Supporting Information for

Original article

Activating Connexin43 gap junctions primes adipose tissue for

therapeutic intervention

Yi Zhu^{a,g,*}, Na Li^a, Mingyang Huang^g, Xi Chen^g, Yu A. An^a, Jianping Li^b, Shangang Zhao^a, Jan-Bernd Funcke^a, Jianhong Cao^c, Zhenyan He^c, Qingzhang Zhu^a, Zhuzhen Zhang^a, Zhao V. Wang^b, Lin Xu^{d,e}, Kevin Williams^b, Chien Li^f, Kevin Grove^f, Philipp E. Scherer^{a,h,*}

^aTouchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

^bDivision of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

^cDivision of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

^dQuantitative Biomedical Research Center, Department of Population and Data Sciences, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

^eDepartment of Pediatrics, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

^fNovo Nordisk Research Center, Seattle, WA 98109, USA

^gChildren's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA

^hDepartment of Cell Biology, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

Received 30 October 2021; received in revised form 16 January 2022; accepted 8 February 2022 *Correspondence authors. Tel.: +1 214 6488715.

E-mail addresses: Philipp.Scherer@UTSouthwestern.edu (Philipp E. Scherer), Yi.Zhu@bcm.edu (Yi Zhu).

Figure S1 Other metabolic parameters in control and Cx43 TG mice treated with Mirabegron. (A) Cx43 expression in iWAT from 12-week-old control (Ctrl) and Cx43 TG mice after overnight Dox10 chow diet treatment. (**B**) Heat production (normalized to body weight) during the metabolic cage experiment shown in Fig. 1D and 1E (n = 4-5 mice). (**C**) O₂ consumption and CO₂ emission rate (normalized to body weight) during the metabolic cage experiment in Fig. 1D and 1E (n = 4-5 mice). (**C**) O₂ consumption and CO₂ emission

5 mice). The shaded area indicates the dark cycle. (**D**) Left: Water consumption during the experiment in Fig. 1C and 1D. Right: accumulative water consumption before and after mirabegron treatment (n = 4-5 mice). (**E**). Changes in body fat (normalized to body weight, expressed as a percentage), and lean mass (normalized to body weight, expressed as a percentage) after metabolic cage experiment shown in Fig. 1D and 1E (n = 4-5 mice). All data are mean \pm SEM. *P < 0.05.

Figure S2 Biochemical analysis of control and Cx43 TG mice. (**A**) Western blotting for p-ERK, ERK, tyrosine hydroxylase (TH), and α -tubulin in brown adipose tissue lysates generated from control and Cx43 TG mice fed with HFD supplemented with 200 mg/kg doxycycline for 4 weeks. The protein ladder (LI-COR Chameleon Duo 928-60000) shows two different patterns in respective channels. Control samples are labeled as "Ctrl", Cx43 TG samples are labeled as "TG". Analysis of densitometry is shown below blots (n = 3 mice). (**B**) Cx43 mRNA levels from iWAT harvested from Cx43 TG mice used in Fig. 2B, which were kept on 50 mg/kg doxycycline HFD

for 10 days (n = 12-14 mice). (**C**) Western blotting for serum adiponectin levels from control and Cx43 TG mice fed with HFD supplemented with 200 mg/kg doxycycline for 4 weeks. Quantification of serum adiponectin abundance (normalized to mouse serum IgG) is shown on the right. Protein ladder (LI-COR Odyssey Protein Molecular Weight Marker 928–60000). (n = 5 mice). (**D**). Serum leptin levels from control and Cx43 TG mice fed with HFD supplemented with 200 mg/kg doxycycline for 4 weeks (n = 6 mice). All data are mean ± SEM; *P < 0.05, ****P < 0.0001.

Figure S3 Metabolic characterization of mice treated with danegaptide and mirabegron. (A) O_2 consumption and CO_2 emission rate (normalized to body weight) were measured in the metabolic cage experiment shown in Fig. 3B (n = 6 mice). (**B**) Accumulative food consumption and food-seeking activity (Z movement) were measured in the metabolic cage experiment shown in Fig. 3B (n = 6 mice). (**C**) Central and peripheral activities were measured in the metabolic cage experiment shown in Fig. 3B (n = 6 mice). The shaded area indicates the dark cycle. All data are mean \pm SEM.

Figure S4 Further improvement of metabolic function when combing FGF21 with danegaptide. The treatment condition for Panels A–E is illustrated in Fig. 4A. The treatment condition for Panels

G and H was similar except that mice were treated with drugs for 29 days. (A) Serum AST and ALT levels after treatment (n = 9-10 mice). (B) Serum adiponectin levels after treatment (n = 9-10 mice). (C) Hepatic triglyceride content after the treatment (n = 9-10 mice). (D) Representative histology of the iWAT and BAT from at least three mice. Scale bar = 100 µm. (E) Summary of iWAT adipocytes area distribution in each treatment condition. (F) *Ucp1* expression in iWAT and BAT. Cx43 expression in iWAT (n = 10 mice). (G) Weight-loss and food intake during 4 weeks of FGF21 (1 mg/kg body weight) and danegaptide (10 mg/kg body weight) combinatory treatment (n = 6-10 mice). (H) Oral glucose tolerance (OGTT) (left) and insulin levels (right) after 4 weeks FGF21 (1 mg/kg body weight) and danegaptide (10 mg/kg body weight) treatment (n = 6-9 mice). All data are mean ± SEM; *P < 0.05, **P < 0.01, ***< P < 0.001, ***< P < 0.001.