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Supplemental information

Supplementary Figure 1: Structure of published PROTACs and non-PROTACs
compounds, related to Figure 2.
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Supplementary Figure 2: Pearson correlation of PROTAC at different
concentration. a) Pearson correlation values and b) median Pearson correlation of
the image-based profiles for each PROTAC between concentrations 0.1 vs 1, 0.1 vs
10 and 1 vs 10 uM.
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Supplementary Figure 3: Correlation Cell Painting activity versus primary target
degradation. a) Correlation between primary degradation (pIC50) and Cell Painting
Grit Score activity for all compounds or compounds with low/no target expression or
compounds with target expressed. b) Correlation between primary degradation
(pIC50) and Cell Painting Grit Score activity for Target 9, 11 and 14 with full dose
response for 3 example compounds together with the Grit Score (GS). Related to
Figure 3.
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Supplementary Figure 4: Cell Painting activity for individual PROTAC
components. a) Cell Painting activity score (Grit) for two PROTACSs together with their
corresponding part (E3 warheads and protein of interest POI ligands) and small
molecules inhibitors b) Dose response of Gal assay for 2 compounds with Grit Score
indication (GS). Related to Figure 4.
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Supplementary Figure 5: Correlation Cell Painting activity versus mitotoxicity
and phospholipidosis. a) Correlation Grit Score vs pIC50 in Gal assay at 0.1, 1 and
10 uM. b) Correlation Grit Score vs plIC50 in phospholipidosis (PLD) assay at 0.1, 1
and 10 uM. c) Correlation plC50 in phospholipidosis (PLD) assay vs plC50 in Gal

assay. Related to Figure 5.
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Supplementary Figure 6: Performance of y-scrambled models and Pairwise
Pearson correlation. a) Performance of y-scrambled models for mitochondrial toxicity
prediction using the Cell Painting features and three different algorithms; RF, XGB and
SVC at concentrations 0.1, 1 and 10 uM. The error bars correspond to the confidence
interval across all splits and random states used for cross validation. b) Pairwise
Pearson correlation in the Cell Painting features space between the PROTACs in the
external validation set and the compounds (PROTACs and non-PROTACS) in the
mitochondrial toxicity models. The four following comparisons are performed. “New
Mitotoxic vs Models’ Mitotoxic” corresponds to the pairwise Pearson correlation
calculation between the mitotoxic PROTACs in the external validation set and the
mitotoxic compounds in the model. “New Mitotoxic vs Models’ Not-Mitotoxic”
corresponds to the pairwise Pearson correlation calculation between the mitotoxic
PROTACSs in the external validation set and the not-mitotoxic compounds in the model.
“‘New Not-Mitotoxic vs Models’ Mitotoxic” corresponds to the pairwise Pearson
correlation calculation between the not mitotoxic PROTACSs in the external validation
set and the mitotoxic compounds in the model. “New Not-Mitotoxic vs Models’ Not-
Mitotoxic” corresponds to the pairwise Pearson correlation calculation between the
not-mitotoxic PROTACs in the external validation set and the not-mitotoxic
compounds in the model. These calculations are performed for concentration a) 0.1,
b) 1 and c) 10 uM.
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Supplementary Figure 7: Prospective experimental model validation results
visualised with confusion matrices and model performance on the prospective
validation set. a) Results obtained with the models trained with RF, SVC and XGB
algorithms and with data from concentration 0.1,1 and 10 mM. b) Mitochondrial toxicity
prediction performance using the Cell Painting features and three different algorithms;
RF, XGB and SVC at concentrations a) 10, b) 1 and c) 0.1 uM. The error bars
correspond to the confidence interval across all splits and random states used for

cross validation.
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Supplementary Figure 8: Schematic representation of model training process.

Initial data were partitioned in 70% train and 30% test set respectively, 5 times using

the stratified shuffle split function from Scikit-Learn. The training set was further

partitioned 5 times using the stratified shuffle split function from Scikit-Learn to identify

the optimal hyperparameters using hyperopt and cross validation score function from

Scikit-Learn. When hyperparameters were selected the models were trained and the

compounds in the test set were predicted. This process was repeated with 3 different

random seeds when the initial data were partitioned.
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Supplementary Table 1: Considered machine learning hyperparameters. Range

of hyperparameters’ values considered for the RF, SVC and XGB algorithms.

Hyperparameters were systematically evaluated using hyperopt python package.

Algorithm

Hyperparameter

Values

Random Forest

max_depth

3-50 with increments of 1

n_estimators

100-1000 with increments of
100

min_samples_split

2-50

min_samples_leaf

1-15 with increments of 1

eXtreme  Gradient
Boosting (XGB)

Support Vector | gamma 10101
Classifier
(with rbf kernel) c 104-1000
max_depth 3-18 with increments of 1

n_estimators

100-1000 with increments of
100

gamma

0-9

reg_alpha

0.1-100 with increments of 1

colsample_bytree

0-1

min_child_weight

0-10 with increments of 1
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