Appendix S1: A guide to choosing and
Implementing reference models for
social network analysis

Matthew Silk
02/02/2021

Please direct any questions about the examples presented in this R script to
Matthew Silk (matthewsilk@outlook.com)

Section 1 — Preparation

First we are going to prepare the R environment and load the necessary packages for our case study. If you
want to explore the variability in the networks and result possible you can change the number in the
set.seed() function to produce different networks.

Note that throughout this script we use an edited version of the asnipe get_network2 function that doesn’t
print messages

be char

#Can

set.seed (3)

##1load packages
library (asnipe)
library (igraph)
library (boot)

library (prodlim)

a)

(
(
(
(
library (sn
library (assortnet)
(
(
(
(
(

library (blockmodels)
library (ergm)
library (ergm.count)
library (tnet)
library (vegan)

Section 2 — Network Generation

Creating a population of burbils with social networks

Burbils live in open habitats throughout the world. They form fission-fusion societies characterised by stable
social groups that roost together but fission into smaller subgroups when foraging during the day. Foraging
subgroups from different groups occasionally meet and intermingle creating opportunities for between-
group interactions. These between-group associations are more likely if the two Burbil groups belong to the
same “clan”. Burbil groups vary in size and we are unsure whether groups of different sizes have similar
social network structures. Groups also contain two unique colour morphs: burbils with red noses, and those
with orange noses. As well as being able to identify individual burbils (which we use to construct their social

networks!), we are also able to distinguish male and female burbils as well as those from three distinct age
classes (adults, subadults and juveniles). We know that burbils are involved in both dominance interactions
and affiliative interactions with group-mates. We suspect they may have a dominance hierarchy, but we
don’t know this for sure. We have a lot to find out!

A burbil

Section 2.1 — Generate population network

In this section of the code we create our burbil society (starting with the association network), explaining
what we do as we go along. With practice it should be possible to change some of the numbers in this code
to change the nature of social relationships in your burbil society.

#Set the mean group size
GS<-20

#Here we create a grid of locations for our observations
x<-seq(3,18,1)

y<-seq(3,18,1)

locs<-expand.grid(x, V)

names (locs)<-c ("x","y")

#Here we assign coordinates to our groups. We create 9 groups in total.
group_locs<-locs[locs$x%%4==0&1locsSy%%4==0,]

#Here we store the total number of groups
n_groups<-dim(group locs) [1]

#Here we create three distinct clans of burbils. This will effect associations bet
ween members of different groups
group clans<-sample (c("A","B","C"),n groups, replace=TRUE)

#Set the probability of burbils from the same clan intermingling if they happen to

forage at the same location

p_we<-1

#Set the probability of burbils from different clans intermingling if they happen
to forage at the same location

p_bc<-0.4

#Create a list to store individual IDs
indss<-1list ()

#Create a list to store group sizes
gss<-list ()

#Create a list to store the sex of each individual
sexes<-list ()

#Create a list to store the age of each individual
ages<-list ()

#Create a list to store the nose colour of each individual
noses<-list ()

#Create a list to store information on which day a subgroup is observed on
daysl<-list ()

#Create a list to store a group-by-individual matrix for each burbil group
gbis<-list ()

#Set the mean number of subgroups observed for each group each day
sg_mn<-5

#Set the strength of assortativity based on nose colour
#Set a number between 0 and 1
sg_ass<-0.15

#Generate association data within each burbil group
for(j in 1:n groups) {

#individual identities
inds<-seq(l, rpois(1,GS),1)
indss[[j]]<-inds

#group size
gs<-length (inds)
gss[[j]l1<-gs

#sex
sex<-sample (c("M","F"),gs, replace=TRUE)
sexes[[]]]<-sex

#age
age<-sample (c ("AD", "SUB", "JUV"),gs, replace=TRUE, prob=c(0.6,0.2,0.2))
ages[[j]]<-age

#nose
nose<-sample (c ("RED", "ORANGE") ,gs, replace=TRUE, prob=c(0.7,0.3))
noses|[[j]]<-nose

#Define number of subgroups on the first day
n sg<-rpois(l,sg mn-1)+1

#find halfway point
max red<-floor(n sg/2)

#Sample subgroups on the first day

subgroupsl<-sample (n_sg, sum(nose=="RED"), replace=TRUE, prob=c (rep(0.5+sg ass,max re
d),rep(0.5-sg ass,n sg-max red)))

subgroups2<-sample (n_sg, sum(nose=="ORANGE") , replace=TRUE, prob=c (rep (0.5-sg_ass,max
_red),rep(0.5+sg ass,n sg-max red)))

subgroups<-rep (NA, gs)
subgroups [nose=="RED"] <-subgroupsl
subgroups [nose=="0ORANGE"] <-subgroups?2

#Store relevant information in the group-by-individual matrix and days vector
gbi<-matrix(0,nc=gs,nr=n_sg)

gbi [cbind (subgroups,seq(l,gs,1))1<-1

days<-rep(l,nrow(gbi))

#Repeat process over 100 days of observations
for (i in 2:100) {

n sg<-rpois(l,sg mn-1)+1

#find halfway point
max red<-floor(n sg/2)

subgroupsl<-sample (n sg, sum(nose=="RED"), replace=TRUE, prob=c (rep(0.5+sg ass,max
red),rep(0.5-sg ass,n _sg-max red)))

subgroups2<-sample (n_sg, sum(nose=="ORANGE") , replace=TRUE, prob=c (rep(0.5-sg_ass,m
ax red),rep(0.5+sg ass,n _sg-max red)))

subgroups<-rep (NA,gss[[]j]])
subgroups [nose=="RED"] <-subgroupsl
subgroups [nose=="0ORANGE"] <-subgroups2

tgbi<-matrix(0,nc=gs,nr=n_sq)

tgbi [cbind (subgroups, seq(l,gs,1))]1<-1
days<-c (days, rep(i,nrow(tgbi)))
gbi<-rbind (gbi, tgbi)

#We edit the group-by-individual matrix and days vector to delete any "empty" grou
ps

gbi2<-gbi[rowSums (gbi)>0,]

days<-days[rowSums (gbi)>0]

gbi<-gbi2

#We could create and plot the network for each burbil group

(NOT RUN HERE)

#net<-get network2 (gbhi)

#net2<-graph.adjacency (net,mode="undirected",weighted=TRUE)

#plot (net2,vertex.color=noses|[[j]],edge.width=(edge attr (net2)sweight*10)"2)

daysl[[j]]<-days
gbis[[J]1]<-gbi

#We now go through and assign a

sglocs<-1list ()

for(i in 1:n groups) {
tx<-rep (NA,dim(gbis[[i]]
ty<-rep (NA,dim(gbis[[i]]
sglocs[[i]]<-data.frame (

11)<=c("x","y"

)
names (sglocs|[[1)
i]]$x<-group_ locs[i, 1]

2]

sglocs[[1

sglocs[[i]]$y<-group locsIi,

location to every subgroup

+round (rnorm (dim(gbis[[i

+round (rnorm (dim(gbis[[i

#Vector recording number of individuals in each group

n_inds<-numeric/()
for(i in 1:n groups) {

]<-dim(gbis[[i]]) [2]

n_inds[i

#Calculate total individuals in
n_tot<-sum(n_inds)

the population

#Population-level individual identities

inds tot<-seq(l,n tot,1)

#Information on each individual
g tot<-rep(seq(l,n groups,1),

#Information on each individual's within-

gi tot<-seqg(l,n inds[1],1)
for(i in 2:n groups) {

gi tot<-c(gi tot,seq(l,n inds][

's group membership

n_inds)

group identity

i], 1))

#We now calculate the full population association network

full net<-matrix(0,nr=n_tot,nc=n_tot)

#Counts
for (i in 1:100) {

for(j in 1:(n_groups-1)) {
(3+1)
tA<-pasteO(sglocs[[]]

[k

for(k in ‘n_groups
tB<— pasteO(sglocs[
tA2<-tA[daysl[[j]l]=
tB2<-tB[daysl[[k]]=
tt<-match (tA2, tB2)
if (sum(is.na (tt))<1
if (group clans[j]=
if (group clans[j]
) {
paste (i, j, k)
for (m in length(tt)) {

if (same==

l=group clans([k])

up between-group associations
ie} g jei

,"=",sglocs[[]J11[,2])
,"=",sglocs[[k]][,2])

ength (tt)) {
=group_clans[k

]) {same<-rbinom(1l,1,p wc)}
{same<-rbinom(1l,1,p bc)}

l&days1[[j]]

if (is.na(tt[m])==FALSE) {
tsgl<-which ==tA2[m
=tB2

tidl<-which (gbis[[]j

(t
tsg2<-which (tB
(
tid2<-which (gbis[[k

[t
]
]

1)
tlm]]lsdaysl[[k]]==1)
1[tsgl,]==1)

1[tsg2,]1==1)

tidla<-inds_tot[g tot==j&gi tot%in%tidl]
tid2a<-inds_tot[g tot==k&gi tot%in%tid2]

full net[tidla,tid2a]<-full net[tidla,tid2a]+l
full net[tid2a,tidlal<-full net[tidla,tid2a]

#converts between group associations to simple ratio indicess (SRIs)
for(i in 1: (nrow(full net)-1)){
for(j in (i+1):nrow(full net)) {
full net[i,j]<-full net[i,j]/(200-full net[i,j])
full net([j,i]<-full net[i,]]

#Adds within-group associations to the population network
for(i in 1:n groups) {
full net[inds tot[g tot==i],inds tot[g tot==i]]<-get network2(gbis[[i]])

#Plots the population social network

full net2<-graph.adjacency(full net,mode="undirected",weighted=TRUE)

par (mar=c(0,0,2,0))

plot (full net2,vertex.color=unlist (noses),vertex.label=NA,vertex.size=4,edge.width
=(edge attr(full net2)sweight+*10)”"2,main="Population association network")

Population association network

par (mar=c(5,6,2,2))

Section 2.2 — Generate within-group networks of behavioural
interactions

We now focus in on a single burbil group (group 1) and generate data on dominance interactions and
affiliative behaviours. We are going to generate different structure in these interactions that we will attempt
to uncover in subsequent analyses.

Another important feature is that dominance and affiliative interactions are only possible within subgroups.
We use scan sampling of subgroups (as they are small) to record all interactions occurring. The number of
interactions recorded depends on the size of the subgroup. As diligent researchers, we record the day and
subgroup of all interactions.

Create dominance interactions

#individual identities
indsl<-indss[[1]]

#group size
gsl<-gss[[1l]]

#sex
sexl<-sexes[[1]]

#age
agel<-ages([[1]]

#nose
nosel<-noses[[1]]

gbi<-gbis[[1]]

#Set-up vectors to store results
GROUP<—numeric ()
WINNER<-numeric ()
LOSER<—numeric ()

#Define the resource holding potential of different individuals

RHP ad<-1

RHP_ sub<-0

RHP juv<- -1

RHP M<--0.5

RHP resid<-0.2

RHPsl<-rnorm(gsl,RHP ad* (agel=="AD")+RHP_ sub* (agel=="SUB")+RHP juv* (agel=="JUV")+R
HP M* (sex1=="M"),RHP_ resid)

#Define the mean number of interactions observed per individual in a subgroup
m nipi<-2

#record which group the interactions occur in

grD<-numeric ()

#Generate dominance interaction data
c<-1
for(g in l:nrow(gbi)) {
if (rowSums (gbi) [g]>1) {
nipi<-rpois(1l,m nipi)
indivs<-which (gbi[g,]==1)
ni<-nipi*length(indivs)
for(n in 1:ni) {
il<-sample (indivs, 1)
ifelse (rowSums (gbi) [g]==2,i2<-indivs[indivs!=il],i2<-sample(indivs[indivs!=i1],1))
winner<-rbinom(1l,1,inv.logit (RHPs1[il]-RHPs1[i2]))
GROUP [c]<-g
if (winner==1) {
WINNER[c]<-11
LOSER[c]<-i2
}
if (winner==0) {
WINNER[c]<-12
LOSER[c]<-i1
}
grD[c]l<-g
c<-c+1
}
}
}

#Create the dominance network in igraph format

dom net<-graph from edgelist (cbind(WINNER, LOSER), directed = TRUE)
E (dom net)S$weight <- 1

dom net<-simplify(dom net, edge.attr.comb=list (weight="sum"))

#Plot the dominance network that results (it is densely connected and so the netwo

rk plot isn't especially informative)
plot (dom net, edge.width=log(edge attr(dom net)S$weight,10)”"5,layout=layout in circl

e, main="Dominance network",edge.arrow.size=0.5)

Dominance network

#To show that our code to generate the dominance network works we plot the relatio
nship between in-strength and out-strength and it is negatively correlated as woul
d be expected for a linear dominance hierarchy

plot (strength (dom net,mode="out"), strength(dom net,mode="in"), pch=16, xlab="0Out-deg
ree",ylab="In-degree",cex.lab=1.5,cex.axis=1,main="Correlation between out- and in

—-degree of nodes in the dominance network")

Correlation between out- and in-degree of nodes in the dominance network

In-degree
150 200 250 300 350
| | | |]
®

100
|
L]

I I I I I
100 150 200 250 300

Out-degree

Create affiliative interactions

GROUP<—numeric ()
GIV<-numeric ()
REC<-numeric ()

AHP ad<- -1

AHP sub<- -1

AHP juv<-1

AHP M<-0

AHP nose<-1

AHP resid<-0.2

AHPsl<-rnorm(gsl,AHP_ ad* (agel=="AD")+AHP_sub* (agel=="SUB")+AHP_ juv* (agel=="JUV")+A
HP M* (sex1=="M"),AHP resid)

m nipi<-0.5

grA<-numeric ()

#Generate affiliative interaction data
c<-1
for(g in l:nrow(gbi)) {
if (rowSums (gbi) [g]>1) {
nipi<-rpois(l,m nipi)
indivs<-which (gbi[g,]==1)
ni<-nipi*length(indivs)
for(n in 1:ni) {
il<-sample (indivs, 1)
ifelse (rowSums (ghi) [g]==2,12<-indivs[indivs!=il],i2<-sample(indivs[indivs!=i
11,1))
tn<-0
if (nosel[il]==nosel[i2]) {tn<-1}
winner<-rbinom(1l,1,inv.logit (AHPs1[il]-AHPsl[i2]+tn))
GROUP[c]<-g
if (winner==1) {
GIV[cl<-il
REC[c]<-1i2
}
if (winner==0) {
GIV[c]<-i2
REC[c]<-1i1
}
grA[cl<-g
c<-c+l

#Create the affiliative network in igraph format

aff net<-graph from edgelist (cbind(GIV,REC), directed = TRUE)
E(aff net)Sweight <- 1

aff net<-simplify(aff net, edge.attr.comb=list (weight="sum"))

#Plot the affiliative network that results
plot (aff net,edge.width=log(edge attr(aff net)sSweight, 6)"5,layout=layout in circl
e, main="Affiliative network",edge.arrow.size=0.5)

Affiliative network

=
—

7

#Plot the same correlation used for dominance networks

16, xlab="0ut-deg

1,main="Correlation between out- and in

plot (strength(aff net,mode="out"), strength(aff net,mode="in"), pch

1.5,cex.axis=

reen’ylab="ln—degree",CeX.lab

—-degree of nodes in the affiliative network")

Correlation between out- and in-degree of nodes in the affiliative network

*
é .
o
2 = a0
]
°
°
O ¢
O o 7 *
(@)] []
D
o °
i
c
- o _|
©
.
LAY
o _|
=
.
.
'y *
®
I I I I I
40 60 80 100 120

Out-degree

Section 2.3 — Generate huddling networks

Data were also collected on the huddling networks of two burbil groups while they were roosting during
summer and winter. These data can be used to test if the huddling networks differ between small and large
groups. We simulate these data here.

sm_g<-which.min(n_inds)

bi g<-which.max (n_inds)

hud netSM<-sample smallworld(dim=1, size=gss[[sm g]], nei=3, p=0.05, loops = FALSE
, multiple = FALSE)

plot (hud netSM,main="Huddling network in small group")

Huddling network in small group

#Calculate betweenness of network
igraph: :betweenness (hud netSM)

[1] 3.821429 3.142857 2.059524 6.535714 3.059524 5.380952 2.166667 4.392857
[9] 2.547619 5.214286 3.214286 2.976190 2.654762 4.833333

#Generate "roosting/huddling network of burbils in the biggest group 1in the summe
r

hud netBI<-sample smallworld(dim=1, size=gss[[bi g]], nei=3, p=0.05, loops = FALSE
, multiple = FALSE)

#Plot network
plot (hud netBI,main="Huddling network in big group")

Huddling network in big group

#Calculate betweenness of network
igraph: :betweenness (hud netBI)

[1] 7.262572 3.457215 11.813276 22.990693 44.068957 7.520382 18.858081
[8] 14.385155 11.266270 10.802778 21.436941 9.367496 7.158929 1.370635
[15] 19.455988 44.348846 30.635191 14.511310 2.268651 3.560317 37.887302
[22] 5.767857 26.572817 7.732738 14.036706 21.462897

#Examine differences in betweenness by inspecting histograms

hist (igraph::betweenness (hud netsM), breaks=seq(0,200,1),col=rgb(1,0,0,0.3),border=
NA, xlab="Betweenness",cex.lab=1.5,cex.axis=1,main="Betweenness centrality distribu
tion in\n small group (red) and big group (blue) networks")

hist (igraph: :betweenness (hud netBI),breaks=seq(0,200,1),col=rgb(0,0,1,0.3),border=
NA, add=TRUE, cex.lab=1.5,cex.axis=1,main="")

Betweenness centrality distribution in
small group (red) and big group (blue) networks

[Tg] —
q— —
>
O o
C
()
=2
o
D -
LL
o e
[I I I I
0 50 100 150 200
Betweenness
#Gener g netwo £ bur s in the smallest group in the winte

hud netSM w<-erdos.renyi.game (n=gss[[sm g]], p=0.3, loops = FALSE, multiple = FALS
E)
hud netBI w<-erdos.renyi.game (n=gss[[bi g]], p=0.3, loops = FALSE, multiple
E)

FALS

Section 2.4 — A second population network

We have also been sent association data from a similar but smaller burbil population by a colleague. They
want to know whether their burbil population has a similar network structure to ours.

#Sot the mea

#oel rCtne mean gr
GS B<-20
#Here we create a grid of locations for our observations

X B<-seq(3,13,1)

y B<-seq(3,9,1)

locs B<-expand.grid(x B,y B)
names (locs B)<-c("x","y")

#Here we assign coordinates to our groups. We create 9 groups in total.
group_locs B<-locs B[locs BS$x%%4==0&locs BSy%%4==0,]

#Here we store the total number of groups
n_groups B<-dim(group locs B) [1]

#Here we create three distinct clans of burbils. This will effect associations bet
ween members of different groups
group clans B<-sample(c("A","B","C"),n groups B, replace=TRUE)

#Set the probability of burbils from the same clan intermingling if they happen to

forage at the same location

p_wc B<-1

#Set the probability of burbils from different clans intermingling if they happen
to forage at the same location

p_bc B<-0.4

#Create a list to store individual IDs
indss B<-1list()

#Create a list to store group sizes
gss B<-list()

#Create a list to store the sex of each individual

sexes B<-list()

#Create a list to store the age of each individual

ages_B<-list()

#Create a list to store the nose colour of each individual
noses_ B<-1list ()

#Create a 1list to store information on which day a subgroup is observed on
daysl B<-list()

#Create a 1list to store a group-by-individual matrix for each burbil group
gbis B<-list ()

#Set the mean number of subgroups observed for each group each day

sg_mn B<-5

#Set the strength of assortativity based on nose colour
#Set a number between 0 and 1
sg_ass B<-0.1

#Generate association data within each burbil group
for(j in 1:n groups B) {

#individual identities
inds B<-seqg(l,rpois(1,GS B),1)
indss B[[]j]]<-inds_B

#group size
gs_B<-length(inds_B)

gss_B[[j]l]l<-gs_B

#sex

sex B<-sample(c("M","F"),gs B, replace=TRUE)
sexes B[[]]]<-sex B

#age
age B<-sample(c("AD","SUB","JUV"),gs B, replace=TRUE,prob=c(0.6,0.2,0.2))
ages_B[[Jj]]<-age B

#nose
nose B<-sample (c("RED","ORANGE"),gs B, replace=TRUE,prob=c(0.7,0.3))
noses B[[]J]]<-nose B

#Define number of subgroups on the first day
n_sg B<-rpois(l,sg mn B-1)+1

#find halfway point
max red B<-floor(n sg B/2)

#Sample subgroups on the first day

subgroupsl B<-sample(n sg B, sum(nose B=="RED"), replace=TRUE, prob=c(rep(0.5+sg ass
B,max red B),rep(0.5-sg ass B,n sg B-max red B)))

subgroups2 B<-sample(n sg B, sum(nose B=="ORANGE"), replace=TRUE, prob=c(rep(0.5-sg a
ss B,max red B),rep(0.5+sg ass B,n sg B-max red B)))

subgroups B<-rep (NA,gs B)
subgroups_B[nose B=="RED"]<-subgroupsl B
subgroups B[nose B=="ORANGE"]<-subgroupsZ B

#Store relevant information in the group-by-individual matrix and days vector
gbi B<-matrix(0,nc=gs_ B,nr=n_sg B)

gbi B[cbind(subgroups B,seq(l,gs B,1))]1<-1

days B<-rep(l,nrow(gbi B))

#Repeat process over 100 days of observations
for(i in 2:100) {

n _sg B<-rpois(l,sg mn B-1)+1

#find halfway point
max red B<-floor(n sg B/2)

subgroupsl B<-sample(n sg B, sum(nose B=="RED"), replace=TRUE,prob=c(rep(0.5+sg as
s B,max red B),rep(0.5-sg ass B,n sg B-max red B)))

subgroups2 B<-sample(n sg B, sum(nose B=="ORANGE"), replace=TRUE, prob=c (rep(0.5-sg
_ass B,max red B),rep(0.5+sg ass B,n sg B-max red B)))

subgroups B<-rep(NA,gss B[[]j]])
subgroups B[nose B=="RED"]<-subgroupsl B
subgroups B[nose B=="ORANGE"]<-subgroups2 B

tgbi B<-matrix (0,nc=gs_B,nr=n_sg B)

tgbi B[cbind(subgroups B, seqg(l,gs B,1))]<-1
days B<-c(days B, rep(i,nrow(tgbi B)))

gbi B<-rbind(gbi B, tgbi B)

#We edit the group-by-individual matrix and days vector to delete any "empty" grou
ps

gbi2 B<-gbi B[rowSums (gbi B)>0,]

days B<-days B[rowSums (gbi B)>0]

gbi B<-gbi2 B

daysl B[[]j]]<-days B
gbis B[[j]]<-gbi B

#We now go through and assign a location to every subgroup
sglocs_B<-1list ()
for(i in 1:n groups B) {
tx B<-rep(NA,dim(gbis B[[i]])[1])
ty B<-rep(NA,dim(gbis B[[i]])[1])
sglocs B[[i]]<-data.frame(tx B,ty B)
names (sglocs B[[i]])<-c("x","y")
sglocs B[[i]]$x<-group locs B[i,l]+round(rnorm(dim(gbis B[[i1]])[1],0,2))
sglocs B[[i]]Sy<-group locs B[i,2]+round(rnorm(dim(gbis B[[i1]])[1],0,2))

#Vector recording number of individuals in each group
n_inds B<-numeric()
for(i in 1l:n groups B) {

n _inds B[i]<-dim(gbis B[[i]]) [2]

#Calculate total individuals in the population
n_tot B<-sum(n_inds B)

#Population-level individual identities
inds_tot B<-seqg(l,n_tot B,1)

#Information on each individual's group membership
g_tot B<-rep(seqg(l,n groups B,1),n inds B)

#Information on each individual's within-group identity
gl tot B<-seq(l,n inds B[1],1)
for (i in 2:n groups B) {

gl tot B<-c(gi tot B,seq(l,n inds B[i], 1))

#We now calculate the full population association network
full net B<-matrix(0,nr=n tot B,nc=n tot B)

#Counts up between-group associations

for(i in 1:100) {
for(j in 1:(n _groups B-1)){

for(k in (j+1):n_groups B) {

tA B<-pastel(sglocs B[[]]

tB B<-pastel(sglocs B[[k]

]

]

1,"=",sglocs_BI[[j]]1[,2])
l,"=",sglocs B[[k]][,2])
tA2 B<-tA B[daysl B[[]]
tB2 B<-tB B[daysl B[[k]
tt B<-match (tAZ B, tB2 B)
if (sum(is.na(tt B))<length(tt B)) {

if (group clans B[jl==group clans B[k]) {same<-rbinom(l,1,p wc B)}

if (group clans B[j] !=group_ clans B[k]) {same<-rbinom(1l,1,p bc B)}
if (same==1) {
paste (i, j, k)
for(m in length(tt B)) {
if (is.na(tt B[m])==FALSE) {
tsgl B<-which(tA B==tA2 B
tsg2 B<-which(tB B==tB2 B[tt B[m]]&daysl B[[k]]==1i)
tidl B<-which(gbis B[[]j]][tsgl B,]==1)
tid2 B<-which(gbis B[[k]][tsg2 B,]==1)
tidla B<-inds tot B[g tot B==j&gi tot B%in%tidl B]
tid2a B<-inds_ tot B[g tot B==k&gi tot B%in%tid2 B]
full net B[tidla B,tid2a B]<-full net B[tidla B,tid2a B]+1
full net B[tid2a B, tidla B]<-full net B[tidla B,tid2a B]

m] &daysl B[[]j]]==1)

— o/ = —

#converts between group associations to SRIs
for(i in 1: (nrow(full net B)-1)){
for(j in (i+l):nrow(full net B)){
full net B[i,j]l<-full net B[i,3]/(200-full net B[i,]])
full net B[j,i]<-full net B[i,]]

#Adds within-group associations to the population network
for(i in 1:n groups B) {
full net B[inds tot B[g tot B==i],inds tot B[g tot B==i]]<-get network2(gbis B
[(ril1l)
}

#Plots the population social network

full net2 B<-graph.adjacency(full net B,mode="undirected",weighted=TRUE)

plot (full net2 B,vertex.color=unlist (noses B),vertex.label=NA, vertex.size=4,edge.w
idth=(edge attr(full net2 B)Sweight*8)”2,main="Population association network for
collaborator")

Population association network for collaborator

Section 2.5 — Summary for Section 2

Burbils then (coincidentally, of course) are a study system in which social network analysis offers a perfect
tool to answer key questions about social behaviour and ecology

Section 3

Social network analysis examples

Section 3.1 — PERMUTATION-BASED REFERENCE
MODELS

Section 3.1.1 — Comparing two approaches to using reference models

Our first analyses are for the examples presented in Table 1, with two research groups asking questions
about the associations of Burbils in our first burbil group.

Team 1 ask a specific research question: do burbils associate by nose colour?

#First we extract the association network for team 1 from the group-by-individual
matrix using the asnipe package
MAT1<-get network2(gbis[[1]])

#We can the plot the network
NET1<-graph.adjacency (MAT1l,mode="undirected",weighted=TRUE)
plot (NET1, vertex.label=NA, vertex.color=noses[[1]],edge.width=(edge attr (NET1)Sweig

ht*8)"2)

#We now calculate assortativity by nose colour in the real network
obs<-assortnet::assortment.discrete (MAT1, types=noses[[1l]], weighted = TRUE, SE =

FALSE, M = 1)

#We then use node swap permutations to generate a reference distribution for assor
tativity

#We choose this type of permutation to break the correlation between nose colour a
nd network position

reference<-numeric ()

MAT T<-sna::rmperm (MAT1)

for(i in 1:9999) {
reference[i]<-assortnet::assortment.discrete (MAT T, types=noses[[1]], weighted = TR
UE, SE = FALSE, M = 1)$r

MAT T<-sna::rmperm (MAT T)

}

#We then add the observed ass the reference distribution

brtativi

F
\1}
~+
b
<
v
[
ct
~
~
e}

- 0O

reference2<-c (obs$r, reference

> AGTETAS T +he obheerved Acaenrtsat
compa g Lhe opservea assortatl

tailed test.

t and the red line is the observed assortativity

par (xpd=FALSE)

hist (reference, las=1,xlim=c(-0.2,0.1),col="grey",border=NA,main="Reference distrib
ution", xlab="Test statistic values",cex.lab=1.5,cex.axis=1)

lines (x=c (obsS$r,obss$r), y=c(0,5000),col="red", lwd=4)

lines (x=rep(quantile (reference2,0.025),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)
lines (x=rep(quantile (reference2,0.975),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)

Reference distribution

2500

2000

1500

Frequency

1000

500 —

— e e e e e e e e e e e e e e e e e = = =
- e o e mm mm mm mm mm omm mm mm mm mm am o mm mm o Em Em mm mm Em mm

[I I I I I |
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

Test statistic values

Team 2 ask a rather vague question (do burbils associate at random?) and are less careful when designing
and implementing their reference model.

#First we extract the association network for team 2 from the group-by-individual
matrix using the asnipe package
MAT1<-get network2 (gbis[[1]])

#Calculate the coefficient of variation in weighted degree (naively)
obs<-sd (rowSums (MAT1)) /mean (rowSums (MAT1))

#Generate reference model using a random graph and edge weight distribution
reference<-numeric ()
for (i in 1:9999) {

net r<-igraph::erdos.renyi.game (n=nrow (MAT1),p.or.m=sum(sign(MAT1)) /2, type="gnm"
)
net r<-set edge attr(net r,"weight",value=rnorm(n=sum(sign (MAT1)) /2, mean=mean (MAT
1),sd=sd(MAT1)))
mat r<-as adjacency matrix(net r,type="both",attr="weight", sparse=FALSE)
diag(mat r)<-0

reference[i]<-sd(rowSums (mat_r))/mean (rowSums (MAT1))

#We then add the observed coefficient of variation to the reference distribution
reference2<-c (obs, reference)

#Calculate p value
sum (obs<reference2) /length (reference?2)

[1] 0.656

#Plot randomisation result

par (xpd=FALSE)

hist (reference, las=1,xlim=c(0,0.2),col="grey",border=NA,main="Reference distributi
on",xlab="Test statistic values",cex.lab=1.5,cex.axis=1)

lines (x=c (obs,obs),y=c(0,5000),col="red", lwd=4)

lines (x=rep (quantile (reference2,0.025),2),y=c(0,5000),col="darkblue",lwd=2,1lty=2)
lines (x=rep (quantile (reference2,0.975),2),y=c(0,5000),col="darkblue",1wd=2,1ty=2)

Reference distribution

1500

1000

Frequency

500 —

[I I I I
0.00 0.05 0.10 0.15 0.20

Test statistic values

Section 3.1.2 — Node feature swaps

Node swaps can be used to test a range of hypotheses and network types, for example they are also
appropriate to test statistical significance of regression models when a network measure is the response
variable.

Here we test the relationship between sex (female versus male) and weighted degree.

#First we plot the relationship

boxplot (strength (dom net,mode="out")~sexes[[1]],xlab="Sex", ylab="0Out-strength", ce
x.lab=1.5)

o
o —
[ap]
o
o -
c
-—
(®)]
c
o
+— O
®]
-—
o)
o
o
=
1 I
|
i
g - |
o

Sex

MAT DOM<-as adjacency matrix(dom net, sparse=FALSE,attr="weight")

str obs<-rowSums (MAT DOM)

obs<-coef (lm(str obs~sexes[[1]])) [2]

reference<-numeric ()

MAT T<-sna::rmperm(MAT DOM)

for(i in 1:9999) {

str perm<-rowSums (MAT T)
reference[i]<-coef (Im(str perm~sexes[[1]])) [2]
MAT T<-sna::rmperm (MAT T)

}

reference2<-c (obs, reference)

than females)

t-degree of males les:

D
19)]
o)

sum (obs<reference?) /length (reference2)

par (xpd=FALSE)

hist (reference, las=1,xlim=c(-200,200),col="grey",border=NA,main="Reference distrib
ution",xlab="Test statistic wvalues",cex.lab=1.5)

lines (x=c (obs,obs),y=c(0,5000),col="red", lwd=4)

lines (x=rep(quantile (reference2,0.025),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)
lines (x=rep(quantile (reference2,0.975),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)

Reference distribution

2000

1500 —

1000

Frequency

500

-200 -100 0 100 200

Test statistic values

An important thing to bear in mind with node swaps, especially unconstrained node swaps as we have used
above, is that they can’t control for structure in the network. This could lead to potentially misleading
conclusions being drawn when: (a) there are biological processes operating at different scales that might be
important in driving observed patterns; or (b) there is variation in sampling intensity. For example, in the
example above we know (because we simulated the data) that there is an equal probability of males and
females being observed. However, if one sex was more likely to be observed than the other, it would be
expected to have a higher weighted degree, but this would be driven by sampling bias and not biology. It is

hard to deal with this directly using node feature permutations, and they would need to be combined with
other methodologies.

We provide an example of (a) here. We know that the burbil association network is assorted by nose colour.
Therefore, we want to know if the network of affiliative interactions is too.

#Convert affiliative network into an adjacency matrix

MAT AFF<-as_adjacency matrix(aff net, sparse=FALSE, attr="weight")

#Calculate the observed assortativity of the affiliative network
obs<-assortnet::assortment.discrete (MAT AFF, types=noses[[1l]], weighted = TRUE, SE
= FALSE, M = 1)$sr

#Generate the reference distribution

reference<-numeric ()

MAT T<-sna::rmperm(MAT AFF)

for(i in 1:9999) {
reference[i]<-assortnet::assortment.discrete (MAT T, types=noses[[1l]], weighted = TR
UE, SE = FALSE, M = 1)Sr

MAT T<-sna::rmperm (MAT T)

}

#Add the observed assortativity to the reference dataset
reference2<-c (obs, reference)

#Calculate the p value. (p<0.025 would equate to the network being positively asso
rted by nose colour and p>0.975 to the network being negatively assorted by nose cC
olour)

sum (obs<reference?) /length (reference2)

[1] 0.0048

#We can then plot the result as we have done above

par (xpd=FALSE)

hist (reference, las=1,xlim=c(-0.2,0.2),col="grey",border=NA,main="Reference distrib
ution", xlab="Test statistic values",cex.lab=1.5)

lines (x=c (obs,obs),y=c(0,5000),col="red", lwd=4)

lines (x=rep(quantile (reference2,0.025),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)
lines (x=rep(quantile(reference2,0.975),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)

Reference distribution

2000 -

1500

1000

Frequency

500 —

[I I I I
-0.2 -0.1 0.0 0.1 0.2

Test statistic values

We find that the affiliative network is assorted by nose colour. However, we haven’t controlled for
association network structure in our reference model and we know that this places important constraints on
the opportunities to interact. This is a key consideration when interpreting the results of simple reference
models like this. We revisit this example later on.

Section 3.1.3 — Edge feature swaps

As described in the main text, we don'’t just have to swap nodes. To test some hypotheses in directed
networks, permuting the direction of edges can be a useful way to generate a reference distribution.

Here we provide an example of swapping edge directions. We test the hypothesis that adults tend to initiate
more dominance interactions than younger individuals.

So far all of our permutations have randomised the whole network in one go. Now we move on to a type of
permutation in which we make a single swap at a time (the direction of one edge) and these swaps occur
successively causing the ‘permutedness’ of the network to increase until it is a uniform sample of the
reference distribution. We are generating what is known as a Markov Chain, and sampling from it

#First we check the relationship
boxplot (strength (dom net,mode="out")~ages[[1]],ylab="Out-strength", xlab="Age", cex.
lab=1.5)

o
o_
o)
2 . :
c o
-—
(@)
o=
o
-+ o
?® K7
-
=]
o T
o T ——
. — 1
o |
2_ I
I I
AD Juv SUB

Age

MAT DOM<-as adjacency matrix(dom net, sparse=FALSE,attr="weight")

str obs<-strength(dom net,mode="out")

ageT<-ages[[1]]
ageT[ageT=="AD"]<-"A"
ageT[ageT=="SUB" |ageT=="J0V"] <=-"Y"

obs<—coef(lm(striobs~ageT))[2]

burnin<-numeric ()
reference<-numeric ()
MAT T<-MAT DOM

for(i in 1:500) {
tidl<-sample (which (ageT=="A"),1)

tid2<-sample (which (ageT=="Y"), 1)

MAT T2<-MAT T

MAT T2[tidl,tid2]<-MAT T[tid2,tidl]

MAT T2[tid2,tid1]<-MAT T([tidl,tid2]

MAT T<-MAT T2

dn r<-graph from adjacency matrix (MAT T,weighted=TRUE,mode="directed")

str ref<-strength(dn r,mode="out")
burninfi]<-coef (lm(str ref~ageT)) [2]

1ary.

f swaps

plot (burnin, type="1", las=1,ylab="Test statistic value",xlab="Position in Markov Ch
ain",cex.lab=1.5)

-50

Test statistic value

-100 —

I I I I I I
0 100 200 300 400 500

Position in Markov Chain

ate our rerere
for(i in 1:999) {

tidl<-sample (which (ageT=="A"), 1)

tid2<-sample (which (ageT=="Y"), 1)

MAT T2<-MAT T

MAT T2[tidl,tid2]<-MAT T[tid2,tidl]

MAT T2[tid2,tid1]<-MAT T[tidl, tid2]

MAT T<-MAT T2

dn r<-graph from adjacency matrix (MAT T,weighted=TRUE,mode="directed")

str ref<-strength(dn r,mode="out")

reference[i]<-coef (Im(str ref~ageT)) [2]

g

add the observed value

rwe

reference2<-c (obs, reference)

/o N No25
(p<0.0Z2

1ce network
h)
sum (obs<reference2) /length (reference?2)

[1] 0.999

#We can then plot our results in the same way we have previ
par (xpd=FALSE)
hist (reference, las=1,xlim=c(-200,200),col="grey",border=NA,main="Reference distrib

ution",xlab="Test statistic value",cex.lab=1.5)
lines (x=c (obs,obs),y=c(0,5000),col="red", lwd=4)
lines (x=rep(quantile (reference2,0.025),2),y=c(0,5000),col="darkblue", lwd=2, 1ty=2)
lines (x=rep(quantile (reference2,0.975),2),y=c(0,5000),col="darkblue", lwd=2,1ty=2)

Reference distribution

150

X,

o

o
|

Frequency

(82
o
|

-200 -100 0 100 200
Test statistic value
As well as swapping the directions of edges, you could also swap edge weights to address some research

questions, especially for well-connected networks. We provide a quick demonstration of how you could use
edge weight swaps using our burbil affiliative networks here.

We test the hypothesis that sexes differ in their weighted degree in burbil networks of affiliative interactions.
While we could create a reference model in other ways, in this case we choose to permute edge weights to
randomise them with respect to sex.

MAT AFF<-as_adjacency matrix(aff net, sparse=FALSE,attr="weight")

str obs<-strength(aff net,mode="out")

sexT<-sexes[[1]]

obs<-coef (Im(str obs~sexT)) [2]

boxplot (strength (aff net,mode="out")~sexT,ylab="Out-strength", xlab="Sex", cex.lab=
1.5)

o : :
N : |
| 1
|
- |
S :
£ :
- 1
(@)} i
c i
) !
£ 8- '
m 1
i)
S
o |
©
:
o _|
v 1

Sex

burnin<-numeric ()

reference<-numeric ()
MAT T<-MAT AFF

ce Aaist ution. We plot

for (i in 1:500) {
tidl<-sample (l:nrow (MAT AFF),2,replace=F)
tid2<-sample (1:nrow (MAT AFF),2,replace=F)
if (sum(tid1l%in%tid2) !=2) {

MAT T2<-MAT T

MAT T2[tidl1[1],tid1[2]]<-MAT T[tid2[1],tid2[2]]

MAT T2[tid2[1],tid2[2]]<-MAT T[tidl[1],tid1l[2]]

MAT T<-MAT T2
}
an_r<-graph from adjacency matrix(MAT T,weighted=TRUE,mode="directed")
str ref<-strength(an r,mode="out")
burnin[i]<-coef (Im(str ref~sexT)) [2]

tively

iEiE ~100

ter 10U swaps becomes relative LY

plot (burnin, type="1", las=1, ylab="Test statistic value",xlab="Position in Markov Ch

ain",cex.lab=1.5)

I
(8}
|

-15

Test statistic value

I I I I I I
0 100 200 300 400 500

Position in Markov Chain

#We can then continue the Markov Chain and sample from it after each swap to gener
ate our reference distribution of test statistics.
for(i in 1:9999) {
tidl<-sample (l:nrow (MAT AFF),2,replace=F)
tid2<-sample (l:nrow (MAT AFF),2,replace=F)
if (sum(tidl%in%tid2) !=2) {
MAT T2<-MAT T
MAT T2[tid1[1],tid1[2]]<-MAT T[tid2[1],tid2[2]]
MAT T2[tid2[1],tid2[2]]<-MAT T[tidl[1],tid1[2]]
MAT T<-MAT T2
}
an_r<-graph from adjacency matrix (MAT T,weighted=TRUE,mode="directed")
str ref<-strength(an r,mode="out")
reference[i]<-coef (Im(str ref~sexT)) [2]

#We then add the observed value to the reference distribution

reference2<-c (obs, reference)

#And calculate the p value (p<0.025 would equate to the males having higher out-st
rength in the dominance network and p>0.975 to males having lower out-strength)

sum (obs<reference2) /length (reference?2)

[1] 0.9999

#We can then plot our results in the same way we have previously

par (xpd=FALSE)

hist (reference, las=1,xlim=c(-25,25),col="grey",border=NA,main="Reference distribut
ion", xlab="Test statistic wvalue",cex.lab=1.5)

lines (x=c (obs,obs),y=c(0,5000),col="red", lwd=4)

lines (x=rep (quantile (reference2,0.025),2),y=c(0,5000),col="darkblue",lwd=2,1lty=2)
lines (x=rep (quantile (reference2,0.975),2),y=c(0,5000),col="darkblue",lwd=2,1lty=2)

Reference distribution

1500

1000

Frequency

500 —

Test statistic value

#We interpret this result as showing that females tend to have higher out-strength

than males.

#However, when we evaluate our analysis we consider the role of other variables, e
specially as our group of burbils is relatively small. So we inspect the data we h
ave on individual traits and realise that more juveniles in this group happen to b

e female
sum(sexes|[[1]]=="F"&ages[[1]]=="J0V")
[1] 5
sum (sexes[[1]]=="M"&ages[[1]]=="JUV")
[1] 3

#A better approach would be to include age in our reference model (more tightly co
ntrol the permutations). This example also shows the challenge of using network an
alyses in small groups like this, even with plentiful data on the interactions the

mselves.

Section 3.1.4 — Raw data swaps

We can also use permutations to make swaps in the raw data used to generate the network. It can be
helpful to think of these as networks in themselves. The raw data used to construct animal social networks
tends to come in two forms:

« Group-by-individual (GBI) matrices: these are effectively bipartite networks in which individuals are
connected to particular grouping events. GBI matrices are used to generate association networks by
collapsing this bipartite network using the assumption that individuals within each grouping event are
connected

» Edge lists: these list the initiator and receiver of a set of behavioural interactions (or can also be used
for contacts detected using proximity loggers). They are edge lists for a multigraph (i.e. a network
with multiple rather than weighted edges) comprising the same set of individuals.

Permutations such as this are often called datastream permutations.

Section 3.1.4.1 — Permutations applied to group-by-individual matrices

We provide an example of datastream permutations for a GBI here. We are going to test the hypothesis
that our association network within a single group is different from random. We first compare it to a
completely randomised network but then realise that this isn’'t especially interesting as we already know that
the network is assorted by nose colour. Therefore, we test a second hypothesis that associations within a
group are random once we have accounted for the assortativity by nose colour.

This helps us show how additional constraints can be added to these datastream permutations, and also
highlights the value of constructing multiple reference models to have a good understanding of your data.

#Define some functions that we will use to calculate our test statistic
CoV<—-function (a) {
az<-a
diag(a2)<-NA
return (sd(a2,na.rm=T) /mean (a2, na.rm=T))
}
CoV2<-function (a) {
return (sd(al[a!=0])/mean(ala!=0]))

#We choose the coefficient of

in edge weight to

his is often used to test whether net differe

within particular constraints

obs cv<-CoV (get network2 (gbi))

> GBI and relevant on which days groups were observe

our reference distribution

-~ between two groups occurring on

#We have additional

hey already occur in (this shouldn't matter

can be recorded multiple times within the time period that swaps are constrained t

o occur within)

#Note that if we try to swap an individual into a group that it already occurs in
and reject the swap then we keep the current version of the permuted GBI for the
next step of the Markov Chain rather than simply trying again. This 1is important
to ensure uniform sampling of the reference distribution.

gbi t<-gbi

rgbis<-list ()

#As above we have a burn-in period for the Markov Chain
for (i in 1:500) {
#sample an individual/grouping-event
pind<-which (gbi t>0, arr.ind=TRUE)
tindl<-pind[sample (l:nrow(pind),1),]
#record the day on which that individual/grouping-event occurred
td<-which (day==day[tindl[1]])
#sample a second individual/grouping-event that occurs on the same day
pind2<-pind[which (pind[, 1]%in%td),]
tind2<-pind2[sample (l:nrow(pind2),1),]
#If additional constraints are met then conduct swap
if (tindl[1]!=tind2[1]&tindl[2]!=tind2([2]) {
if (gbi t[tindl[1],tind2[2]]==0&gbi t[tind2[1],tindl[2]]==0) {
gbi t2<-gbi t

gbi t2[tind2[1],tindl[2]]<-gbi t[tindl[1],tindl[2]]
gbi t2[tindl[1],tindl[2]]<-gbi t[tind2[1],tindl[2]]
gbi t2[tindl[1],tind2[2]]<-gbi t[tind2[1],tind2[2]]
gbi t2[tind2[1],tind2[2]]<-gbi t[tindl[1],tind2[2]]

gbi t<-gbi t2

#We can then continue the Markov Chain and sample from it to generate our referenc
e distribution of test statistics. Here we conduct 10000 swaps but we only save ev
ery 10 iterations (known as a thinning interval) to avoid auto-correlation that ma
y occur because of rejected swaps
c<-1
for(i in 1:10000) {

pind<-which(gbi t>0,arr.ind=TRUE)

tindl<-pind[sample (1l:nrow(pind), 1),]

td<-which (day==day[tindl[1]])

pind2<-pind[which (pind[, 1]%in%td),]

tind2<-pind2 [sample (1:nrow (pind2),1),]

if (tindl1[1]!=tind2[1]&tindl[2]!=tind2([2]) {

if (gbi t[tindl[1],tind2[2]]==0&gbi t[tind2[1],tindl[2]]==0) {
gbi t2<-gbi t

gbi t2[tind2([1],tindl[2]]<-gbi t[tindl[1],tindl([2]]
gbi t2[tindl[1],tindl[2]]<-gbi t[tind2[1],tind1([2]]
gbi t2[tindl[1],tind2[2]]<-gbi t[tind2[1],tind2([2]]
gbi t2[tind2[1],tind2[2]]<-gbi t[tindl[1],tind2([2]]

gbi t<-gbi t2

}

#This 1s where we save the swaps. Notice we only save every 10th swap
if (1%%10==0) {

rgbis[[c]]<-gbi t

c<-c+l

#Here we convert our permuted GBIs to networks

rnets<-lapply(rgbis, get network2)

ST = R T T R e =, I e
#We can then calculate our reference distribution

ref cvs<-unlist (lapply(rnets,CoV))

#We now are going to

distribu
par (xpd=FALSE)

plot (ref cvs,type="1",ylim=c(0,0.4),las=1,ylab="Value of test statistic",cex.lab=
1.5)

lines (x=c(-100,100000),y=c(obs_cv,obs cv),col="red", lwd=2)

tion,

Value of test statistic
o
|

0.0

0 200 400 600 800 1000

k p value from pez

ref cvs2<-c(obs cv,ref cvs)
sum(ref cvs2<obs cv)/length(ref cvs2)

[1]1 0.998002

T T T T TR
R RS E L

FHAAFHAFESH

#Therefore we generate a new reference model where we additionally constrain swaps

to be between individuals with the same nose colour (given that we have already es

tablished this to be important)

gbi t<-gbi
rgbis<-list ()

#Burn-in period

for (i in 1:1000) {
pind<-which(gbi t>0,arr.ind=TRUE)
tindl<-pind[sample (1l:nrow(pind), 1)
td<-which (day==day[tindl1[1]1])

r]

#This is where we work out the nose colour of the individual sampled first

tnl<-noses[[1]][tindl[2]]
pind2<-pind[which (pind[, 1]%in%td),
tind2<-pind2[sample (1l:nrow(pind2),

]
1),]

#This is where we work out the nose colour of the individual sampled second

tn2<-noses[[1]] [tind2[2]]

if (tindl[1]!=tind2[1]&tindl[2]!=tind2([2]) {

if (gbi t[tindl[1],tind2[2]]==0&gbi t[tind2[1],tindl[2]]==0) {
#We only conduct a swap if they have the same nose colour.

urrent permuted GBI is resampled in the Markov Chain

if (tnl==tn2) {
gbi t2<-gbi t

gbi t2[tind2[1],tindl[2]]<-gbi t[tindl[1],tindl[2]]
gbi t2[tindl[1],tindl[2]]<-gbi t[tind2[1],tindl[2]]
gbi t2[tindl[1],tind2[2]]<-gbi t[tind2[1],tind2[2]]
gbi t2[tind2[1],tind2[2]]<-gbi t[tindl[1],tind2[2]]
gbi t<-gbi t2
}
}
}
}
#Sampling period
#100000 swaps with every 100th swap saved
c<-1
for(i in 1:100000) {
pind<-which(gbi t>0,arr.ind=TRUE)
tindl<-pind[sample (1l:nrow(pind), 1),]
td<-which (day==day[tindl[1]])
tnl<-noses[[1]] [tindl[2]]
pind2<-pind[which (pind[, 1]1%in%td),]
tind2<-pind2[sample (1l :nrow (pind2),1),]
tn2<-noses([[1]][tind2[2]]
if(tindl[1]!=tind2[1]&tindl[2]!=tind2[2]) {
if (gbi t[tindl[1],tind2[2]]==0&gbi t[tind2[1],tindl[2]]==0) {
if (tnl==tn2) {
gbi t2<-gbi t
gbi t2[tind2[1],tindl[2]]<-gbi t[tindl[1],tindl([2]]
gbi t2[tindl[1],tindl[2]]<-gbi t[tind2[1],tindl([2]]
gbi t2[tindl[1],tind2[2]]<-gbi t[tind2[1],tind2([2]]
gbi t2[tind2[1],tind2[2]]<-gbi t[tindl[1l],tind2([2]]

gbi t<-gbi t2

If not then the c

if (1%$%100==0) {
rgbis[[c]]<-gbi t
c<-c+1

rnets<-lapply(rgbis, get network2)

ref cvs<-unlist (lapply(rnets,CoV))

plot (ref cvs,type="1",ylim=c(0,0.4),ylab="Value of test statistic", las=1,cex.lab=
1.5)
lines (x=c(-100,100000),y=c(obs_cv,obs cv),col="red", lwd=2)

04 —

0.1

Value of test statistic

0 200 400 600 800 1000

Index

ref cvs2<-c(obs cv,ref cvs)
sum(ref cvs2<obs cv)/length(ref cvs2)

[1]1 0.5994006

(9}
W)
0
s
®
B)
O
<
)
T
=
®
<
I~
e}
g
)
el
e

#We could also produce histograms

An important caveat to using datastream permutations of association data is that choosing the right
constraints on swaps can be very important and have major effects on results. Without using constraints
then datastream permutations will swap edges at random and the reference distribution generated will be
drawn from the configuration model. If it's unreasonable to expect relationships to be random within the
constraints imposed then this can lead to errors in statistical inference.

Datastream permutations of are also not appropriate for testing the statistical significance of linear
regressions (why we used node swaps) as they change the distribution of the response variable. This is
discussed at length here: https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13508

Section 3.1.4.2 — Permutations applied to edge lists
We can also use datastream permutations in edge lists of interaction data

Before we were unable to test whether affiliative interactions were assorted by nose colour when you
controlled for the structure of the association network. Using datastream permutations we can now test this
hypothesis.

#Define function to convert permuted edge lists into adjacency matrices
matrix gen<-function (a) {

Taff net<-graph from edgelist (cbind(a,REC), directed = TRUE)

E(Taff net)Sweight <- 1

Taff net<-simplify(Taff net, edge.attr.comb=list (weight="sum"))
b<-as_adjacency matrix(Taff net, sparse=FALSE, attr="weight")

return (b)

Define function to calculated assortativity in permuted networks

H

assortment2<-function (a) {

b<-assortnet::assortment.discrete(a, types=noses[[1l]], weighted = TRUE, SE = FAL
SE, M = 1)

return (b$r)

swap the individual initiating

nstrate that there are no more domir

=
[
o
jw
i)
L
)
Q
F L}
ot
>
D
0}
O
[
=
0}
)
19}
0}
Q
Q
=
Q
<
[}
ot
jay
]
0]
0}
Q
&
D
Q.
on
K
Q
juy
Q
Q
0}

#Calculate test statistic (assortativity) in observed network
obs<-assortnet::assortment.discrete (MAT AFF, types=noses[[1]], weighted = TRUE, SE
= FALSE, M = 1)$r

#Generate reference distribution

T W<-GIV
rGIV<-1list ()

#Burn-in period

for (i in 1:500) {
tl<-sample(l:length(T W), 1)
tgr<-grA[tl]
tw<-which (grA==tgr)

t2<-sample (tw, 1)

T W2<-T W

T W2[t1l]<-T W[t2]
T W2[t2]<-T W[tl]
T W<-T W2

#Sampling period
c<-1
for(i in 1:100000) {
tl<-sample (1l:length(T W), 1)
tgr<-grA[tl]
tw<-which (grA==tgr)
t2<-sample (tw, 1)
T W2<-T W
T W2[t1l]<-T W[t2]
T W2[t2]<-T W[tl]
T W<-T W2
if (1%$%10==0) {
rGIV[[c]]<-T W
c<-c+1

#convert permuted edgelists into adjacency matrices
r affnets<-lapply(rGIV,matrix gen)

#Calculate assortativity in permuted networks to generate reference distribution

refs<-unlist (lapply(r affnets,assortment2))

#Add observed value to the reference distribution

refs2<-c(obs, refs)

#Calculate p value (0.025<p<0.975 indicates that the null hypothesis is accepted a
s expected)
sum (obs<refs) /length (refs2)

[1] 0.1561844

#Plot the Markov Chain (could use histograms instead)
plot (refs, type="1", las=1,ylab="Value of test statistic",cex.lab=1.5)
lines (x=c(-100,100000), y=c (obs,obs),col="red", lwd=2)

0.08 |
O
)
® 0.06 ‘
—
] L ; :
© _
wn
™ 0.04
)
'}
y—
o
® 0.02 - lf
=
©
>
0.00 -
-0.02 I
[[[I [I
0 2000 4000 6000 8000 10000
Index

Section 3.2 - RESAMPLING-BASED REFERENCE MODELS

Resampling-based reference models can be used to test a range of hypotheses that may overlap or differ
from the type of hypotheses tested using permutation-based reference models.

Resampling of either the network or the raw data can be used.

Section 3.2.1 — Network resampling

First we demonstrate how resampling of the network might be used. We show how it might be applied to
test the hypothesis that two networks of different sizes are generated by the same underlying process.
However, we provide two examples to demonstrate how challenging this can be. We also briefly discuss the
relationship between network size and network properties.

Here we test whether the underlying structure of the huddling network in our smallest and largest groups
are the same. We do this for winter when huddling networks are random graphs and summer when
huddling networks are small-world graphs.

#Convert the winter huddling networks into adjacency matrices
hns2 m<-as_adjacency matrix(hud netSM w, sparse=FALSE)
hnb2 m<-as_adjacency matrix(hud netBI w, sparse=FALSE)

#Look at the degree distribution of the huddling network in the smallest (red) and
biggest (blue) groups

hist (colSums (hns2 m),col=adjustcolor ("firebrick",0.2),border=NA,breaks=seq(0,20,1
), ylim=c(0,15),las=1, las=1,xlab="Betweenness",main="",cex.lab=1.5)

hist (colSums (hnb2 m),col=adjustcolor ("dodgerblue", 0.2),border=NA, breaks=seq(0,20,1
) , 2add=TRUE)

15 —
- 10 —
(&)
| =y
(0b)
f
O
o
LL
5 —
o —
[[[[]
0 5 10 15 20
Betweenness

the mean degree of the network is our test statistic. We calc

#We then decide

ulate the mean degree for eac
smeanw<-mean (colSums (hns2 m))
bmeanw<-mean (colSums (hnb2 m))

#Print mean degree of each network

print (smeanw)
[1] 3.571429
print (bmeanw)

[1] 8.153846

#Note that the mean degree of the huddling network in the biggest group is much la

rger

#We then generate our reference distribution by sampling from our larger network t
o produce a network equivalent in size to the smaller network and then recalculati
ng the mean degree
bmeansw<-numeric ()
for(i in 1:1000) {

samp<-sample (1l:nrow (hnb2 m),nrow(hns2 m), replace=FALSE)

tm<-hnb2 m[samp, samp]

bmeansw[i]<-mean (colSums (tm))

#Calculate the p value. Assuming alpha=0.05 then p<0.025 indicates the small netwo
rk has a larger mean degree than the sampled larger network and p>0.975 indicates
it has a smaller degree

sum (smeanw<bmeansw) /length (bmeansw)

[1] 0.878

#0.025<p<0.975 indicating the networks have similar mean degree, which 1s unsurpri

sing given they are generated by the same process

#An alternative comparison might instead to be to correct the degree measure by th
e number of individuals minus one (proportion of group connected with)
smeanC<-mean (colSums (hns2 m))/ (nrow (hns2 m)-1)
bmeanC<-mean (colSums (hnb2 m))/ (nrow (hnb2 m)-1)

#These values are now much more similar to each other. In both groups individuals
are connected to about 30% of others
print (smeanC)

#4# [1] 0.2747253

print (bmeanC)

[1] 0.3261538

##However, the success of using a process like this is dependent on the structure

of the network (see main text) and so would need to be done with great care.

#When we do the same with the summer huddling networks, which have small-world pro
perties, then the degree distribution of the two networks is very similar even tho
ugh they are different sizes. When we do the same resampling procedure it indicate
s a difference between the small and large networks which we know are generated by
the same process.

hns m<-as_adjacency matrix (hud netSM, sparse=FALSE)

hnb m<-as_adjacency matrix (hud netBI, sparse=FALSE)

#Plot histogram comparing the degree distribution in the large and small groups
hist (colSums (hns m),col=adjustcolor ("firebrick",0.2),border=NA,breaks=seq(0,10,1),
ylim=c (0,15), las=1,xlab="Betweenness",main="",cex.lab=1.5)

hist (colSums (hnb m),col=adjustcolor ("dodgerblue",0.2),border=NA, breaks=seq(0,10,1
) , add=TRUE)

15 —
- 10 —
(&)
| =y
(0b)
=
O
o
LL
5 wd
o —
[[[[[]
0 2 4 6 8 10
Betweenness

#Calculate mean degree of each network as a test statistic
smean<-mean (colSums (hns m))
bmean<-mean (colSums (hnb m))

#As above we then generate our reference distribution by sampling from our larger
network to produce a network equivalent in size to the smaller network and then r
ecalculating the mean degree
bmeans<-numeric ()
for (i in 1:1000) {
samp<-sample (1:nrow (hnb m),nrow(hns m), replace=FALSE)
tm<-hnb m[samp, samp]
bmeans [i]<-mean (colSums (tm))

#Again we could correct degree measure by the number of individuals minus one (pro
portion of group connected with)

smeanC2<-mean (colSums (hns m))/ (nrow (hns m)-1)
bmeanC2<-mean (colSums (hnb m))/ (nrow (hnb m)-1)

#This time the corrected values are very different from each other, similar to the

result detected by the resampling approach
print (smeanC2)

[1] 0.4615385

print (bmeanC2)
[1] 0.24

#I1f we looked at the uncorrected degrees then they are the same

e
print (mean (colSums (hns m)))
[1] 6

print (mean(colSums (hns m)))

#This is an example of where evaluation is important. If we think about the proces
ses structuring the two networks then we can see that the resampling approach and
atistic used are not appropriate in this particular case. This is then

i
made clearer still when we use corrections for network size instead of res

Comparing networks of different sizes is challenging (see main paper), but resampling can be useful in
other contexts too. Below we provide an example of resampling the raw data used to construct the social
networks.

In the main paper we provide an example of betweenness centrality calculated from our main study
population and from study population B (which has similar social structure but is smaller). We also illustrate
that briefly here.

Population A has higher “raw” betweenness values as the population is larger and therefore there are more
potential paths between individuals. However, if we normalise the betweenness calculated by the number of
potential dyads (pairs of nodes) in the network we see that (while more similar) the betweenness estimated
in Population B is higher because there are fewer options of shortest paths between pairs of nodes in the
smaller network.

#Calculate betweenness of the two population association networks
(full net2,weights = 1l/edge attr(full net2)sSweight)
(full net2 B,weights = 1/edge attr(full net2 B)S$weight)

betA<-igraph: :betweenne

n
n

betB<-igraph: :betweenne

#Betweenness values are much higher (both mean and max) in the larger network

summary (bethA)

#H Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.0 0.0 42.0 511.9 371.0 7693.0

summary (betB)

#H Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.0 0.0 0.0 106.7 59.5 1562.0

#However, when we normalise betweenness centrality values by the number of node pa
irs this difference disappears

betA2<-betA/ (nrow (full net)”2-nrow (full net))

betB2<-betB/ (nrow (full net B)"2-nrow(full net B))

#The distribution of betweenness values 1s now much more similar but normalised/co
rrected betweenness estimated in Population B is now higher as explained above

summary (betA2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.0000000 0.0003822 0.0046578 0.0033762 0.0700051

summary (betB2)

#H Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.000000 0.009774 0.005449 0.143040

#Finding the correct approach to normalising measures 1s central to making appropr

iate comparisons between networks but also very challenging.

Another form of resampling-based reference model is to sample from a metric distribution, most commonly
the degree distribution. For example, using igraph we can calculate the degree sequence of our full burbil
association network and generate otherwise randomised graphs with the same degree sequence.

We can also resample edge weights from the observed network in a similar way.

#Calculate degree of the full population association network
deg<-igraph::degree (full net2)

#Generate a reference network by resampling degree distribution
rdsn<-igraph::sample degseq(deg,method="simple.no.multiple")

#Plot (randomised) reference network
plot (rdsn, vertex.label=NA, vertex.size=5)

#Note that this new network no longer has the discernible community structure of t
he observed association network

#We could then use resampling to reassign edge weights to this same graph (with or
without replacement). For example

#Resample edge weights with replacement
edge attr(rdsn)Sweight<-sample (edge attr(full net2)Sweight,gsize(rdsn), replace=TRU
E)

#Plot rewired, weighted network

#You can see from these plots that we lose the strong grouping/community structure
of our original network without additional rules when we resample.

plot (rdsn,vertex.label=NA, vertex.size=5, edge.width=(edge attr(rdsn)Sweight*8)"2.5)

These types of reference model can be very useful when studying transmission through social networks.
Degree distributions can have profound implications for spreading processes, and this type of approach
provides a way to maintain the degree distribution to study the importance of other aspects of network
structure.

Section 3.2.2 — Resampling the raw data

A more common (and frequently more useful) way to use resampling to generate a reference model is to
resample the raw data itself.

We know that space use is important in structuring the overall (between-group) burbil association network.
Therefore we could construct a reference model by resampling the spatial locations that subgroups were
observed at and reconstructing the social network.

We use this example to demonstrate bootstrapping as a technique in generating reference models. This is
sampling with replacement.

Here we test the hypothesis that there are no preferential associations between members of different
groups when they meet.

N.B. Here we calculate only one instance of the reference distribution (a single reference network) but there
is no reason this operation can’t be repeated to generate a full reference distribution

#Generate adjacency matrix to store reference model
R fn rs<-matrix(0,nr=nrow(full net),nc=ncol (full net))

#We would probably make the assumption that these two probabilities (for within an

d between clan associations) were both 1 in the absence of any other information
R p wec<-1
R p be<-1

#Resample within-group GBIs

R gbis<-1list()

for(i in 1l:length(gbis)) {
nsg<-sample (l:nrow(gbis[[i]]),nrow(gbis[[i]]), replace=TRUE)
R_gbis[[i]]<-gbis[[i]][nsg,]

#Resample between-group GBIs

R _sglocs<-list ()

for (i in l:length(sglocs)) {
nsg<-sample (l:nrow(sglocs[[1i]]),nrow(sglocs[[i]]), replace=TRUE)
R sglocs[[i]]<-sglocs[[i]] [nsg,]

#Recalculate new between-group associations using resampled spatial data
for(i in 1:100) {
for(j in 1:(n _groups-1)) {
for(k in (j+1):n groups) {
tA<-pasteO(R sglocs[[J]1][,1],"-",R sglocs[[J]][,2])
tB<-pasteO (R sglocs[[k]][,1],"-",R sglocs[[k]][,2])
tA2<-tA[daysl[[]j]]==1]
tB2<-tB[daysl[[k]]==1i]
tt<-match (tA2, tB2)
if (sum(is.na(tt))<length(tt)) {
if (group_ clans[jl==group clans[k]) {same<-rbinom(1l,1,R p wc)}
if (group clans[j]!=group clans[k]) {same<-rbinom(1l,1,R p bc)}
if (same==1) {
paste (1,3, k)
for(m in length(tt)) {
if(is.na(tt[m])==FALSE) {
tsgl<-which (tA==tA2[m] &daysl[[j]]==1)
tsg2<-which (tB==tB2[tt[m]] &daysl[[k]]==1)
tidl<-which(gbis[[j]] [tsgl,]==1)
tid2<-which (gbis[[k]] [tsg2,]==1)
tidla<-inds tot[g tot==j&gi tot%in%tidl]
tid2a<-inds tot[g tot==k&gi tot%in%tid2]
R fn rs[tidla,tid2a]<-R _fn rs[tidla,tid2a]l+1
R fn rs[tid2a,tidla]<-R _fn rs([tidla,tid2a]

#Convert between-group associations to SRIS

for(i in 1: (nrow(full net)-1)) {

for(j in (i+1):nrow(full net)) {
R fn rs[i,j]<-R _fn rs([i,]j]/(200-full net[i,J])
R fn rs[j,1]1<-R fn rs[i,]]

#Add within-group associations to the population network
{

5
for(i in 1:n groups)
[g tot==i],inds tot[g tot==i]]<-get network2(R gbis[[i]])

R fn rs[inds_ tot

HAAAAAFAARAAAAAAFRAAAAAFHARAAA S

#We now calculate our test statistics. We choose three different test statistics.
We do this in a different way to how we have used our test statistic before; this
time our test statistic is a comparison to the observed dataset. We can use this t

o quantify how well different reference models do in recreating the observed data.

#The first test statistic is to calculate the correlation between the network gene
rated using resampled data and the observed association network (a Mantel test)

vegan: :mantel (R fn rs, full net)

##
Mantel statistic based on Pearson's product-moment correlation
##

Call:

vegan::mantel (xdis = R fn rs, ydis = full net)
##

Mantel statistic r: 0.9828

Significance: 0.001

##

Upper quantiles of permutations (null model):
#H 90% 95% 97.5% 99%

0.00572 0.00742 0.00911 0.01085
Permutation: free
Number of permutations: 999

#The second test statistic i1s the summed difference in values between the referenc
e network and observed network, which can highlight any bias in the edge weights o
f the reference network.

sum (R fn rs-full net)

[1] 14.00534

#The third test statistic 1s the summed absolute difference in values between the
reference network and observed network, which shows how similar the reference net
work 1is to the observed network (smaller value is a better fit).
sum(abs (R _fn rs-full net))

[1] 170.1541

What we see here is that the network generated from resampled GBIs and spatial locations is very similar
to the observed association network. However, we may want to evaluate why this is the case. The very
strong community structure to the network means that the use of the matrix correlation for the overall
network is always likely to find a very strong correlation. The other two test statistics also suggest
reasonable similarity, and this is likely to be that by simply resampling the GBIs and spatial locations within
the groups we don’t break down the social community structure and this is the overriding process explaining

network structure. Therefore, because of the way we have constructed the reference model we have not
learned much about our network.

We revisit this example in Section 3.4 below.

Section 3.3 — DISTRIBUTION-BASED REFERENCE
MODELS

Instead of resampling from existing measures we can also fit statistical models to distributions of network
measures and then re-generate networks accordingly.

This can be a relatively easy process to follow (for some but not all network measures) when the
distribution of only one measure is involved, but gets progressively more challenging if multiple properties of
the network are to be retained. This is especially true when these distributions are correlated. We illustrate
a burbil example in the main text, but also examine it briefly here.

Our example uses the overall population association network of our main burbil study population

Please note that for this example, the version in the main paper is not completely identical to the version
presented here although all of the code is identical and the general patterns are the same.
#We can calculate the degree distribution for our burbil study population as
ws
deg<-igraph::degree(full net2)
#Plot histogram of the degree distribution

hist (deg, las=1,xlab="Degree",cex.lab=1.5,col="grey",main="")

100
80 —
>
(&)
c
Q 60
>
oy
(0]
| -
I 40 -
20
0 -
[I I I 1
10 20 30 40 50
Degree

#In a similar way we can also calculate the distribution of clustering coefficient
s for the network

clu<-igraph::transitivity(full net2, type="weighted")

#Plot histogram of the distribution of clustering coefficients

hist(clu, las=1,xlab="Clustering coefficient",cex.lab=1.5,col="grey",main="")

80 —
> _
& 60
c
()
=
o
O 40
L

20 —

0_

[I I I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Clustering coefficient

#0ur degree distribution is approximately Poisson distributed
mean (deqg)

[1] 26.42771

var (deg)

[1] 44.90412

#The mean and variance are similar and degree is a count of the edges an individua
1 has

#Therefore we can fit a Poisson distribution to our data (we could do the same wit
h other distributions such as the Negative Binomial if preferred)
fit<-glm(deg~1)

#We can then store the parameter for the Poisson distribution
mdeg<-coef (fit)

#Then using the sample degseq() function introduced previously we can generate a n
etwork with the degree distribution drawn from that Poisson distribution

#N.B. Some proposed degree distributions generated by the Poisson distribution are
not realisable and so we have to use a While loop to keep trying until we generate
a suitable degree sequence.

ndeg<-rpois (length (

V(full net2)),mdeg)

while (class (try(igraph::sample degseq(ndeg,method="simple.no.multiple")))=="try-er

ror") {

ndeg<-rpois (length(V(full net2)),mdeg)

Error in igraph:
#4# At games.c:937
ence, Invalid value
Error in igraph:
#4# At games.c:937
ence, Invalid value
Error in igraph:
At games.c:937
ence, Invalid value

rdsn2<-igraph::sample degseq(ndeg,method="simple.

#Plot the reference

:sample degseq(ndeg, method =
No simple undirected graph

:sample degseq(ndeg, method =
No simple undirected graph

:sample degseq(ndeg, method =
No simple undirected graph

network generated

plot (rdsn2, vertex.label=NA, vertex.size=5)

"simple.no.multiple")
can realize the given degree sequ

"simple.no.multiple")

can realize the given degree sequ

"simple.no.multiple")

can realize the given degree sequ

no.multiple™)

#Note that the network we generated here no longer has discernible community struc

ture

However, if we try to do the same with the distribution of clustering coefficients then we realise that it is not
possible. Algorithms simply don’t exist that would allow us to generate networks with a given distribution of
many network measures. This is a key drawback of using distribution-based reference models.

Another potential pitfall when using distribution-based (or even resampling-based) reference models is that
it can be important to consider covariance between the values of different measures.

11, we calculate the distribution for the edge wei

for our purbil sStudy pc

hist (full net[full net>0], las=1,xlab="Degree",cex.lab=1.5,col="grey",main="")

2000 —
1500 —
>
(@]
c
S
c)_1000 &
o
-
L
500 —
o — —
[I I I I I |
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Degree

ge¢

ln-group versus between-group a

par (mfrow=c(1,2))
hist (full net[full net>0.025],1las=1, xlab="Degree",cex.lab=1.5,col="grey",main="")
hist (full net[full net>0&full net<0.025],las=1,xlab="Degree",cex.lab=1.5,col="gre

yn ,main:ll])

] 2000 — [
1500 — —
1500
>] >
© 1000 . O
= =
(0] ()
= | > 1000
o o
[0 [0
| - | -
L - L
500 —]
500 —|
[I l [[] [[
0.05 0.10 0.15 0.20 0.25 0.30 0.005

Degree

par (mfrow=c(1,1))

ne<-gsize (full net2)

pes<-sum(full net>0&full net<0.025)/ne

meb<-mean (full net[full net>0.025])
sdeb<-sd(full net[full net>0.025])

new edgeweights<-rep(NA,gsize (rdsn2))

for (i in 1l:gsize(rdsn2)) {
tb<-rbinom(1l, 1, pes)
if (tb==1) {
new edgeweights[i]<-0.005
}
if (tb==0) {
new edgeweights[i]<-rnorm(l,meb, sdeb)

I I I
0.007 0.009

Degree

par (mfrow=c(1,2))

hist (full net[full net>0&upper.tri(full net)==TRUE], las=1, xlab="Degree", cex.lab=1.
5,col="grey",breaks=seq(0,0.3,0.01),main="",ylim=c (0,2000))

hist (new edgeweights, las=1,xlab="Degree",cex.lab=1.5,col="grey", breaks=seq(0,0.3,
0.01),main="",ylim=c (0,2000))

Frequency

2000 2000 — [|
1500 — 1500 —
>
(&)
c
o
1000 — 7 > 1000 —
O
o
|
L
500 — 500 —
0 - = 0 -
[I I I I I | [I I I I I |
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
Degree Degree

par (mfrow=c(1,1))

edgeiattr(rdSHZ)$weight<—newiedgeweights
plot (rdsn2, vertex.label=NA, vertex.size=5,edge.width=(edge attr(rdsn2)sweight*8)"3)

However, we then evaluate and realise there are problems with what we’ve done. Not only have we
underestimated the strength of some between-group associations (presumably between members of
nearby groups) but between-group edges tend to be much weaker and individuals with high degree may
have more between-group connections reducing their mean edge weight. Similarly edge weights may also
be biased by other things that influence associations such as nose colour. We failed to consider this
covariance between edge weights and degree.

#So0 we plot the relationship here
plot (deg, rowMeans (full net),pch=16,xlab="Degree", ylab="Mean association strength",

cex.lab=1.5)

.
o) ° e
£ o . " - o .
[S)) o ® .'. ® ... Py
@ l : ¢ e
()] L e ° ¢
= A PR EY '
w ° ® $) o"“. e e
o " 0, e ® °
g o '0.!0 ¢ °
= ': «¥,8 _°, * ¢
.c_U ‘... .:.‘. : [] * []
& *3 e) *
S 3 ' : !.3s' ® . * ¢
7] 8_ ® ® .' - °
e o " !0 o * !.
© $8, %00 g0
c s ‘ "’.' ® o ¢
(4y] o". ° . .
CD ... o ® [y @ []
[{e] L] ® @
z 8_ P .. ® * ® ®
= ¢ gt o
o 'Y
I I I I
20 30 40 50
Degree

From the plot we can work out that there is a complicated relationship between degree and the mean
association strength and we need a complex reference model to capture this relationship properly.

Distribution-based reference models are complicated. For some network measures they might not be
possible at all. For others it might be important to consider covariance between them in order to generate
an appropriate reference model.

Distribution-based reference models could also be applied to raw data. You could fit a distribution to the
relationship between individual traits or landscape features and the social or spatial data used to build your
networks and rebuild your network from there. We don’t cover that in this case study.

Section 3.4 — GENERATIVE REFERENCE MODELS

Our final type of reference model is the generative reference model. We first briefly illustrate the use of
some basic statistical models for the networks themselves, before showing how agent-based models can
be used to generate reference distributions of networks.

Section 3.4.1 — Statistical network models

Statistical network models are well-covered elsewhere in the network structure. We touch on two commonly
used examples here:

. a. Stochastic block models which can be used to generate a reference distribution related to the
community structure of the graph

. b. Exponential random graph models (ERGMs) which can be used to fit parameters to describe
how the probability or weight of edges can be explained by structural properties of the network,
nodal traits and dyadic traits.

#Note both these models are verbose during fitting and so we have hidden output an
d figures for this chunk of code

##Fit a stochastic block model to the association network

#We fit a block model for a weighted network, assuming edge weights have a Gaussia
n distribution as this 1is a reasonable assumption for our association network (see
previous sections)

sb<-blockmodels::BM gaussian (membership type="SBM sym",adj=full net, verbosity=0)
sbSestimate ()

##Fit an ERGM to the dominance interaction data

#We first convert our dominance network to a network object for the ergm package i
n R

dom el<-as.tnet (MAT DOM)

Warning in as.tnet (MAT DOM): Data assumed to be weighted one-mode tnet (if this
1s not correct, specify type)

dom<-network (dom el[,1:2])

#We then add edge weight as an attribute
network: :set.edge.attribute (dom, "weight", as.vector (dom el[,3]))

#We then add individual traits as node attributes

network: :set.vertex.attribute (dom, "sex",as.vector (sexes[[1]]))

network: :set.vertex.attribute (dom, "age",as.vector (ages[[1]]))
[[1

17)

network: :set.vertex.attribute (dom, "nose", as.vector (noses

#We can then fit a count ERGM (with a Poisson reference distribution) to the netwo
rk

#nonzero is a term to control for zero-inflation in edge counts (because many soci
al networks are sparse)

#Sum is an intercept-like term for edge weights

#We can then fit an array of terms to test hypotheses about the network structure

and associations between connection weights and individual traits

#See https://rdrr.io/cran/ergm/man/ergm-terms.html for full details on ERGM terms

dom mod<-ergm(dom~nonzero+sum+mutual (form="nabsdiff")+cyclicalweights (twopath="mi
n",combine="max",affect="min")+transitiveweights (twopath="min", combine="max",affec
t="min")+nodematch ("sex",diff=TRUE) +nodematch ("age",diff=TRUE) +nodematch ("nose", di
ff=TRUE) +nodeofactor ("age") +tnodeofactor ("sex")+nodeofactor ("nose"), reference=~Pois
son, response="weight", silent=TRUE)

##To check that the model has converged we would run
#mcmc.diagnostics (dom mod)
(code not run here)

Now we can examine the fit of these statistical models and explore how to use them as reference
distributions.

plot (sbS$SICL, pch=16,xlab="Number of blocks",ylab="Integrated classification likelih
ood",cex.lab=1.5)

o

3
'08_ oooo.....
OF
(@)
L °
@ o
X 3 i
_—O
e =
(@] []
=
M .
O o
"':8 e
m o
(7)) g! ®
L %
o
o .'
e g)
o 9
= ga °
U)i— .
Q .
o .
- .

I I I I
5 10 15 20

Number of blocks

which.max (sbSICL)

[1] 16

sbsplot obs pred(16)

286 84 14 131

123 113 219 258 43 60 16 200 33 320 68 166 140 161

286 84 14 131

123 113 219 258 43 60 16 200 33 320 68 166 140 161

mems<-sign (round (sbSmemberships[[16]]S$7Z,2))
table (unlist (gss))

##
14 17 18 19 21 22 23 24 26
1 2 2 1 3 1 2 3 1

table (colSums (mems))

##
14 17 18 19 21 22 23 24 26
1 2 2 1 3 1 2 3 1

summary (dom mod)

103 302 273

103 302 273

Call:

ergm(formula = dom ~ nonzero + sum + mutual (form = "nabsdiff") +

cyclicalweights (twopath = "min", combine = "max", affect = "min") +

transitiveweights (twopath = "min", combine = "max", affect = "min") +

#4# nodematch ("sex", diff = TRUE) + nodematch("age", diff = TRUE) +

nodematch ("nose", diff = TRUE) + nodeofactor("age") + nodeofactor ("sex") +
#4# nodeofactor ("nose"), response = "weight", reference = ~Poisson,

silent = TRUE)

##

Iterations: 5 out of 20

##

Monte Carlo MLE Results:

Estimate Std. Error MCMC % z value Pr(>|z])

nonzero -1.955482 0.409815 0 —-4.772 < 1le—-04 **=*
sum 2.616254 0.059477 0 43.988 < le-04 ***
mutual .nabsdiff -0.213979 0.030494 0 =-7.017 < 1le—-04 **=*
cyclicalweights.min.max.min -0.078708 0.021052 0 =3.739 0.000185 *x**
transitiveweights.min.max.min -0.014112 0.046224 0 -0.305 0.760138

nodematch.sum.sex.F -0.014817 0.049582 0 -0.299 0.765058

nodematch.sum.sex.M 0.090035 0.043901 0 2.051 0.040280 =*
nodematch.sum.age.AD -0.259056 0.055446 0 -4.672 < le-04 ***
nodematch.sum.age.JUV 0.670305 0.073325 0 9.142 < le—-04 ***
nodematch.sum.age.SUB -0.001308 0.077338 0 =-0.017 0.986507

nodematch.sum.nose.ORANGE 0.235533 0.063111 0 3.732 0.000190 #***
nodematch.sum.nose.RED 0.185945 0.042246 0 4.402 < le-04 ***
nodeofactor.sum.age.JUV -0.851502 0.077000 0 -11.058 < 1le-04 **=*
nodeofactor.sum.age.SUB -0.260616 0.043400 0 -6.005 < le-04 **=*
nodeofactor.sum.sex.M -0.180688 0.042170 0 -4.285 < 1le-04 **=*
nodeofactor.sum.nose.RED -0.045799 0.041396 0 -1.106 0.268567

#t#H —-—-

Signif. codes: 0 '"***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1

##

Null Deviance: 0 on 420 degrees of freedom

Residual Deviance: -13286 on 404 degrees of freedom

##

Note that the null model likelihood and deviance are defined to be 0.
This means that all likelihood-based inference (LRT, Analysis of

Deviance, AIC, BIC, etc.) is only valid between models with the same
reference distribution and constraints.

##

AIC: -13254 BIC: -13189 (Smaller is better.)

#We can also simulate networks based on the ERGM fit to provide a reference distri
bution for further hypothesis testing (for example, by seeing how goodness of fit
changes for different regions of the network)

#Here we simulate 10 networks
ref doms<-simulate (dom mod, 10)

#A quick plot to show the 10 reference networks

#N.B. we are plotting using the network package here for speed. We could convert t
o igraph 1if desired

par (mfrow=c(2,5),mar=c(0,0,0,0))

for (i in 1l:length(ref doms)) {

plot (ref doms[[1]])

par (mfrow=c(1l,1),mar=c(5,6,2,2))

ref mats<-as.sociomatrix(ref doms,attrname="weight",simplify=FALSE)

ref mats[[1]]

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
1 0O 6 5 3 5 5 5 6 312 2 14 1 14 15 13 2 12 22 3 4
2 10 ©0 10 9 8 17 10 10 11 14 7 2 11 17 10 23 7 1512 9 9
3 22 10 0 11 15 20 14 16 13 23 12 20 6 18 16 18 21 14 15 25 9
4 512 6 0 7 7 8 612 7 6 519 310 4 12 13 8 1
5 11 14 2 27 019 16 8 5 14 10 11 7 13 11 21 22 21 12 19 5
6 12 9 7 4 8 0 8 8 814 311 517 8 3 8 10 11 8 9
7 14 13 6 16 7 8 012 621 6 12 4 15 16 11 23 23 19 9 6
8 21 17 3 16 17 12 10 0 9 18 6 22 12 16 15 17 16 22 19 12 10
9 30 21 11 20 18 19 10 15 0O 17 13 25 19 11 28 16 11 19 24 20 8
10 5 5 3 2 2 3 3 4 0 0 2 5 310 9 9 4 6 7 5 3
11 13 19 6 13 14 18 19 12 4 30 0 13 8 13 19 17 14 18 26 9 7
1210 6 6 7 6 7 1 4 413 0 0 211 9 0 3 1513 4 o
13 10 14 4 19 15 20 14 11 3 19 16 14 0 19 10 15 31 23 15 14 7
14 4 5 2 5 1 2 0 7 417 4 4 4 010 7 312 9 2 4
1524 2 4 6 6 5 7 2 611 221 01le 015 7 15 14 0 4

16 6 6 6 5 5 7 5 4 315 512 518 3 0 316 6 4 3
17 10 20 513 613 8 6 721 9 9 51414 9 0 7 7 12 5
18 3 4 0 2 9 2 5 2 615 4 5 2 5 6 9 7 010 0 4
19 5 4 1 4 5 2 4 3 3 9 0 6 7 8 7 9 81le 0 3 4
20 8 12 9 15 1510 8 7 513 11 12 10 20 5 18 7 10 18 0O 8
21 16 15 6 27 18 10 12 9 6 23 7 14 20 11 17 18 27 14 19 13 O

Section 3.4.2 — Agent-based reference models

Agent-based models offer a powerful way to develop reference distributions that depend on behavioural
rules rather than the structure of the observed network. You can program individuals to behave in a
particular way and record their interactions and associations to generate a simulated network.

This is of course how we generated our burbil society in the first place. Therefore, in order to demonstrate
the use of agent-based models we are going to reuse some of our previous code and encourage you to
examine the consequences of changing key parts of it.

First we fit a spatially explicit agent-based model (ABM).
Second we fit a spatially explicit ABM applied at a subgroup level.

Third we develop a socially explicit agent-based ABM to see whether it is better able to explain burbil
association patterns.

Note that we only produce one simulation of each agent-based model here. However, stochastic agent-
based models such as this can also be used to build reference distributions of test statistics if run multiple
times. Give it a go if you fancy!

In this example our question is: how are between-group association networks structured by space-use?

Our test statistics will be the correlation between the network generated using the ABM and the observed
between-group network (a Mantel test), the summed difference in values between the reference network
and observed network, which can highlight any bias in the edge weights of the reference network and the
summed absolute difference in values between the reference network and observed network, which shows
how similar the reference network is to the observed network (smaller value is a better fit).

Note that these are the same test statistics used in one of our resampling examples.

Note also that we have learned our lesson and are creating networks of summed associations between
burbils from different groups rather than the entire network.

Finally note that we add parameters as we go along, e.qg. dist_eff defined in the first code chunk is used in
all three.

for how far burbil subgroups tend to travel fr

J)
Q
)
I
\I]
IS
Ir
O
h

#Here we set the standard devi

we know these f

nas

#This will be used for all three reference models

dist eff<-2

#First we need our group locations (printed below)
print (group locs)

##

18

22

26 12
30 16
82 4
86 8
90 12
94 16
146 4
150 8
154 12
158 16
210 4
214 8
218 12
222 16

QW O O s DK

N = T = S SRS S
O Oy O O NN DN DN @

#We now create the observed between-group network
group net<-matrix (0, nr=dim(group locs) [1],nc=dim(group locs)[1])
for(i in l:nrow(full net))
for(j in l:ncol(full net)){
if(g_tot[i]!=g_tot[j]){
group_net[g tot[i],g tot[j]l]l<-group net[g tot[i],g tot[j]l]+full net[i,]]

#And we can then plot the observed between-group network
gnet<-graph.adjacency (group net,mode="undirected", weighted=TRUE)
plot (gnet,vertex.color="1light blue",edge.width=(edge attr(gnet)Sweight)"2)

HARAAAAAARAAAAAARAAAAFAAAARAAAFAARAAAA A AR AAARAAAA A

##We now generate our reference model with a truly spatially explicit ABM (i.e. we
remove the clan effect and allow individuals to be observed independently and not

necessarily as subgroups)

#We assume that each individual is observed 100 times but this assumption can be c

hanged if desired

#Empty list to store new locations
R indiv locs<-1list()

#Assign individual locations

for (i in l:nrow(full net)) {
tx<-round(rnorm (100, group locs[g tot[i],1],dist eff))
ty<-round(rnorm (100, group locs[g tot[i],2],dist eff))
R _indiv_locs[[i]]<-cbind(tx, ty)

#Generate full network for associations between individuals
R _fn<-matrix (NA,nr=nrow (full net),nc=ncol (full net))
for(i in l:nrow(R fn)) {
for(j in l:ncol(R _fn)){
R fn[i,j]<-sum(rowSums (R indiv locs[[i]]==R indiv locs[[]j]])==2)/100

}
diag (R _fn)<-0

#Generate network of summed between-group associations
R gn<-matrix (0,nr=dim(group locs) [1],nc=dim(group locs) [1])
for (i in l:nrow (R _fn)) {
for(j in l:ncol(R _fn)) {
if(g_tot[i]!=g tot[j]){
R gn[g tot[i],g tot[j]]1<-R gn[g tot[i],g tot[j]]1+R fn[i,]]
}

}

#Plot network generated
RGN<-graph.adjacency (R _gn,mode="undirected",weighted=TRUE)
plot (RGN, vertex.color="1light blue",edge.width=2+(edge attr (RGN)Sweight)"2)

#Calculate values for the test statistics
vegan: :mantel (R_gn, group net)

##
Mantel statistic based on Pearson's product-moment correlation

#H

Call:

vegan::mantel (xdis = R gn, ydis = group net)
##

Mantel statistic r: 0.6505

Significance: 0.001

##

Upper quantiles of permutations (null model):
90% 95% 97.5% 99%

0.135 0.176 0.211 0.251

Permutation: free

Number of permutations: 999

sum (R_gn-group net)

[1] 183.7163

sum (abs (R_gn-group net))

[1] 184.7219

Note for the first reference model, that while the network is fairly well correlated, the values of edge weights
recorded are very different and upward biased.

The first reference model therefore does not explain our observed between-group network well at all. So we
now go through and re-simulate subgroups (assuming we have knowledge about their typical properties)
and assign a location to every subgroup instead of making the model purely individual-based.

We maintain group sizes from the original population.

#We have copied/pasted code from where we first generated our GBIs and then change

d object names

#Create a list to store individual IDs
Rindss<-1ist ()

#Create a list to store group sizes
Rgss<-1list ()

#Create a list to store the sex of each individual

Rsexes<-list ()

#Create a 1list to store the age of each individual

Rages<-1list ()

#Create a 1list to store the nose colour of each individual

Rnoses<-1list ()

= 7

#Create a list to store information on which day a subgroup is observed on
Rdaysl<-1list ()

#Create a 1list to store a group-by-individual matrix for each burbil group
Rgbis<-list ()

#Set the mean number of subgroups observed for each group each day

Rsg mn<-5
#Set the strength of assortativity based on nose colour
#Set a number between 0 and 1

Rsg _ass<-0.2

#Generate association data within each burbil group!
for(j in 1l:n groups) {

#individual identities
Rinds<-seq(l,n inds[j],1)
Rindss[[j]]1<-Rinds

#group size
gs<-length (Rinds)
Rgss[[Jj]]<-gs

#sex
sex<-sample (c("M","F"),gs, replace=TRUE)
Rsexes[[]j]]<-sex

#age
age<-sample (c ("AD","SUB", "JUV"),gs, replace=TRUE, prob=c(0.6,0.2,0.2))
Rages[[j]]<-age

#nose
nose<-sample (c ("RED", "ORANGE") , gs, replace=TRUE, prob=c (0.7,0.3))
Rnoses|[[]j]]<-nose

HAAAAAHARAAAAAAARAAAAAAAAAAA A

#Define number of subgroups on the first day
n_sg<-rpois(l,Rsg mn-1)+1

#find halfway point
max_red<-floor(n sg/2)

#Sample subgroups on the first day

subgroupsl<-sample (n_sg, sum(nose=="RED"), replace=TRUE, prob=c (rep(0.5+Rsg_ass,max_r
ed),rep(0.5-Rsg_ass,n_sg-max_red)))

subgroups2<-sample (n_sg, sum(nose=="ORANGE") , replace=TRUE, prob=c (rep (0.5-Rsg_ass,ma
x red),rep(0.5+Rsg_ass,n sg-max red)))

subgroups<-rep (NA, gs)
subgroups [nose=="RED"] <-subgroupsl
subgroups [nose=="ORANGE"] <-subgroups2

#Store relevant information in the group-by-individual matrix and days vector
Rgbi<-matrix(0,nc=gs,nr=n_sq)

Rgbi [cbind (subgroups, seq(l,gs,1))]1<-1

Rdays<-rep(1l,nrow (Rgbi))

#Repeat process over 100 days of observations
for(i in 2:100) {

n_sg<-rpois(1l,Rsg mn-1)+1

#find halfway point
max red<-floor(n sg/2)

subgroupsl<-sample (n sg, sum(nose=="RED"), replace=TRUE, prob=c (rep(0.5+Rsg ass,max

_red),rep(0.5-Rsg_ass,n_sg-max_red)))
subgroups2<-sample (n_sg, sum(nose=="ORANGE") , replace=TRUE, prob=c (rep (0.5-Rsg_ass,
max red),rep(0.5+Rsg_ass,n_sg-max_red)))

subgroups<-rep (NA,gss[[]]])
subgroups [nose=="RED"] <-subgroupsl
subgroups [nose=="0ORANGE"] <-subgroups2

tgbi<-matrix(0,nc=gs,nr=n_sq)

tgbi [cbind (subgroups, seq(l,gs,1))]1<-1
Rdays<-c (Rdays, rep(i,nrow(tgbi)))
Rgbi<-rbind (Rgbi, tgbi)

#We edit the group-by-individual matrix and days vector to delete any "empty'" grou
ps

Rgbi2<-Rgbi [rowSums (Rgbi) >0,]

Rdays<-Rdays [rowSums (Rgbi) >0]

Rgbi<-RgbiZ2

Rdaysl[[j]]<-Rdays
Rgbis[[]j]]<-Rgbi

Rsglocs<-1list ()

for(i in 1l:n groups) {
tx<-rep(NA,dim(Rgbis[[i]])[1])
ty<-rep (NA,dim(Rgbis[[i]]) [1])
Rsglocs[[i]]<-data.frame (tx,ty)

]
]

names (Rsglocs[[i]])<-c("x","y")
Rsglocs[[i]]$x<-group locs[i,l]+round(rnorm(dim(Rgbis[[i]])[1],0,dist eff))
Rsglocs[[i]]$y<-group locs[i,2]+round(rnorm(dim(Rgbis[[i]])[1],0,dist eff))

#We now calculate the full population association network
R fn2<-matrix(0,nr=n tot,nc=n_tot)

#Counts up between-group associations
for (i in 1:100) {
for(j in 1:(n _groups-1)) {
for(k in (j+1):n _groups)
tA<-pastel (Rsglocs|[[7]
tB<-pastel (Rsglocs|[[k]
tA2<-tA[Rdaysl[[]] i
tB2<-tB[Rdaysl[[k]
tt<-match (tA2, tB2)
if (sum(is.na(tt))<length(tt)) {
#1f (group clans[j]==group clans[k]) {same<-rbinom(1,1,p wc)} ###N.B.We have r

{
10,1],"=",Rsglocs[[j]][,2])
1T ,

]
]

gl
+11,"=",Rsglocs[[k]][,2])

]
]

1

emoved clan effects
#if (group clans[j]!=group clans[k]) {same<-rbinom(1,1,p bc)} ###N.B.We have r
emoved clan effects
same<-1
if (same==1) {
paste (i,3, k)
for (m in length(tt)) {
if(is.na(tt[m])==FALSE) {

tsgl<-which (tA==tA2[m] &Rdaysl[[]j]]==1)
tsg2<-which (tB==tB2[tt[m]] &Rdaysl[[k]]==1)
tidl<-which (Rgbis[[j]][tsgl,]==1)
tid2<-which (Rgbis[[k]] [tsg2,]==1)
tidla<-inds tot[g tot==j&gi tot%in%tidl]
tid2a<-inds tot[g tot==k&gi tot%in%tid2]

R fn2[tidla,tid2a]<-R fn2[tidla,tid2al+1l
R fn2[tid2a,tidlal<-R fn2[tidla, tid2a]

#Create association network
for(i in 1: (nrow(R fn2)-1)) {
for(j in (i+1):nrow(R_fn2)) {
R fn2[i,j]<-R_fn2[i,j]1/(200-R_fn2[i,j])
R fn2[],1]1<-R fn2[i,]]

}
for(i in 1l:n groups) {
R fn2[inds tot[g tot==i],inds tot[g tot==i]]<-get network2 (Rgbis[[i]])

#Create between-group network
R _gn2<-matrix(0,nr=dim(group_ locs) [1],nc=dim(group_ locs) [1])
for(i in Il:nrow(R fn2)) {
for(j in l:ncol(R _fn2)){
if(g_tot[i]!=g_tot[j]){
R gn2[g tot[i],g tot[]j]]<-R gn2[g tot[i],g tot[j]]+R fn2[i,]]

#Plot between-group network from spatially explicit reference model with subgroups
RGN2<-graph.adjacency (R _gn2,mode="undirected", weighted=TRUE)
plot (RGN2, vertex.color="1light blue",edge.width=2+ (edge attr (RGN2)Sweight)"2)

#Calculate test statistics
vegan: :mantel (R_gn2, group net)

#H#
Mantel statistic based on Pearson's product-moment correlation
##

Call:

vegan::mantel (xdis = R _gn2, ydis = group net)
##

Mantel statistic r: 0.5334

Significance: 0.001

##

Upper quantiles of permutations (null model):
90% 95% 97.5% 99%

0.131 0.172 0.201 0.272

Permutation: free

Number of permutations: 999

sum (R gnZ2-group net)

[1] 14.63693

sum (abs (R_gn2-group net))

[1]1 19.96275

We can see from our test statistics that the correlation with the observed network is much poorer, but the
edge weights are much more similar, although still seemingly overestimated on average.

We can now develop a third reference model that is socially-explicit, that is we included an effect of clan
membership on whether between-group interactions occur between subgroups at the same location (you'll
recall this is how we simulated our networks in the first place).

#We add our socially explicit parameters here. Note we have retained them as the o

riginal values used to create our burbil world. But please feel free to the

m to see what effect it had on the network structure
Rp wc<-p wc
Rp bc<-p bc

#We now calculate the full population association network

R fn3<-matrix(0,nr=n_tot,nc=n_tot)

#Counts up between-group associations
for(i in 1:100) {
for(j in 1:(n _groups-1)) {
for(k in (j+1):n_groups) {
tA<-pastel (Rsglocs[[j]1]1[,1],"-",Rsglocs([[]]][,2])
tB<-pastel(Rsglocs[[k]][,1],"-",Rsglocs[[k]][,2])
tA2<-tA[daysl[[j]]
tB2<-tB[daysl[[k]]
tt<-match (tA2, tB2)
if (sum(is.na(tt))<length(tt)) {
if (group clans[j]==group clans[k]) {same<-rbinom(1l,1,Rp wc)}
]

::l]
::l]

if (group clans|[j
#same<-1

!=group clans[k]) {same<-rbinom(1l,1,Rp bc)}

if (same==1) {
paste (1,3, k)
for(m in length(tt)) {
if (is.na(tt[m])==FALSE) {

tsgl<-which (tA==tA2[m] &daysl[[j]]
tsg2<-which (tB==tB2[tt[m]] &daysl[[k]]==1)
tidl<-which (Rgbis[[j]][tsgl,]==1)
tid2<-which (Rgbis[[k]] [tsg2,]==1)
tidla<-inds tot[g tot==j&gi tot%in%tidl]
tid2a<-inds tot[g tot==k&gi tot%in%tid2]
R fn3[tidla, tid2a]<-R fn3[tidla, tid2a]l+1l
R fn3[tid2a,tidlal<-R _fn3[tidla, tid2a]

#Create association network
for(i in 1: (nrow(R fn3)-1)) {
for(j in (i+1):nrow(R_fn3)) {

R fn3[i,j]<-R_fn3[i,3]1/(200-R _fn3[i,j])
R fn3[j,i]<-R_fn3[i,]]

}
for(i in 1:n groups) {
R fn3[inds tot[g tot==i],inds tot[g tot==i]]<-get network2(gbis[[i]])

#Create between-group network
R gn3<-matrix (0, nr=dim(group locs) [1],nc=dim(group locs) [1])
for (i in l:nrow(R fn3)) {
for(j in l:ncol(R _fn3)) {
if(g_tot[i]!=g_tot[j]){
R gn3[g tot[i],g tot[]j]]<-R gn3[g tot[i],g tot[j]]+R fn3[i,]]

#Plot between-group network from socially explicit reference model
RGN3<-graph.adjacency (R gn3,mode="undirected", weighted=TRUE)
plot (RGN3, vertex.color="1light blue",edge.width=2+ (edge attr (RGN3)Sweight)"2)

#Calculate test statistics
vegan: :mantel (R _gn3, group net)

##

Mantel statistic based on Pearson's product-moment correlation

i

Call:

vegan::mantel (xdis = R gn3, ydis = group net)
#H#

Mantel statistic r: 0.283

#H Significance: 0.014

##

Upper quantiles of permutations (null model) :
90% 95% 97.5% 99%

0.112 0.160 0.200 0.297

Permutation: free

Number of permutations: 999

sum (R gn3-group net)

[1] -1.616466

sum (abs (R_gn3-group net))

[1] 11.93412

The third reference model does a much better job of explaining the observed burbil association network,
indicating that including the clan membership is an important factor driving between-group network
structure.

When you use an agent-based model then you may want to pick specific values of key parameters and
generate distributions of test statistics (as we have done here). However, you can also use values of your
test statistic to fit agent-based models to your observed network using your chosen test statistic. For
example, you could use a Markov Chain or even approximate Bayesian computation (ABC) to produce
estimates for parameter values that generate networks most similar to the observed network according to
the test statistic you have selected.

END

