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Supplementary Material: 

Physical activity informed bolus algorithm details 
The physical activity related mealtime insulin bolus modulation relies on a wearable activity tracker-based calculation of accumulated 

physical activity through a weighted sum of the historical steps taken within the previous 12 hours. The resulting metric, denoted as 

AOB, corresponds to the accumulated physical activity performed previously and is still actively impacting glucose uptake. The AOB at 

a sampling time index k is calculated as follows: 

𝐴𝑂𝐵(𝑘) = ⟨𝜌, 𝜎⟩, = ∑ 𝜌(𝑘 − 𝑡)𝑠(𝑡)

𝑘

𝑡=𝑘−143

, 𝑘 ≥ 143, 

where “s(t)” is the step-count accumulated over 5 minutes (aligning with common CGM sampling intervals), and t spans from k (current 

time) to k-143 (144×5min=12 hours ago), 𝜌 = (𝜌(0), 𝜌(1), … , 𝜌(143)) is a 144-dimensioanl weighting vector, consisting of the 

percentage of the residual glycemic impact from the previously performed physical activity obtained based on an activity accumulation 

curve (Supplemental Figure 1). In other words, AOB(k) is a weighted summation of the recent 12-hour physical activity. 

𝑃𝐴 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑏𝑜𝑙𝑢𝑠 = 𝑆𝑇 𝐵𝑜𝑙𝑢𝑠 −
𝐴𝑂𝐵𝑑,𝑚 − 𝐴𝑂𝐵𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑚

𝐴𝐹
 

ST Bolus is the amount of insulin bolus calculated according to the standard insulin therapy. The 𝐴𝑂𝐵𝑑,𝑚 is the AOB calculated for the 

meal m consumed on day d. 𝐴𝑂𝐵𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑚 is the profile that captures the routine daily accumulated physical activity of a participant 

around a selected standard meal m such as breakfast, lunch or dinner. AF translates the anticipated glycemic change generated by the 

physical activity deviations into insulin units with a similar impact. In order to obtain the 𝐴𝑂𝐵𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑚, optimum mealtime CR, and 

optimum AF we followed the steps below: 

Step 1—Extraction of the participant-specific AOB lunch profile (𝐴𝑂𝐵𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑙𝑢𝑛𝑐ℎ): Lunchtime AOBprofile,lunch was computed as the 

median AOB between 11 am and 2 pm during the data collection phase. 

Step 2– Physical activity informed CR optimization: The main parameter of a meal bolus is the CR. This parameter is designed to 

provide optimum CHO/insulin value to compensate for the expected BG increase from the CHOs in meals. If the glycemic impact of 

previous physical activity was similar at the time of every meal, an optimized CR could compensate for the combined impact of meal 

and accumulated physical activity without a need for an additional physical activity correction. However, because deviations in the 

physical activity behavior are a part of daily life, the performance of a meal bolus without such correction is limited. This limitation is 

addressed with the AF in the physical activity informed bolus formula. Therefore, we first optimize CRs for the meals we are interested 

in –in our case, lunch, and a late evening meal – separately by running in silico CGM replays on the data obtained during the data 

collection phase. The objective of this data-driven optimization is to minimize the post-meal glycemic risk computed as explained in [1] 

by factoring out the physical activity-induced changes in the insulin needs. In order to separate the cofounding effect of physical activity, 
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we use the physical activity information while determining whether the emphasis should be on the low BG risk (LBGI) or high BG risk 

(HBGI) in the cost function as explained in [2]. The resulting optimum lunch CRs are used in both outpatient study visits, whereas the 

optimum CRs for the selected late evening meal are only used to obtain AFs for each participant as elaborated in Step 3. 

Step3—AF optimization: Using the optimum dinner CR, we find the AF for each participant as the parameter that minimizes the total 

glycemic risk –with equal emphasis on LBGI and HBGI— evaluated on the CGM traces obtained when physical activity-informed bolus 

formula is applied in silico at and following sizable meals that occur later in the evening (between 4:30-10:00pm). The reason we 

selected to evaluate post-meal BG behavior after a sizable meal that occurs later in the evening for AF optimization is in order to (i) 

capture glycemic impact from a wide range of physical activity accumulated throughout the day, and (ii) relatively better isolation of the 

analysis window from significant disturbances, such as another large meal. We used a time and meal-size based dinner detection 

algorithm to label the dinners.  

The CGM replays for both CR and AF optimizations are performed using the net effect technology developed previously by Patek et al. 

[3]. This technique allows us to replay the participant’s post-meal BG traces with physical activity informed boluses while keeping in the 

real-life observed BG variations due to disturbances including and beyond meal and insulin. Before performing the replays, we pre-

processed the collected data to check for validity based on the following criteria: 

• A day was rejected from analyses if more than 2 hours of CGM data was missing between 4:30 pm and 10 pm or if no insulin 

was administered for a meal during this interval.  

• Physical activity data had to be available in the morning (6 am to noon), afternoon (noon to 5 pm) and evening (5 pm to 10 pm), 

as defined by no more than 2-hours of missing data in any of these three intervals. 

 

Supplemental Figure 1 Activity accumulation curve 
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Participant-level breakdown of lunchtime insulin bolus variables 
 

Supplemental Table 2 Lunchtime values per participant used during the control visit and resulting post-lunch CGM slopes 

Subject IOB 
(U) 

BG 
(mg/dL) 

CR 
(g/U) 

AF 
(acc. 

Steps/U) 

Bolus 
(U) 

AOB 

Profile 
(acc. 

Steps) 

AOB 
Lunch 
(acc. 

Steps) 

Post-lunch 

[0h,2h] 

Slope 
(mg/dL/5min) 

Post-lunch 
[2h,4h] 
Slope 

(mg/dL/5min) 

52104 0.15 163 14.0 2200 2.7 3917 6224 -0.5 -0.9 

52106 0 137 7.5 2200 7.7 3973 5700 3.5 -2.9 

52107 0.13 145 10.7 2594 7.2 990 6192 -0.9 6.4 

52108 0 91 11.4 2200 5.3 1402 4470 8.4 -2.3 

52109 0 130 15 2198 4.6 3157 6467 0.4 0.1 

52110 0 149 17 2200 2.9 1065 3966 2.7 0.0 

52111 0.03 111 7.9 4405 8 1857 4617 -0.3 0.9 

52113 0 73 11.8 2200 4.9 1197 4078 0.1 1.1 

52114 0 91 7.4 3235 7.3 3300 6132 1.0 0.3 

52116 0 163 16.7 2836 4 2108 5573 0.3 -0.4 

52117 0.09 157 13.6 4921 3.9 1827 4819 -0.3 -0.8 

52118 0.14 218 7.0 1666 7.9 1735 4665 -3.6 -0.9 

52119 0 73 18.8 1621 2.6 930 1621 5.0 -1.0 

52121 0.07 92 10.6 1573 4.8 2063 7529 -1.7 4.1 

52122 0 83 7.4 2200 8 673 4682 4.7 0.3 
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Supplemental Table 2 Lunchtime values per participant used during the experimental visit and resulting post-lunch CGM slopes 

Subject IOB 
(U) 

BG 
(mg/dL) 

CR 
(g/U) 

AF 
(acc. 

Steps/U) 

Bolus 
(U) 

AOB 

Profile 
(acc. 

Steps) 

AOB 
Lunch 
(acc. 

Steps) 

Post-lunch 

[0h,2h] 

Slope 
(mg/dL/5min) 

Post-lunch 
[2h,4h] 
Slope 

(mg/dL/5min) 

52104 0.08 89 14.0 2200 1 3917 6172 1.4 1.1 

52106 0.11 181 7.5 2200 8.2 3973 5945 2.1 -2.5 

52107 0 138 10.7 2594 6.1 990 3916 1.7 4.4 

52108 0 128 11.4 2200 4.6 1402 3953 5.3 1.5 

52109 0 101 15 2198 2.5 3157 6059 7.0 0.0 

52110 0.03 153 17 2200 1.8 1065 4242 1.3 2.8 

52111 0 154 7.9 4405 8.7 1857 4985 -0.2 -0.6 

52113 0.02 89 11.8 2200 3.6 1197 4066 0.8 2.5 

52114 0.01 120 7.4 3235 6.9 3300 5796 0.4 -0.3 

52116 0 132 16.7 2836 2.2 2108 5772 2.6 0.0 

52117 0.07 198 13.6 4921 3.9 1827 4334 1.9 -0.7 

52118 0 111 7.0 1666 3.3 1735 5014 0.9 -0.6 

52119 0.03 76 18.8 1621 1.3 930 4535 6.2 -1.0 

52121 0 134 10.6 1573 2.9 2063 7208 0.9 -2.6 

52122 0.05 93 7.4 2200 5.9 673 5038 2.9 -0.4 
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Individual Clinical Results
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