ ℝG×G for G ≪ p. Again, we can write each element of A� and b� in the format of summing over groups as:

[A�]g,ℎ =
1

|g|
∑

k∈g

∑

l∈ℎ

[C].2k,l
|l|

, (S.25)

[b�]g =
1

|g|
∑

k∈g

[�̃.2 − [[I − C]�̃p×1 + CZ�G×1].2 − ṽ]k. (S.26)

Remark 2. In high-dimensional data, most of the times we will shrink to 0, so �̃G×1 = 0 = �G×1.

A.3 Moment equations for multiple co-data sets
For multiple co-data sets, each �k is a priori distributed as:

�k
ind.∼ N(�k, �2k) ∶= N

( D
∑

d=1
w(d)Z (d)

k �
(d), �2global

D
∑

d=1
w(d)Z (d)

k 
(d)

)

, k = 1, .., p.

We can pool all Gtotal ∶=
∑D
d=1G

(d) groups of all co-data sets together and use the same method of moment equations as above
to derive moment estimates for the co-data weights. In what follows, assume that we shrink all �k to 0, i.e. �(d) = 0 for all
d = 1, .., D. A similar argument using the first moments only can be used if non-zero targets are to be used. To be able to use
the same notation as above, define:

Z =
[

Z (1) ⋯ Z (D)] , (S.27)
�Gtotal×1 ∶= �

2
overall[(w

(1)(1))T ⋯ (w(D)(D))T ]T , (S.28)

�p×1 = �2overall
D
∑

d=1
w(d)Z (d)(d) = Z�Gtotal×1. (S.29)

Then we can follow the reasoning similar to above to arrive at the linear system as in Equation (S.22), where we have used that
�̃p×1 = 0 = �p×1:

Aw�Gtotal×1 = bw,
Aw ∶= PGtotal←pC.

2Z,

bw ∶= PGtotal←p[�̃.
2 − ṽ],

but now for Aw ∈ ℝGtotal×Gtotal and bw ∈ ℝGtotal . Plugging in the estimates for �̂2overall and ̂
(d), d = 1, .., D, we find the linear

system for the vector of D unknown co-data weights w = (w(1), .., w(D))T :

Ãww = bw,

with Ãw ∈ ℝGtotal×D, and each column [Ã]∗,d given by:

[Ã]∗,d = �̂2overall
[

Aw
]

∗,(1+
∑d−1
d′=1 G(d

′))∶(
∑d
d′=1 G(d

′)) ̂
(d).

The group set weights estimate ŵ is the ordinary least squares estimate truncated at 0:

ŵ = (w̃)+, w̃ = argmin
w

||Ãw − bw||22. (S.30)

Note that, since D < Gtotal, the least squares solution leads to stable solutions. For highly correlated group sets, the group
set weights are correlated too, possibly leading to high variance in the group set weight estimates. One should take care in
interpreting group set weights of highly correlated group sets.

A.4 Details for specific examples
The moment equations boil down to a linear system for � as given in Equations (S.12) and (S.15) and one for � as given in
Equations (S.22) and (S.25). These equations use the matrix C ∈ ℝp×p and vector v ∈ ℝp as defined in Equation (S.19). To
retrieve the moment equations for a specific GLM with link function g−1(⋅), we only need an expression for the GLM-specific
variance matrixW (�) = VarY |�(Y ).
Below we give the details for linear, logistic and Cox survival regression.
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A.4.1 Linear regression
For linear regression, the response Y is gaussian distributed around the meanX� with variance �2 and following link function:

yi
ind.∼ N

(

Xi�, �2
)

, g−1(Xi�) = Xi�, i = 1, .., n. (S.31)

The matrix W̃ ∶= W (�̃) is given by:

W (�̃) = �2In×n. (S.32)

The approximations for the mean and variance in Equations (S.6) and (S.7) are in fact exact for the linear regression case.

A.4.2 Logistic regression
For linear regression, the response Y follows a Bernoulli distribution with the vector of probabilities denoted by p = (p1, .., pn)T ,
and with the following link function:

yi
ind.∼ Ber

(

pi
)

, g−1(Xi�) = pi ∶=
exp(Xi�)

1 + exp(Xi�)
, i = 1, .., n. (S.33)

The matrix W̃ ∶= W (�̃) is the diagonal matrix with diagonal elements given by:

[W (�̃)]ii = p̃i(1 − p̃i) =
exp(Xi�̃)

(1 + exp(Xi�̃))2
. (S.34)

A.4.3 Cox survival regression
In Cox survival regression, the outcome yi = (ti, di) denotes at which time ti an event occurred, di = 1, or was censored, di = 0.
Details for Cox survival regression are given in for example3. The hazard function ℎi(t) is proportional to a baseline hazard
ℎ0(t) with cumulative hazardH0(t):

ℎi(t) = ℎ0(t)exp(Xi�), i = 1, .., n, H0(t) =

t

∫
s=0

ℎ0(s)ds. (S.35)

Similarly as in3, the vector y − Ey|�[y] in Equation (S.6) is replaced by the vector of martingale residuals:

Δi ∶= di −H0(ti)exp(Xi�̃), i = 1, .., n. (S.36)

TheW matrix (denoted by D in3) is given by the following diagonal matrix:
[

W (�̃)
]

ii ∶= H0(ti)exp(Xi�̃), i = 1, .., n. (S.37)

We use the well-known Breslow estimator to estimateH0, which is based on the times of observed events, i.e. ti for which di = 1:

Ĥ0(t) =
∑

i∶ ti≤t
ℎ̂0(ti), ℎ̂0(ti) = di

(

∑

j∶ tj≥ti

exp(Xj �̃)

)−1

. (S.38)

A.5 Hypershrinkage ridge penalty
Consider the prior model for the regression coefficients for one co-data set matrix Z:

�k
ind.∼ N

(

0, �2globalZk
)

. (S.39)

The goal is to shrink the group parameter estimates  in such a way that if the co-data is not informative, we shrink towards
the ordinary ridge prior as a target prior distribution, i.e. all local variances are set to 1. Furthermore, the variance of the local
variance estimates should then be the same for all p covariates and should not depend on the co-data matrix Z. These two
assumptions can be expressed as follows:

E(�2local) = E(Z) = 1p×1, Var(�2local) = Var(Z) = �
2
 Ip×p, (S.40)
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FIGURE S1 Left: discretise continuous scale in increasingly smaller groups by splitting at the median of the continuous co-
data in that group. Right: use hierarchical lasso5,6 to potentially select group weights only if all its parents in the hierarchy (e.g.
1 is the parent of 2 and 3) are selected. White groups are not selected.

for some variance �2 ≥ 0. Rewriting the expression above gives expressions for the mean and variance of :

E() = E((ZTZ)−1ZTZ) = (ZTZ)−1ZT1p×1 ∶= (ZTZ)−1ZTZ1G×1 = 1G×1, (S.41)
Var() = Var((ZTZ)−1ZTZ) = �2 (Z

TZ)−1ZTZ(ZTZ)−1 = �2 (Z
TZ)−1. (S.42)

For disjunct groups, this latter expression reduces to

Var() = �2
⎡

⎢

⎢

⎣

|1| ∅
⋱

∅ |G|

⎤

⎥

⎥

⎦

−1

∶= �2W
−1
 . (S.43)

We rescale  such that all variances are on the same scale:

′ = W 1∕2
 , E(′) = W 1∕2

 1G×1, Var(′) = �2 IG×G. (S.44)

We use a ridge penalty for ′ corresponding to the normal distribution with mean and variance given above, with hyperpenalty
� inversely proportional to the variance �2 . Finally, given an estimate �̂ we solve the optimisation problem given in Equation
(8) for the rescaled ′ and scale back to obtain the parameter estimates for :

W 1∕2
 ̃ = ̃′ = argmin

′

{

||AW −1∕2
 ′ − b||22 + �̂

G
∑

g=1

(

 ′g −
[

W 1∕2


]

gg

)2
}

. (S.45)

A.6 Continuous co-data
Figure S1 illustrates the approach to adaptively discretise continuous co-data, described in Section 3.4.1.

A.7 Covariate selection for prediction
Belowwe give the technical details needed for implementation of the options for post-hoc variable selection using three different
approaches7,8,9, using an elastic net penalty, DSS criterion and marginal penalised credible intervals respectively.

A.7.1 Using elastic net
As is widely known, the lasso penalty is known to be able to automatically select variables, but is not stable when covariates
are correlated. The elastic net penalty, a combination of the ridge and lasso penalty, can be seen as a stabilised lasso, in the
sense that the added ridge penalty stabilises the covariate selection. In a similar manner, the elastic net penalty may be used7,
by rescaling the covariates with the weighted ridge penalty and adding a lasso penalty to perform selection. The procedure can
be summarised as follows.
First rescale X and � to X′ and �′:

Δ ∶=

⎡

⎢

⎢

⎢

⎣

1
�̂21,local

∅

⋱
∅ 1

�̂2p,local

⎤

⎥

⎥

⎥

⎦

, X′ ∶= XΔ−
1
2 , �′ ∶= Δ

1
2 �. (S.46)
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Note thatX′�′ = X�, and �′k ∼ N(0, �̂
2
global), k = 1, .., p. Then find the penalised maximum likelihood estimate for �′ such that

the desired number of covariates s is selected:

�̂′ = argmax
�′

{

log�
(

Y |X′, �′
)

+ 1
�̂2global

||�′||22 + �1||�
′
||1

}

,

�1 ∈ {�1 ∈ ℝ ∶ |{k ∶ �′k ≠ 0}| = s}.

(S.47)

Define s = {k ∈ {1, .., p} ∶ �̂′k ≠ 0} as the set of indices of selected covariates. Denote by �s the regression coefficients of
the selected covariates and �−s the remaining regression coefficients. Lastly, refit the selected covariates to obtain the sparsified
predictor �̂sp. on the right scale.

�̂sp. = argmax
�∶ �−s=0

{

log� (Y |X, �) + 1
�̂2global

∑

k∈s

1
�̂2k,local

�2k

}

. (S.48)

We propose to use either the previous weighted ridge estimates for �̂global and �̂ local to prevent overestimating in dense models,
or set the local weights to 1 and refit �̂global using maximum marginal likelihood or cross-validation to undo overshrinkage in
sparse models.

A.7.2 Using DSS
Hahn and Carvalho10 propose to decouple shrinkage and selection (DSS). Decoupling here means that inference is done first
using any prior, and selection is done afterwards based on the posterior, resulting in a sequence of sparse linear models. The
posterior summary variable selection approach they propose is based on a loss function which balances the prediction error
and sparseness of the point estimate of the regression coefficients �. Given the posterior mean �̂, they first propose to use the
following sparsified point estimate �̂sp.:

�̂sp. = argmin


�||||0 +
1
n
||X�̂ −X||22. (S.49)

As the optimisation problem corresponding to the L0-penalty is intractable, they propose to approximate the loss function by a
local linear approximation with a weighted L1-penalty:

�̂sp. = argmin


∑

j

�
|wj|

|| + 1
n
||X�̂ −X||22, (S.50)

where they use wj = �̂j . This optimisation problem can be solved with existing software like glmnet.

A.7.3 Using marginal penalised credible regions
Bondell and Reich9 show that variable selection can be done consistently via penalised credible regions. They prove that their
proposed approach using marginal posterior credible sets is consistent in variable selection even when p grows exponentially
fast relative to the sample size, useful for high-dimensional data where p ≫ n.
They propose to use the following set An of selected variables based on a thresholding selection rule:

An = {j ∶ |�j| > tn,j}, (S.51)

where the threshold tn,j determines the size of An, or equivalently, the number of variables that is selected. They propose to use
the following threshold:

tn,j = sjtn, sj =

√

Var�|Y (�j)

minj
√

Var�|Y (�j)
. (S.52)

Note that whereas the selection procedure is done marginally, the threshold depends on the full posterior.
We approximate the marginal posterior standard deviation in Equation (S.52) for GLMs penalised with a weighted ridge prior,

using a Laplace approximation around the posterior mode �̂.
Result.Consider a GLMwith diagonal weight matrixW = V arY |�(Y ), that is penalised by a weighted ridge penalty, denoted

by the diagonal penalty matrix Δ and corresponding prior variance �2global. Define X̃ = W 1∕2XΔ−1∕2 and denote the SVD of X̃
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as X̃ = UDV T . The posterior standard deviation of �j can be approximated by:
√

Var�|Y ,� (�j) ≈ Δ
−1∕2
jj

√

1 − [V D2(D2 + I)−1V T ]jj . (S.53)

For the linear regression case, this approximation is in fact an equality.
Derivation. Denote the maximum penalised likelihood estimate, and equivalently the posterior mode, by �̂. We can approx-

imate the posterior by a Laplace approximation using a Taylor expansion of the log posterior around the mode. The Taylor
expansion is given by:

log�(�|y, �) ≈ log�(�̂|y, �) + (� − �̂)T∇� log�(�̂|y, �)

+ 1
2
(� − �̂)T∇2� log�(�̂|y, �)(� − �̂)

= log�(�̂|y, �) + 1
2
(� − �̂)T∇2� log�(�̂|y, �)(� − �̂),

where the approximation is in fact an equality when linear regression is considered. Taking the exponential on both sides leads
to:

�(�|y, �)
⋅
∝ exp

(−1
2
(� − �̂)T

[

−∇2� log�(�̂|y, �)
]

(� − �̂)
)

,

where we use
⋅
∝ to denote “approximately proportional to”. So we can approximate the posterior with the following multivariate

gaussian:

�|y, � ⋅∼ N
(

�̂,
[

−∇2� log�(�̂|y, �)
]−1

)

,

where we use ⋅∼ to denote “approximately distributed as". The posterior covariance matrix for a GLM is approximated by:

Cov�|Y ,� (�) ≈
[

−∇2� log�(�̂|y, �)
]−1

=
[

XTW (�̂)X + Δ
]−1

.

which in turn we can write as, using Woodbury’s matrix inversion identity, substituting X̃ = W −1∕2XΔ−1∕2 and the SVD of X̃:
[

XTWX + Δ
]−1 = �−1 − �−1XTW 1∕2 (In×n +W 1∕2X�−1XTW 1∕2)−1W 1∕2X�−1

= �−1 − �−1∕2X̃T (In×n + X̃X̃T )−1 X̃�−1∕2

= �−1 − �−1∕2V DUT (In×n + UDV TV DUT )−1 UDV T�−1∕2

= �−1 − �−1∕2V D2 (In×n +D2)−1 V T�−1∕2.

The marginal posterior standard deviations are given by the square root of the diagonal elements:
√

Var�|Y ,� (�j) ≈ Δ
−1∕2
jj

√

1 − [V D2(D2 + I)−1V T ]jj .

A.8 Unpenalised covariates
Wemay group covariates that we do not want to penalise (e.g. an intercept) in a group, say group 0. Not penalising corresponds
to a Bayesian prior with mean ��0 = 0 and �

2
0 = ∞, and penalty 0. Furthermore, for the matrix C as defined in Equation (S.19),

[C]kl = 0 for every l ∈ 0, k ≠ l:

Lemma 1. Let l ∈ 0 be an unpenalised covariate without correlation with other covariates. Then, for k ≠ l:

[C]kl =
[

(XT W̃ X + Ω̃)−1XT W̃ X
]

kl = 0, (S.54)

and therefore also [C]lk = [C]kl = 0.

Proof. First, note that the matrix C is equal to:

C = (XT W̃ X + Ω̃)−1XT W̃ X = (XT W̃ X + Ω̃)−1(XT W̃ X + Ω̃ − Ω̃)
= I − (XT W̃ X + Ω̃)−1Ω̃.
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So, for k ≠ l:

[C]kl = −
[

(XT W̃ X + Ω̃)−1Ω̃
]

kl

= −
p
∑

i=1

[

(XT W̃ X + Ω̃)−1
]

ki

[

Ω̃
]

il

= 0,

where the latter equation holds since the lth column of the precision matrix corresponding to an unpenalised variable contains
only 0. Note that C is symmetric since it is a product of sums of symmetrix matrices. Therefore we can conclude that [C]lk =
[C]kl = 0.

As a result from this lemma and Equations (S.15),(S.25), we see that:

[A�]g0 = [A�]0g = 0, [A�]g0 = [A�]0g = 0, ∀g = 1, .., G. (S.55)

Therefore we can compute the moment estimates using the block matrix of A� and A� corresponding to the penalised groups
only. So, after we have computed C using both penalised and unpenalised covariates, we only need the rows and columns of C
corresponding to penalised covariates to obtain the moment estimates.

A.9 Interpretation hyperparameter estimates
The prior variance parameters model the scale of covariates in a group. The empirical Bayes estimates allow for interpretation
on covariate level, group level, group set level and global level.
First consider the covariate-specific prior variance of �k. It may be written as a sum over groups and group sets, such that the

prior is given by:

�k|�
2
global, �

2
local,k ∼ N

(

0,
D
∑

d=1

∑

g∈(d)
�2globalw

(d)Z (d)
kg 

(d)
g

)

.

The a priori expected magnitude of �k is a function of the prior standard deviation, and may be written as sum over groups and
group sets as well:

E�k|�2global ,�2local,k(|�k|) =
√

2
�
Var�k|�2global ,�2local,k(�k) =

√

2
�

Var�k|�2global ,�2local,k(�k)
√

Var�k|�2global ,�2local,k(�k)

=
D
∑

d=1

∑

g∈(d)

⎡

⎢

⎢

⎢

⎣

√

2
�

�2globalw
(d)Z (d)

kg 
(d)
g

√

∑

e
∑

ℎ �
2
globalw(e)Z (e)

kℎ
(e)
ℎ

⎤

⎥

⎥

⎥

⎦

. (S.56)

The last expression may be used to visualise which groups and group sets contribute most to the prior variance of a specific
covariate.
Then, recall that the global, group and group set hyperparameters are estimated in a hierarchical fashion. This allows for the

following interpretations, using the expression above:

1. �global quantifies how much signal the data contain overall in terms of average effect size;

the overall level of regularisation, �2global, is first estimated, ignoring the groups and group sets. So, each �k is then normally
distributed with the same prior variance, and the scale parameter estimate says something about the expected or average
magnitude of �k over all p covariates:

�global =
√

�
2
E�k|�2global (|�k|) ≈

√

�
2
1
p

p
∑

k=1
|�k|. (S.57)

So �global quantifies how much signal the data contain in terms of average effect size.

2.
√

 (d)g quantifies relatively how much signal may be attributed to group g of group set d in terms of expected or average
effect size in that group, relative to the global level or average;
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the group weights (d) are estimated given �2global for each co-data source separately. For non-overlapping groups, we can
write:

√

 (d)g =

√

�
2
E�k|�2global , (d)g

(

|�k|
)

�global
=
E�k|�2global , (d)g

(

|�k|
)

E�k|�2global (|�k|)
≈

1
G

∑

k∈(d)g
|�k|

1
p

∑p
k=1 |�k|

. (S.58)

The interpretation is the same for overlapping groups, for which one may derive a similar expression in which effect sizes
are scaled to correct for the fact that different covariates may belong to differently many groups.

3.
√

w(d) quantifies relatively how much signal may be attributed to group set d in terms of contribution to the expected or
average effect size, relative to the global level or average;
the co-data weights are estimated given the estimated group weights and global level of regularisation. The interpretation
is the same as that for groups of covariates, but then on group set level.

B SIMULATION STUDY

This simulation study illustrates the benefits of using hypershrinkage, i.e. an extra level of shrinkage on the group weights.
First, we demonstrate that when the co-data is not informative, the group weights and therefore local variances are shrunk to
1, retrieving prediction and group prior variance estimation errors similar to ordinary ridge. When the co-data is informative,
the group weight estimates are shrunk little, improving the predictions and estimations compared to ordinary ridge. When both
informative and random co-data sets are combined, ecpc correctly places relatively more weight on the informative co-data.
Second, we compare performance to a full Bayes model with vague hyperprior. We demonstrate that the full Bayes method does
not enjoy the benefits of hypershrinkage; it learns from informative co-data, but overfits when co-data is not informative. Lastly,
we illustrate how the combination of hierarchical lasso and ridge hypershrinkage may be used for hierarchical, overlapping
groups, in which some form of hypershrinkage is necessary to obtain a unique solution in the linear system of moment equations
given in Equation (8).

B.1 Simulation set-up
We consider linear regression for some fixed vector of regression coefficients �0. We simulate 100 pairs of training and test sets
with the number of samples n = 100 and the number of covariates p = 300. We simulate for each pair of training and test sets,
for variance parameters �2 = 1, �2 = 0.1:

�0 ∼ N
(

0, �2Ip×p
)

,
[

Xtrain
]

ij ,
[

Xtest
]

ij
i.i.d.∼ N(0, 1), i = 1, .., n, j = 1, .., p,

Y train ∼ N
(

Xtrain�0, �2In×n
)

, Y test ∼ N
(

Xtest�0, �2In×n
)

.
(S.59)

Consider the following non-informative and informative co-data:
1. Random: randomly assign the 300 covariates to G approximately equally sized groups, with G in the range of 1 − 30.
2. Informative: assign the covariates to G approximately equally sized groups based on the ranking of the size of each

regression coefficient, |�0k|, k = 1, .., p. So there exists an ordering of the groups such that for each pair of two groups
i,j , 1 ≤ i < j ≤ G, and for all k ∈ i, l ∈ j : |�0k| < |�0l |.

B.2 Benefits of hypershrinkage
We use the default ridge penalty as hypershrinkage for the group weights with 1 as target, such that the global-local prior
variances �2global�

2
k,local are shrunk to the global prior variance, corresponding to an ordinary ridge prior on the covariate level.

We train the following models on the training data for both types of co-data and an increasing number of groups G: 1) ecpc
with hypershrinkage; 2) ecpc without hypershrinkage, i.e. optimise the objective in Equation (8) without any added penalty
function; 3) GRridge1, which uses a regularisation on the group level based on permutations of the covariates’ group indices,
and 4) ordinary ridge, a ridge model that uses one overall penalty.
First, we compare the estimated prior group variances in the co-data setting with G = 5 groups. The estimates are compared

to the ‘true’ prior group variance in each simulated data set, the values that maximise the prior distribution given the true,
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simulated regression coefficients �0. Figure S2 shows the estimated prior group variances and the mean squared error (MSE)
of those estimates per group. The estimates of ecpc lie around the line y = x, indicating that the estimates are on average
approximately equal to the prior maximiser. The estimates of ordinary ridge do not depend on the groups. The estimates of
GRridge show high variance for the groups with largest effect sizes, possibly because of the ad-hoc regularisation on the group
level using permutations. The MSE of the prior variances estimated with ecpc is larger for groups with larger effect sizes.
Figure S3 shows the mean squared error (MSE) of the group prior variance estimates averaged over g groups and the MSE of

the predictions on the test data as performance measure, for g ranging from 1 − 30. When the co-data is non-informative, ecpc
with hypershrinkage performs similarly to ordinary ridge, as the group weights of the random groups are shrunk towards 1.
Besides, ecpcwith hypershrinkage outperforms both ecpcwithout hypershrinkage, as it is not able to shrink the group weights,
and GRridge, which uses the more ad-hoc type of regularisation described above. When the co-data is informative, ecpc with
hypershrinkage shrinks little, performing similarly to ecpcwithout hypershrinkage, and outperforming GRridge. Moreover, all
three methods outperform ordinary ridge as they benefit from the co-data.
Lastly, we combine the random and informative co-data and train ecpc with and without hypershrinkage on the two co-data

sources. We expect that the random co-data set obtains a group set weight of 0, while the informative co-data set obtains group
set weight of 1. Figures S4a and S4b show that the group set weights estimated with ecpc with hypershrinkage are better than
those estimated with ecpc without hypershrinkage in the setting with five random and five informative co-data groups. Figure
S4c shows similar results for the average MSE of group set weights for various number of groups. Figure S4d shows that both
methods perform similarly in terms of prediction, as both place relatively more weight on the informative co-data. The predictive
performance of ecpc with hypershrinkage is slightly lower, possibly because of the truncation of the group set weight at 0.

B.3 Comparison hypershrinkage to full Bayes
Consider the same simulation set-up as above. We compare performance of ecpc with the full Bayes method graper11, trained
and tested on the same data sets. The method graper imposes a vague hyperprior on the prior parameters and uses a variational
Bayes approach to approximate the posterior for � as multivariate distribution (graper (dense, multiv.)) or factorised over
all covariates (graper (dense)). The posterior mean of � is then used for prediction. Figure S5 illustrates how performance of
graper and ecpc is affected by the number of groups and (non-)informativeness of co-data. Whereas ecpcwith hypershrinkage
is able to adapt the degree of hypershrinkage, graper is not able to adapt the fixed, vague hyperprior. Consequently, it shows
similar behaviour as ecpc without hypershrinkage; it performs better than ordinary ridge when co-data are informative, but
overfits when co-data are random.

B.4 Hypershrinkage for hierarchical, overlapping groups
Consider the same simulation set-up as above, but now with hierarchical, overlapping groups as co-data. We obtain these groups
with the approach described in Section 3.4.1, using either a random ordering of the regression coefficients or the true order of
the regression coefficients as continuous co-data. So, the group with all covariates is split into two groups, which in turn are both
split into two groups, and so on. We stop this recursive splitting at eight groups, called the leaf groups. The average effect size
of covariates in the leaf groups is approximately the same for the random hierarchical group set, and it changes gradually for the
informative hierarchical group set, as illustrated in Figure S6. We fit ecpc with the proposed combination of hierarchical lasso
and ridge hypershrinkage to select and estimate the hierarchical group prior variance weights. Note that it is essential to use some
form of regularisation on the overlapping, hierarchical groups, as the linear system in Equation (8) is singular. Therefore, it is
not possible to fit ecpc without hypershrinkage on the hierarchical, overlapping groups. Instead, we compare the performance
in estimation of the group weights and prediction of the response in the test data with ordinary ridge and ecpc fit without
hypershrinkage on the leaf groups only.
Table S1 shows how many times the random and informative hierarchical groups are selected by ecpc in the 100 simulated

training data sets. The group with all covariates is always selected, as it is on top of the hierarchy. Smaller groups lower in the
hierarchy are selected fewer times. In the random hierarchical group set, the selection percentages are similar across leaf groups,
reflecting similarity of the average effect size in the leaf groups. In the informative group set, the first and last group are selected
most of the times in each hierarchical layer, while the groups in between are rarely selected. This is expected, as the first and
last group in the informative group set have a larger average effect size (Figure S6).
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FIGURE S2 Simulation study based on 100 training and test sets and random or informative co-data of five groups. a) The
estimated prior group variance versus the ‘true’ prior group variance for several methods. The ‘true’ prior group variances are
given by the prior group variances that maximise the prior distribution given the simulated regression coefficients. Note that
some of the large point estimates of GRridge are cut off in the informative co-data setting. The dotted line indicates the line
y = x; b) MSE of the group variance estimates per group for several methods.

Figure S7 shows the estimated prior group variances in the leaf groups and MSE. The ‘true’ prior group variance is again
given by the values that maximise the prior distribution given the true, simulated regression coefficients �0. The estimates of
ecpc resulting from the hierarchical group set tend to be slightly larger than those resulting from the leaf groups only. This
difference is larger for the groups that have small average effect in the informative hierarchical group set, as the group with all
covariates is always selected (Table S1).
Figure S8 shows the MSE of the prior group variance estimates averaged over the leaf groups and the MSE of the predictions

on the test data. In terms of estimation performance, ecpc estimated on the hierarchical groups is outperformed by ordinary
ridge in the random hierarchical co-data and slightly outperformed by ecpc without hypershrinkage on the leaf groups only
in the informative hierarchical co-data. This may be expected as ecpc uses more group parameters to model the prior variance
in the leaf groups in the hierarchical group set than in the group set with leaf groups only. In terms of prediction performance,
however, ecpcwith the hierarchical groups is competitive to ordinary ridge in the random hierarchical group set and slightly
outperforms ecpc on the leaf groups only in the informative hierarchical co-data.
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FIGURE S3 Simulation study based on 100 training and test sets and random co-data (left) or informative co-data (right)
for various number of groups and several methods. The lines indicate the mean and the shaded bands indicate the 25%, 75%
quantiles. a) MSE of the group prior variance estimates averaged over the groups; b) MSE of the predictions on the test sets.

C DATA APPLICATIONS

C.1 Predicting therapy response in colorectal cancer
The results of the first data application using miRNA expression are discussed in Section 5.1. Here we provide mentioned
additional figures.
Interpretation of estimated hyperparameters. The group weights of the other group sets are shown in Figure S9. Figure S10

displays composition of the prior for several miRNAs in terms of group sets and groups, and its impact on regression parameter
estimates.
Performance. Figure S11 shows the performance of ecpc in the dense setting and covariate sparse setting when abundance

and standard deviation are discretised in 5, 10 or 20 groups. The performances are comparable, with the model based on 20
groups in abundance and standard deviation performing slightly better in the dense setting, and slightly worse in the sparse
setting. The performance of the group sparse models is shown in Figure S12. Here, ecpc is combined with a lasso penalty
on the group level on all groups of the five group sets to obtain a group sparse model. Group lasso uses a latent overlapping
group (LOG) penalty6,5 on all groups of the first three co-data sources and the leaf groups in the tree of the lfdr1 and lfdr2
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FIGURE S4 Simulation study based on 100 training and test sets and both random and informative co-data of five groups (top)
or of a varying number of groups (bottom). a) The estimated prior group set weights. The horizontal lines represent the ‘true’
group set weights at 1 for the informative co-data set and at 0 for the random co-data set; b) MSE of the group set weight
estimates; c) MSE of the group set weight estimates averaged over the two group sets. The lines in Figures c) and d) indicate
the mean and the shaded bands indicate the 25%, 75% quantiles; d) MSE of the predictions on the test sets.

group sets, without distinguishing between co-data sources. Hierarchical lasso uses a LOG penalty on all groups of all co-data
sources. For the lfdr group sets, the implied hierarchical constraints are that covariates in an lfdr group can be included only
when all covariates in the groups with lower lfdrs are included as well5. ecpc adequately learns from co-data and outperforms
group lasso and hierarchical lasso. Then, Figure S13 shows the AUC performance of various post-hoc selection methods on the
cross-validation folds. Figure S14 shows the predicted values for several models with 25 selected markers and corresponding
ROC curves. A predictive model is more likely to be accepted for practical use when it is limited to a selection of few covariates
and performs well, both in terms of ranking (as assessed by ROC/AUC) and in terms of good separation of the two groups in
absolute prediction scores. The parsimonious predictor with 25 covariates selected by ecpc obtains overall highest performance
in terms of AUC (Figure 5d in the main article) and separates the two groups much better than the other methods (Figure S14).
Covariate selection. Figure S15 shows the absolute values of the estimated regression coefficients for ecpc and ordinary

ridge. The density plot is more heavy-tailed for ecpc, which facilitates posterior selection. We fit ecpc and elastic net
for � = 0.3 and � = 0.8 on subsamples of size ≈ 2

3
n, stratified for response, to assess stability of covariate selection. We use

leave-one-out cross validation to estimate the global prior variance in ecpc, use the default post-hoc selection procedure to
select 25 covariates for each subsample and count the number of overlapping miRNAs in each pairwise comparison of selected
sets. For elastic net, we keep the value of � fixed and tune � to select 25 covariates. We repeat the analysis for a selection
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FIGURE S5 MSE of the predictions on a test set for various number of groups, for various methods and for random co-data
(left) or informative co-data (right). The full Bayes method graper imposes a vague hyperprior on the hyperparameters and
overfits on random co-data.
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FIGURE S6 Illustration of the leaf groups used in the hierarchical group set in one of the simulated data sets. Either a
random order or the order of the regression coefficients is used to make hierarchical groups with the procedure described
in Section 3.4.1. The leaf groups are numbered from 1 to 8, resulting in the group set with overlapping groups:
{

⋃8
i=1 i,

⋃4
i=1 i,

⋃8
i=5 i, 1 ∪ 2 3 ∪ 4, 5 ∪ 6, 7 ∪ 8, 1, ..,8

}

.

of 50 covariates. Figure S16 shows histograms of the overlap between selections of covariates, with the corresponding AUC
performance given in Figure S17.
Validation. To assess the broader use of the four sets of 25 markers, selected by either ecpc, GRridge, or elastic net

(� ∈ {0.3, 0.8}), we study their association with overall survival (OS) as related outcome. First, on the same samples, then
on an independent validation set. For the first, we dichotomize the 88 samples into a low and high risk group based on the
clinical benefit prediction: the (cross-validated) linear predictors from the models with 25 markers were ranked, and the median
was used to distinguish the two groups. The survival curves of the co-data learnt ecpc and GRridge clearly separate the two
groups better than those of elastic net (Figure S18). Note that formal statistical testing is hampered here due to the cross-
validation (and hence dependent) nature of the linear predictors. Second, we tested each of the four sets of 25 markers on a
large independent set: The Cancer Genome Atlas (TCGA) colonadenoma (COAD) set, with miRNA and matched OS data for
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Random Informative
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

100 100
90 94 95 99

61 51 59 64 95 17 18 97
31 34 20 32 36 32 39 32 92 8 6 14 12 6 5 96

TABLE S1 Number of times each (union of) leaf group(s) is selected in the 100 simulated training data sets in the ran-
dom or informative hierarchical co-data illustrated in Figure S6, when ecpc is combined with hierarchical lasso and ridge
hypershrinkage.

420 individuals. The preprocessing of the TCGA12 COAD data is described in13. For the four sets of 25 miRNAs, 17-21 were
available in the TCGA set as well. The large sample size allowed straightforward likelihood ratio testing of each of the four sets
with matched miRNAs in a Cox model. Tables S2 and S3 show the p-values of the multivariate Cox model fit on the TCGA
COAD data. Here, the set selected by ecpc was the only significant one: p = 0.01, whereas for others p > 0.30, hence strongly
non-significant (Table S2). Also, the Wald-test based p-values per marker in the multivariate Cox model (Table S3) support the
better validation of the ecpc markers. Comparing the prior variance composition of ecpc and GRridge of the top five markers
(Figure S19) suggests that flexibly handling multiple co-data enabled ecpc to focus on the lfdr2 group set and small-valued
lfdr groups, thereby selecting the top five markers, while GRridge selected only one.

Method (p-value overall likelihood ratio test)
ecpc (0.010) Grridge (0.888) elastic net � = 0.3 (0.317) elastic net � = 0.8 (0.562)

miRNA coefficient p-value miRNA coefficient p-value miRNA coefficient p-value miRNA coefficient p-value
hsa.mir.31 2.73E-02 1.89E-03 hsa.mir.335 1.77E-02 3.91E-02 hsa.mir.2467 6.64E-01 8.26E-03 hsa.mir.2467 6.77E-01 6.48E-03
hsa.mir.2467 6.52E-01 9.06E-03 hsa.mir.552 -1.06E-02 6.46E-02 hsa.mir.31 2.20E-02 9.70E-03 hsa.mir.3617 2.31E-01 5.96E-02
hsa.mir.338 7.19E-03 9.70E-03 hsa.mir.29c 4.43E-03 2.17E-01 hsa.mir.3617 2.04E-01 1.02E-01 hsa.mir.146b 4.65E-03 2.81E-01
hsa.mir.503 4.40E-02 1.16E-02 hsa.mir.7974 -4.94E-02 3.38E-01 hsa.mir.4750 -9.00E-01 2.09E-01 hsa.mir.6873 -4.90E-01 2.86E-01
hsa.mir.335 1.87E-02 2.55E-02 hsa.mir.95 1.84E-02 3.47E-01 hsa.mir.146b 4.50E-03 3.00E-01 hsa.mir.892a 2.67E-01 3.20E-01
hsa.mir.3145 2.08E-01 5.19E-02 hsa.mir.30e -2.14E-03 3.48E-01 hsa.mir.592 8.24E-03 3.46E-01 hsa.mir.3929 1.83E-01 5.40E-01
hsa.mir.17 -5.52E-03 1.73E-01 hsa.mir.181d 1.28E-02 4.74E-01 hsa.mir.380 5.16E-02 4.37E-01 hsa.mir.380 3.76E-02 5.67E-01
hsa.mir.181d 2.16E-02 2.14E-01 hsa.mir.135b -4.81E-03 4.80E-01 hsa.mir.3200 2.03E-02 5.57E-01 hsa.mir.3622a -1.20E-01 5.79E-01
hsa.mir.892a 3.03E-01 2.59E-01 hsa.mir.421 -2.97E-02 5.17E-01 hsa.mir.4659b 2.04E-01 6.96E-01 hsa.mir.6780a 1.94E-01 6.38E-01
hsa.mir.30e -2.55E-03 2.60E-01 hsa.mir.224 6.74E-03 5.47E-01 hsa.mir.3622a -7.86E-02 7.21E-01 hsa.mir.4659b 2.23E-01 6.74E-01
hsa.mir.552 -6.25E-03 2.63E-01 hsa.mir.548ar -1.54E-01 5.51E-01 hsa.mir.6780a -1.36E-01 7.54E-01 hsa.mir.6761 1.84E-02 7.44E-01
hsa.mir.135b -7.49E-03 2.67E-01 hsa.mir.195 -1.23E-02 5.60E-01 hsa.mir.3929 9.96E-02 7.61E-01 hsa.mir.98 -5.16E-03 7.74E-01
hsa.mir.7974 -5.08E-02 3.20E-01 hsa.mir.17 -2.23E-03 6.28E-01 hsa.mir.4467 -2.99E-01 7.70E-01 hsa.mir.4467 -2.78E-01 7.85E-01
hsa.mir.29c 3.52E-03 3.33E-01 hsa.mir.3200 1.82E-02 6.35E-01 hsa.mir.6761 2.89E-03 9.59E-01 hsa.mir.592 -7.78E-04 9.26E-01
hsa.mir.183 -1.07E-03 3.45E-01 hsa.mir.183 -5.02E-04 6.48E-01 hsa.mir.98 5.11E-04 9.79E-01 hsa.mir.548g -1.69E+01 9.96E-01
hsa.mir.431 -2.53E-02 3.89E-01 hsa.mir.4454 2.03E-02 7.39E-01 hsa.mir.548g -1.55E+01 9.96E-01 hsa.mir.548ap NA 1.00E+00
hsa.mir.548ar -2.29E-01 3.98E-01 hsa.mir.18a 7.35E-04 9.73E-01 hsa.mir.6801 6.51E-04 9.98E-01
hsa.mir.3200 1.05E-02 7.65E-01 hsa.mir.431 -6.57E-04 9.84E-01 hsa.mir.548ap NA 1.00E+00
hsa.mir.195 5.20E-03 8.11E-01 hsa.mir.549a -4.20E-04 9.94E-01

TABLE S2 A multivariate Cox survival model is fit on the TCGA COAD data on the 25 markers selected by several methods
in the miRNA data. For each method, the table shows the p-value of the overall likelihood ratio test, estimated regression
coefficients, corresponding p-values and names of the selected miRNAs, ordered in increasing p-value. Results are shown only
for miRNAs that could be matched. Note that the regression coefficient for one miRNA is NA, as the measurements in TCGA
were constant for this miRNA.

C.2 Classifying cervical cancer stage
The main results of the second data application using methylation data are summarised in Section 5.2. Here we provide the full
discussion of the results. We use methylation data from a study on cervical cancer extensively described in14. The goal is to find
a classifier that best distinguishes normal tissue from CIN3 tissue, a stage with a high risk of progressing to cervical cancer,



18 Van Nee, Wessels and Van de Wiel

Random Informative

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

Group

P
rio

r 
gr

ou
p 

va
ria

nc
e

Method
ecpc with hierarchical groups
ecpc with leaf groups
ordinary ridge
truth

(a)

ecpc with hierarchical groups ecpc with leaf groups ordinary ridge

R
andom

Inform
ative

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1e−09

1e−06

1e−03

1e−09

1e−06

1e−03

Group

M
S

E
 e

st
im

at
ed

 p
rio

r 
gr

ou
p 

va
ria

nc
e

Group
1
2
3
4
5
6
7
8

(b)

FIGURE S7 Simulation study based on 100 training and test sets and random or informative co-data of hierarchical groups or
leaf groups only. a) The estimated prior group variance versus the ‘true’ prior group variance for several methods. The ‘true’
prior group variances are given by the prior group variances that maximise the prior distribution given the simulated regression
coefficients; b) MSE of the group variance estimates per leaf group for several methods.

in self-taken samples of cervical tissue of women. The methylation levels are measured in n = 64 independent individuals
with normal tissue (control) or CIN3 tissue (case). After prefiltering, the data consist of methylation levels of p = 2720 probes
corresponding to unique locations in the DNA. We apply ecpc with and without post-hoc selection with the following two co-
data sets, illustrated in Figure S20: 1) CpG-islands: five non-overlapping groups based on the genomic annotation of distance
to the closest CpG-island. ACpG-location is a location on the DNAwhere a C base precedes a G base, with regions of a relatively
high ratio of CpG locations called CpG-islands. DNA methylation is a molecular mechanism that is known to play a role in
cancer development. The five groups are, ordered in increasing distance: CpG-island, North Shore, South Shore, North Shelf
and South Shelf. We use the default ridge shrinkage as extra level of shrinkage on the group level; 2) p-values: continuous
p-values for each probe are obtained from an external, similar study15. These data cannot be used directly for the classifier as
the contamination by different cell types in these samples differs substantially from that of the primary data, the self-obtained
samples. However, probes with lower p-values can be expected to be more important for the prediction than probes with high
p-values. We adaptively discretise the p-values in a similar manner as the lfdrs in the first application.
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FIGURE S8 Simulation study based on 100 training and test sets and random co-data (left) or informative co-data (right)
for various number of groups and several methods. The lines indicate the mean and the shaded bands indicate the 25%, 75%
quantiles. a) MSE of the group prior variance estimates averaged over the groups; b) MSE of the predictions on the test sets.

We perform a 20-fold cross-validation to assess performance in terms of AUC for various dense, group sparse and covariate
sparse methods. Different folds rendered similar results as shown below. Again, we show the results for the default posterior
selection strategy, using an additional L1-penalty. This matched or outperformed other posterior selection strategies (Figure
S24). Including standard deviations as another co-data group set as in the first application rendered similar results in terms of
performance.
Interpretation of estimated hyperparameters. Figure S21 shows the estimated group set weights and group weights across

the folds. The p-value group set is the only group set that is selected in all folds, indicating that this group set is more informative
for the prediction than the CpG-islands group set. The Island and South shelf group obtain group weights higher than 1 and
are deemed more important for the prediction. The magnitude of regression coefficients in the CpG-island group is on average
around

√

20 ≈ 4.5 times as large as the global average. For covariates in the group with smallest p-values, the average magnitude
of regression coefficients is around

√

30 ≈ 5.5 times as large as the global average. Groups with lower average p-value obtain
a higher prior variance or equivalently, lower penalty.
Performance. Figure S22 shows the AUC versus the number of selected parameters for several dense and covariate sparse

methods. First, compared to other dense models, ecpc performs similar to GRridge and ordinary ridge, and outperforms
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FIGURE S9 Results of 10-fold CV in miRNA data example. Estimated local variance for the first four group sets.
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FIGURE S10 Effect of co-data on �k estimates for several miRNAs. The prior expected magnitude of �k is a sum of contri-
butions of each group to which the covariate belongs (see Section A.9). Covariates in multiple important groups obtain higher
weight than the globally expected average magnitude (dashed horizontal line). The values of |�̂k| corresponding to the miRNAs
hsa.miR.2467 and hsa.miR.412 are approximately equal when estimatedwith ordinary ridge, and larger than that of hsa.miR.338.
For hsa.miR.2467 and hsa.miR.338, these coefficients are boosted in ecpc, as both belong to multiple important groups, whereas
that of hsa.miR.412 is shrunk.

random forest. Then, compared to other covariate sparse models, GRridge outperforms the other methods for models with
more than five selected covariates. ecpc results in a peak performance of an AUC= 0.73 at 4 parameters, outperforming the
benchmark elastic net with � = 0.3 and � = 0.8. While ecpc is slightly superior to GRridge for very sparse models, its
performance initially decreases when including more covariates, and then closes up on GRridge again when approaching 100
covariates. We conjecture that this is due to the extremer weights ecpc assigns to the smallest p-value group. Furthermore, we
apply graper to the leaf groups of the hierarchical p-value group set, found to be most important by ecpc (Figure S21). Then,
graper slightly outperforms ecpc in the dense setting, with an AUC of 0.71 and is competitive in the sparse setting, with an
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FIGURE S12 Results of 10-fold CV in miRNA data example. AUC in various group sparse models, with the boxplot and points
illustrating the variance in selected number of variables in the folds.

AUC of 0.70. Note however that here graper uses information from ecpc on the most informative group set for these data,
which may introduce a benefit for the former.
Besides, ecpc is combined with a lasso penalty on the group level to obtain a group sparse model. The group lasso and

hierarchical lasso use a LOG penalty similar as used in the first data application described above. Hierarchical lasso selects only
the one or two groups with lowest average p-value and slightly outperforms group lasso and the group sparse version of ecpc
(Figure S23).
Covariate selection. Similarly as in the first data application, ecpc facilitates posterior selection, as the distribution of the

estimated regression coefficients is more heavy-tailed as compared to when ordinary ridge is used (Figure S25). To assess
covariate selection stability, we perform the same analysis based on subsamples of the data as used and described for the first
data application above. Again, ecpc results in a larger overlap between selections when compared to elastic net for � = 0.3
and � = 0.8 (Figure S26) with similar performance in terms of AUC (Figure S27).

C.3 Classifying lymph node metastasis
We apply ecpc to classify presence of lymph node metastasis (LNM). The data and three co-data sets are preprocessed and
described by Te Beest et al.16. The data consist of RNAseqv2 gene expression profiles from n = 133 HPV negative samples for
p = 12838 probes. The co-data are: 1) signature: two non-overlapping groups for a group of genes that have previously been
identified as gene signature (group 2) and one with the rest (group 1). We use no hypershrinkage. 2) p-values: continuous
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FIGURE S13Results of 10-fold CV in miRNA data example. AUC for sparse models using various post-hoc selection methods.
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FIGURE S14 Results of 10-fold CV in miRNA data example for different models with 25 selected covariates. Left: out-of-bag
predictions versus the observed treatment response. Right: ROC curves.

p-values are obtained from an external, similar study on microarray data. We adaptively discretise the p-values in a similar
manner as the lfdrs in the first application. 3) cis correlation: continuous cis correlations between DNA copy number and
RNAseqv2 data. The DNA copy number data is measured in the same patients. We adaptively discretise the correlations in
a similar, but mirrored manner as the lfdrs in the first application; splitting only the groups with higher correlations. We test
performance in terms of AUC for various dense and covariate sparse methods on independent test data with 97 samples16.
Interpretation of estimated hyperparameters. Figure S28 shows the estimated group set weights and group weights. The

p-values group set obtains most weight. The group with genes from the signature obtains higher weight than the group with
the rest of the genes, corroborating the importance of the gene signature. However, this group set is less important than the other
two group sets, and obtains zero group set weight. Covariates in the group with smallest p-values have on average

√

75 ≈ 8.6
times larger effect size than the global average effect size. Genes with higher cis correlation with DNA copy number obtain
higher prior variance weight, with the group around a correlation of 0.5 obtaining the largest weight.
Performance. Figure S29 shows the AUC versus the number of selected parameters for several dense and covariate sparse

methods. Our method ecpc outperforms other dense models, improving the AUC from the co-data agnostic ordinary ridge
from 0.69 to 0.72. Note that graper is applied here to the leaf groups of the p-values group set only, found to be most
important by ecpc. Compared to sparse models, ecpc is competitive for highly sparse models and outperforms other methods
for models with more than 50 covariates. The method graper applied for the sparse setting using a spike-and-slab prior obtained
a competitive performance of an AUC of 0.69, but does not select covariates.
Covariate selection. To assess covariate selection stability, we perform the same analysis based on subsamples of the data as

used and described for the first data application above. We use 50 stratified subsamples from the LNM data and use the same,
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FIGURE S15 miRNA data example. Left: histogram and density plot of absolute value of estimated regression coefficients
using ecpc or ordinary ridge. Right: histogram of highest 0.1 quantile of the absolute value of the regression coefficients.
ecpc results in more heavy-tailed distributed estimates compared to ordinary ridge.
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FIGURE S16 Results based on 50 stratified subsamples and corresponding test sets in miRNA data example. Histograms of
overlap between selections of 25 (left) or 50 (right) markers for the methods ecpc and elastic net with � = 0.3 and � = 0.8.

independent test set to assess performance. Our method ecpc results in a larger overlap between selections when compared to
elastic net for � = 0.3 and � = 0.8 (Figure S30), with better performance in terms of AUC (Figure S31).
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miRNA coefficient p-value method miRNA coefficient p-value method miRNA coefficient p-value method
hsa.mir.31 2.73E-02 1.89E-03 ecpc hsa.mir.7974 -5.08E-02 3.20E-01 ecpc hsa.mir.4659b 2.23E-01 6.74E-01 elastic net � = 0.8
hsa.mir.31 2.20E-02 9.70E-03 elastic net � = 0.3 hsa.mir.7974 -4.94E-02 3.38E-01 GRridge hsa.mir.4659b 2.04E-01 6.96E-01 elastic net � = 0.3
hsa.mir.2467 6.77E-01 6.48E-03 elastic net � = 0.8 hsa.mir.181d 2.16E-02 2.14E-01 ecpc hsa.mir.195 -1.23E-02 5.60E-01 GRridge
hsa.mir.2467 6.64E-01 8.26E-03 elastic net � = 0.3 hsa.mir.181d 1.28E-02 4.74E-01 GRridge hsa.mir.195 5.20E-03 8.11E-01 ecpc
hsa.mir.2467 6.52E-01 9.06E-03 ecpc hsa.mir.95 1.84E-02 3.47E-01 GRridge hsa.mir.431 -2.53E-02 3.89E-01 ecpc
hsa.mir.338 7.19E-03 9.70E-03 ecpc hsa.mir.135b -7.49E-03 2.67E-01 ecpc hsa.mir.431 -6.57E-04 9.84E-01 GRridge
hsa.mir.503 4.40E-02 1.16E-02 ecpc hsa.mir.135b -4.81E-03 4.80E-01 GRridge hsa.mir.6780a 1.94E-01 6.38E-01 elastic net � = 0.8
hsa.mir.335 1.87E-02 2.55E-02 ecpc hsa.mir.17 -5.52E-03 1.73E-01 ecpc hsa.mir.6780a -1.36E-01 7.54E-01 elastic net � = 0.3
hsa.mir.335 1.77E-02 3.91E-02 GRridge hsa.mir.17 -2.23E-03 6.28E-01 GRridge hsa.mir.4454 2.03E-02 7.39E-01 GRridge
hsa.mir.3145 2.08E-01 5.19E-02 ecpc hsa.mir.548ar -2.29E-01 3.98E-01 ecpc hsa.mir.4467 -2.99E-01 7.70E-01 elastic net � = 0.3
hsa.mir.3617 2.31E-01 5.96E-02 elastic net � = 0.8 hsa.mir.548ar -1.54E-01 5.51E-01 GRridge hsa.mir.4467 -2.78E-01 7.85E-01 elastic net � = 0.8
hsa.mir.3617 2.04E-01 1.02E-01 elastic net � = 0.3 hsa.mir.183 -1.07E-03 3.45E-01 ecpc hsa.mir.6761 1.84E-02 7.44E-01 elastic net � = 0.8
hsa.mir.552 -1.06E-02 6.46E-02 GRridge hsa.mir.183 -5.02E-04 6.48E-01 GRridge hsa.mir.6761 2.89E-03 9.59E-01 elastic net � = 0.3
hsa.mir.552 -6.25E-03 2.63E-01 ecpc hsa.mir.380 5.16E-02 4.37E-01 elastic net � = 0.3 hsa.mir.98 -5.16E-03 7.74E-01 elastic net � = 0.8
hsa.mir.4750 -9.00E-01 2.09E-01 elastic net � = 0.3 hsa.mir.380 3.76E-02 5.67E-01 elastic net � = 0.8 hsa.mir.98 5.11E-04 9.79E-01 elastic net � = 0.3
hsa.mir.29c 4.43E-03 2.17E-01 GRridge hsa.mir.421 -2.97E-02 5.17E-01 GRridge hsa.mir.18a 7.35E-04 9.73E-01 GRridge
hsa.mir.29c 3.52E-03 3.33E-01 ecpc hsa.mir.224 6.74E-03 5.47E-01 GRridge hsa.mir.549a -4.20E-04 9.94E-01 GRridge
hsa.mir.6873 -4.90E-01 2.86E-01 elastic net � = 0.8 hsa.mir.592 8.24E-03 3.46E-01 elastic net � = 0.3 hsa.mir.548g -1.69E+01 9.96E-01 elastic net � = 0.8
hsa.mir.892a 3.03E-01 2.59E-01 ecpc hsa.mir.592 -7.78E-04 9.26E-01 elastic net � = 0.8 hsa.mir.548g -1.55E+01 9.96E-01 elastic net � = 0.3
hsa.mir.892a 2.67E-01 3.20E-01 elastic net � = 0.8 hsa.mir.3622a -1.20E-01 5.79E-01 elastic net � = 0.8 hsa.mir.6801 6.51E-04 9.98E-01 elastic net � = 0.3
hsa.mir.146b 4.65E-03 2.81E-01 elastic net � = 0.8 hsa.mir.3622a -7.86E-02 7.21E-01 elastic net � = 0.3 hsa.mir.548ap NA 1.00E+00 elastic net � = 0.3
hsa.mir.146b 4.50E-03 3.00E-01 elastic net � = 0.3 hsa.mir.3929 1.83E-01 5.40E-01 elastic net � = 0.8 hsa.mir.548ap NA 1.00E+00 elastic net � = 0.8
hsa.mir.30e -2.55E-03 2.60E-01 ecpc hsa.mir.3929 9.96E-02 7.61E-01 elastic net � = 0.3
hsa.mir.30e -2.14E-03 3.48E-01 GRridge hsa.mir.3200 2.03E-02 5.57E-01 elastic net � = 0.3

hsa.mir.3200 1.82E-02 6.35E-01 GRridge
hsa.mir.3200 1.05E-02 7.65E-01 ecpc

TABLE S3 As Table S2, but sorted per miRNA and increasing p-value.

15. Farkas SA, Milutin-Gašperov N, Grce M, Nilsson TK. Genome-wide DNA methylation assay reveals novel candidate
biomarker genes in cervical cancer. Epigenetics 2013; 8(11): 1213–1225.

16. Te Beest DE, Mes SW, Wilting SM, Brakenhoff RH, Wiel v. dMA. Improved high-dimensional prediction with Random
Forests by the use of co-data. BMC bioinformatics 2017; 18(1): 1–11.
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FIGURE S19miRNA data. Composition of the covariate-specific prior variance of ecpc and GRridge for the top 5 covariates
in Table S3. Top: in ecpc, the covariate-specific prior variance for �k (horizontal line) is the sum over co-data weights and group
weights. The y-axis shows the contribution to this sum of each group and group set to which the specific covariate belongs.
Bottom: in GRridge, multiple group sets are handled implicitly and penalty multipliers of groups of different group sets are
multiplied. Hence, contributions of each group set are summed on the logarithmic scale. The total log prior variance is the sum
of these contributions (horizontal line) plus the log of the global prior variance.
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FIGURE S20 Illustration of the co-data group sets used the Verlaat data. Left: CpG-islands, five non-overlapping groups
ordered in distance to the nearest CpG-island. Right: p-values, groups on the left correspond to lower p-values and are split
recursively into two groups. The hierarchical structure on the groups is used in the extra level of shrinkage to find a discretisation
that fits the data well as described in Section 3.4.1 in the main article.
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FIGURE S21 Results of 20-fold CV in Verlaat data example. Left: estimated co-data group set weights. Middle: estimated
group weights in CpG-islands group set. Right: estimated local variance in p-values group set; the median is shown from
covariates in the leaf groups of the hierarchical tree illustrated in Figure S20 (horizontal line ranging from the minimum to
maximum p-value in that group), and the corresponding estimates in the folds are shown (points, jittered along the median
p-value in that group). A larger prior variance corresponds to a smaller penalty.
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FIGURE S22 Results of 20-fold CV in Verlaat data example. AUC in various dense models (left) and sparse models (right).
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FIGURE S24 Results of 20-fold CV in Verlaat data example. AUC for sparse models using various post-hoc selection methods.
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FIGURE S25Verlaat data example. Left: histogram and density plot of absolute value of estimated regression coefficients using
ecpc or ordinary ridge. Right: histogram of highest 0.1 quantile of the absolute value of the regression coefficients. ecpc
results in more heavy-tailed distributed estimates compared to ordinary ridge.
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FIGURE S26 Results based on 50 stratified subsamples in Verlaat data example. Histogram of number of overlapping variables
in pairwise comparisons of selections of 25 covariates (left) or 50 covariates (right) in each subsample, for the methods ecpc,
elastic net with � = 0.3 and � = 0.8.
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FIGURE S27 Results based on 50 stratified subsamples and corresponding test sets in Verlaat data example. Boxplot of the
AUC performance of ecpc, elastic net with � = 0.3 and � = 0.8 on the test set based on selections of 25 covariates (left)
or 50 covariates (right) in each subsample.
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FIGURE S28 Results of LNM data example. Top left: estimated co-data group set weights. Top right: estimated group weights
in signature group set. Bottom: estimated local variance in p-values group set (left) and cis correlation group set; the
median is shown from covariates in the leaf groups of the hierarchical tree used in the adaptive discretisation (horizontal line
ranging from the minimum to maximum p-value in that group). A larger prior variance corresponds to a smaller penalty.



30 Van Nee, Wessels and Van de Wiel

dense

0.50

0.55

0.60

0.65

0.70

Method

A
U

C

Method
ecpc
GRridge
ordinary ridge
random forest
graper

sparse

0 25 50 75 100

0.50

0.55

0.60

0.65

0.70

# selected covariates

A
U

C

Method
ecpc+selection
GRridge+selection
elastic net α = 0.3
elastic net α = 0.8

FIGURE S29 Results of LNM data example. AUC in various dense models (left) and sparse models (right).
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FIGURE S30 Results based on 50 stratified subsamples of the LNM data. Histogram of number of overlapping variables in
pairwise comparisons of selections of 25 covariates (left) or 50 covariates (right) in each subsample, for the methods ecpc,
elastic net with � = 0.3 and � = 0.8.
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FIGURE S31 Results based on 50 stratified subsamples of the LNM data. Boxplot of the AUC performance of ecpc, elastic
netwith � = 0.3 and � = 0.8 on the test set based on selections of 25 covariates (left) or 50 covariates (right) in each subsample.
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