Dataset	Step	ΤοοΙ	Command line			
GSE97179 Mouse neuronal scBS-seq	Trimming 1	Cutadapt 2.6	cutadapt -f fastq -q 20 -m 62 -a AGATCGGAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTGTAGGGA			
	Trimming 2	Cutadapt 2.6	cutadapt -f fastq -u 16 -u -16 -U 16 -U -16 -m 30			
	Alignment	Bismark 0.22.3	bismark –bowtie2 –se (–pbat only for the first reads)			
	Sorting	Samtools 1.9	samtools sort			
	Duplicate removal	picard MarkDuplicates 1.141	picard MarkDuplicates REMOVE DUPLICATES=true			
	Filtering	Samtools 1.9	samtools view -b -q 30			
GSE137880 <i>B cell tumor</i> <i>WGBS</i>	Trimming	Trim Galore 0.6.6	trim galore -q 30 –length 40 –paired –retain unpair			
	Alignment 1	Bismark 0.22.3	bismarkbowtie2			
	Alignment 2	Bismark 0.22.3	bismark -bowtie2 -non_directional			
	Sorting	Samtools 1.9	samtools sort			
	Duplicate removal	picard MarkDuplicates 1.141	picard MarkDuplicates REMOVE DUPLICATES=true			

Table 1 Preprocessing steps for mouse neuronal scBS-seq and B cell WGBS data. Each step isclarified with a specific version of tool we used for our preprocessing. Trimming 2 step in mouseneuronal scBS-seq data precessing is required only for multiplexed samples according to Luo et. al.[1] and the alignment 2 step in B cell tumor WGBS preprocessing was done only for the unmatchedreads after the paired-end alignment during the alignment 1.

	2 cell-type mouse neuron		5 cell-type mouse neuron				Tumor		
	mL6-2	mPv	mDL-2	mL2-3	mL5-1	mL6-2	mPv	B cell non-cancer	B cell Lymphoma
Bulk 1	0.731	0.269	0.350	0.148	0.242	0.091	0.169	0.151	0.849
Bulk 2	0.445	0.555	0.149	0.096	0.451	0.106	0.197	0.945	0.055
Bulk 3	0.810	0.190	0.444	0.166	0.078	0.293	0.020	0.152	0.848
Bulk 4	0.658	0.342	0.376	0.176	0.245	0.091	0.112	0.190	0.810
Bulk 5	0.338	0.662	0.049	0.459	0.062	0.172	0.258	0.680	0.320
Bulk 6	0.352	0.648	0.381	0.100	0.037	0.407	0.074	0.801	0.199
Bulk 7	0.617	0.383	0.176	0.035	0.242	0.317	0.230	0.790	0.210
Bulk 8	0.591	0.409	0.141	0.075	0.124	0.249	0.410	0.496	0.504
Bulk 9	0.558	0.442	0.160	0.199	0.166	0.151	0.324	0.624	0.376
Bulk 10	0.444	0.556	0.280	0.130	0.456	0.034	0.100	0.657	0.343
Bulk 11	0.330	0.669	0.259	0.155	0.264	0.290	0.032	0.552	0.448
Bulk 12	0.377	0.623	0.081	0.446	0.140	0.166	0.166	0.963	0.037
Bulk 13	0.662	0.338	0.248	0.142	0.141	0.118	0.351	0.955	0.045
Bulk 14	0.461	0.539	0.119	0.340	0.118	0.245	0.177	0.315	0.685
Bulk 15	0.835	0.165	0.150	0.062	0.278	0.295	0.215	0.983	0.017
Bulk 16	0.694	0.306	0.201	0.451	0.088	0.241	0.019	0.804	0.196
Bulk 17	0.550	0.450	0.266	0.210	0.210	0.169	0.146	0.170	0.830
Bulk 18	0.624	0.376	0.350	0.027	0.340	0.225	0.058	0.738	0.262
Bulk 19	0.671	0.329	0.271	0.159	0.334	0.198	0.039	0.673	0.327
Bulk 20	0.539	0.461	0.053	0.390	0.055	0.112	0.390	0.926	0.074

 Table 2 Cell-type composition of each sample in three pseudo-bulk datasets. We generated 20 pseudo-bulk samples for individual datasets which are grouped by thick vertical lines in the table. The compositions are drawn from Dirichlet distribution as explained in Method.

Figure 1: Overlaps between cell-type DMRs and selected informative regions for five cell-type mouse neuronal pseudo-bulks. THe colored box plots at the top shows the number of overlaps between a pair of methods connected at the middle, across all methods. The grey box plot at the right side means the number of informative regions detected by each method or the number of regions in DMRs.

Figure 2: Mean absolute error vs mean genomic correlation between selected informative regions and DMRs in five cell-type mouse neuronal pseudo-bulks. The points indicate results of each cell type from each deconvolution method.

Figure 3 Mean absolute error vs entropy of cell-type proportions in each bulk sample (2 cell-type mouse neuronal and tumor pseudo-bulks). Dots are fitted in a linear function (the line with grey background).

Figure 4 Correlation between the number of selected informative regions and overlaps with DMRs. Each point presents a result by each method in each bulk. Different colors are applied to respective datasets.

Figure 5 Difference of methylation beta values between targeted cell types for 2 cell-type mouse neuronal pseudo-bulks (mL6-2 and mPv) within selected informative regions by each method. We calculated the difference of methylation beta values in CpGs overlapping with the selected informative regions and this figure presents the distribution of differences by samples and by methods. Since array-based methods use same informative regions for all samples, each method has one distribution.

Figure 6 Difference of methylation beta values between targeted cell types for tumor pseudo-bulks (B cell non-cancer and B cell lymphoma) within selected informative regions by each method. We calculated the difference of methylation beta values in CpGs overlapping with the selected informative regions and this figure presents the distribution of differences by samples and by methods. Since array-based methods use same informative regions for all samples, each method has one distribution. B cell non-cancer and lymphoma DMRs, yielded by comparing only those two cell types, are equal each other, thus we included only B cell non-cancer DMRs in the result.

Samples

Figure 7 Peak annotation analysis on selected informative regions by each method in 2 cell-type mouse neuronal pseudo-bulks. Analyses were done separately in respective bulks, and the frequency is presented in a box plot with median value (the middle line), the first and the third quantiles (the ends of box). Peak annotations within DMRs are presented as dots in each box plot. For the background, we conducted peak annotation over the entire CpG sites of each bulk.

Figure 8 Peak annotation analysis on selected informative regions by each method in 5 cell-type mouse neuronal pseudo-bulks. Analyses were done separately in respective bulks, and the frequency is presented in a box plot with median value (the middle line), the first and the third quantiles (the ends of box). Peak annotations within DMRs are presented as dots in each box plot. For the background, we conducted peak annotation over the entire CpG sites of each bulk.

Figure 9 Peak annotation analysis on selected informative regions by each method in tumor pseudo-bulks. Analyses were done separately in respective bulks, and the frequency is presented in a box plot with median value (the middle line), the first and the third quantiles (the ends of box). Peak annotations within DMRs are presented as dots in each box plot. For the background, we conducted peak annotation over the entire CpG sites of each bulk.

Figure 10 Cell-type deconvolution results on pseudo-bulk samples with rare proportion of tumor cell type. **(A)** Mean absolute percentage error between the ground-truth and estimated cell-type proportion. Median value of each method is written above the box plot. **(B)** Estimated proportions and ground-truth (black line) values.

Supplementary Reference

[1] Chongyuan Luo, Christopher L Keown, Laurie Kurihara, Jingtian Zhou, Yupeng He, Junhao Li, Rosa Castanon, Jacinta Lucero, Joseph R Nery, Justin P Sandoval, et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science, 357(6351):600–604, 2017.