



Supplementary Figure 1. Tagged RARP-1 constructs and endogenous RARP-1 are not secreted. (A) *R. parkeri* RARP-1 with insertion sites for 3xFLAG and Ty1 epitope tags indicated (arrowheads). Western blots for FLAG (top) and Ty1 (middle) after infection of A549 cells with *rarp-1*::Tn + 3xFLAG-RARP-1 (single-tagged) or *rarp-1*::Tn + 3xFLAG-Ty1-RARP-1 (dual-tagged) bacteria. (B) Infected cells per focus during infection of A549 cells. (C) Bacteria per focus during infection of A549 cells. In (B) and (C), the means from three independent experiments (squares) are superimposed over the raw data (circles) and were used to calculate the mean \pm SD and p-value (one-way ANOVA with post-hoc Dunnett's test, **p < 0.01 relative to WT). (D) Western blots for RARP-1 (top) and Sca4 (middle) after infection of A549 cells with WT or *rarp-1*::Tn bacteria. Note the specific RARP-1 band in the pellet sample for WT bacteria only, in contrast to the identical non-specific bands in the supernatant samples for WT and *rarp-1*::Tn bacteria. In (A) and (D), infected host cells were selectively lysed after 48 h to separate supernatants (S) containing the infected host cytoplasm from pellets (P) containing intact bacteria. RpoA (bottom) served as a control for bacterial lysis or contamination of the infected cytoplasmic fraction.

Supplementary Figure 2. RARP-1 is dispensable for bacterial viability. Bacteria were released from infected A549 cells after 48 h and viability was assessed by differential staining. Percentages were determined from two independent experiments (\geq 160 bacteria were counted for each infection) and were used to calculate the mean ± SD and p-value (one-way ANOVA with post-hoc Dunnett's test, ****p < 0.0001 relative to WT). Heat-killed (HK) bacteria served as a positive control.

Supplementary Figure 3. Inputs and eluates from co-immunoprecipitation of Iysozyme-permeabilized bacteria. (A) Western blot for Sca4 (loading control) in input Iysates. (B) Western blot for FLAG in input Iysates and FLAG immunoprecipitation eluates. In (A) and (B), bacteria expressing tagged (+) or untagged (–) RARP-1 were purified and then permeabilized by Iysozyme prior to immunoprecipitation. Two replicate samples were harvested from each strain.

Supplementary Table 1. Strains and plasmids used in this study.

Strain or plasmid	Genotype or feature	Reference or
		source
<i>R. parkeri</i> strains		
R. parkeri str. Portsmouth	Parental R. parkeri strain	Chris Paddock
WT	pRAM18dSGA+OmpApr-GFPuv	(1)
<i>rarp-1</i> ::Tn	<i>rarp-1</i> ::Tn	(2)
sca2::Tn	<i>sca2</i> ::Tn +	(2)
	pRAM18dSGA+OmpApr-GFPuv	
<i>отрВ^{sтор}</i> ::Tn	<i>отрВ^{sтор}</i> ::Tn	(3)
<i>rarp-1</i> ::Tn + 3xFLAG-	<i>rarp-1</i> ::Tn + pRAM18dSGA-	This study
RARP-1	3xFLAG-RARP-1	
<i>rarp-1</i> ::Tn + 3xFLAG-Ty1-	<i>rarp-1</i> ::Tn + pRL0079	This study
RARP-1		
GSK-BFP	pRL0284	This study
GSK-RARP-2	pRL0285	This study
GSK-RARP-1	pRL0286	This study
<i>E. coli</i> strains		
WT	Keio Knockout Collection parental	(4); Horizon
	K12 strain (BW25113)	Discovery
ΔtolC	Δ <i>tolC</i> ::Kan (JW5503-1)	(4); Horizon
		Discovery

WT + 3xFLAG-RARP-1 _{Rp}	WT + pRL0287	This study
WT + 3xFLAG-RARP-1 _{<i>Rt</i>}	WT + pRL0288	This study
$\Delta tolC$ + 3xFLAG-RARP-1 _{Rp}	Δ <i>tolC</i> + pRL0287	This study
$\Delta tolC$ + 3xFLAG-RARP-1 _{Rt}	Δ <i>tolC</i> + pRL0288	This study
WT + Myc-6xHis-RARP-1 _{<i>Rt</i>}	WT + pRL0290	This study
WT + 6xHis-YebF	WT + pRL0291	This study
Plasmids		
pRAM18dSGA[MCS]	Rickettsia shuttle vector	Ulrike Munderloh
pRAM18dSGA+OmpApr-	GFPuv	(1)
GFPuv		
pRAM18dSGA-3xFLAG-	3xFLAG-tagged R. parkeri RARP-1	This study
RARP-1		
pRL0079	3xFLAG- and Ty1-tagged R. parkeri	This study
	RARP-1	
pRL0284	GSK-tagged TagBFP	This study
pRL0285	GSK-tagged R. parkeri RARP-2	This study
pRL0286	GSK-tagged R. parkeri RARP-1	This study
pEXT20	IPTG-inducible E. coli expression	This study
	vector	
pRL0287	3xFLAG-tagged R. parkeri RARP-1	This study
pRL0288	3xFLAG-tagged R. typhi RARP-1	This study
pRL0290	Myc-6xHis-tagged R. typhi RARP-1	This study
pRL0291	6xHis-tagged <i>E. coli</i> YebF	This study

References

- Lamason RL, Bastounis E, Kafai NM, Serrano R, del Álamo JC, Theriot JA, Welch MD. 2016. *Rickettsia* Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell 167:670-683.e10.
- Lamason RL, Kafai NM, Welch MD. 2018. A streamlined method for transposon mutagenesis of *Rickettsia parkeri* yields numerous mutations that impact infection. PLOS ONE 13:e0197012.
- Engström P, Burke TP, Mitchell G, Ingabire N, Mark KG, Golovkine G, Iavarone AT, Rape M, Cox JS, Welch MD. 2019. Evasion of autophagy mediated by *Rickettsia* surface protein OmpB is critical for virulence. Nat Microbiol 4:2538–2551.
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008.