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Literature search 8 

On 11 November 2015, 26 February 2019, and 30 September 2020, we conducted literature searches in 9 
the ISI Web of Knowledge database for papers that investigated the interaction of the effects of invasive 10 
species and one of the following global environmental change (GEC) stressors: warming; nitrogen 11 
deposition; O2 depletion; drought; CO2 addition; and altered pH. We searched the Web of Science Core 12 
Collection for articles and reviews that were available in English through September 30, 2020. All 13 
searches used the following search string: “TS=((Invasi* OR invader* OR exotic* OR alien* OR non-14 
native* OR nonnative* OR non-indigenous OR nonindigenous OR naturalized OR introduc*) AND 15 
(Impact* OR effect*) AND (Experim* OR manipula*)”, and an additional search string to describe each 16 
GEC type. See Table S1.1 for full search terms for individual GECs. 17 

We filtered results to twelve ecologically relevant categories (Biodiversity Conservation, Ecology, 18 
Entomology, Environmental Sciences, Fisheries, Forestry, Limnology, Marine Freshwater Biology, 19 
Oceanography, Plant Sciences, Soil Science, and Zoology) and restricted publication date to 2020 or 20 
earlier. Our searches returned 6,192 studies in total. 21 

We had three main design criteria for including a study in our subsequent analyses. The study 22 
had to: (1) test the effect of both invasive species and at least one of the GEC stressors; (2) include 23 
experimental manipulation of both factors (invasion and GEC, hereafter “INV&GEC”) or experimentally 24 
manipulate one factor across a gradient of the other (e.g., an invasive species removal experiment across 25 
an elevation gradient as a proxy for a temperature gradient); and (3) measure the direct effect of both 26 
experimental manipulations on native species or ecosystems. Each study was reviewed independently by 27 
one of the contributing authors. See Fig. S1.1 for diagram showing steps of filtering studies for inclusion. 28 
We included 95 total studies in our meta-analysis; references for these studies are included here (1-95). 29 

Data categorization 30 

Data from each study were extracted by a single author. That person recorded data on the taxonomy of 31 
the invasive species used in the study, the type and magnitude of the GEC manipulation, the setting 32 
(ecosystem type, continent, type of experimental setup), and the type of measured response (see Table 33 
S1.2 for categories and definitions), in addition to the means, variances, and sample sizes of the 34 
experimental treatments. Two of the recorded factors were somewhat subjective: the invasion mechanism 35 
(i.e., how the invasive species is thought to influence the measured response) and the “response benefit” 36 
(i.e., whether a higher value of the measured response aligns with a benefit to the native species, 37 
community, or ecosystem). We referred to the language used by the authors of each study to infer the 38 
hypothesized invasion mechanism and whether the response was considered beneficial or detrimental to 39 
the system, but this required some subjective interpretation and, in some cases, our own expert 40 
knowledge. Thus, we included additional fields in the coded data on the certainty associated with each of 41 
these data (“yes” or “no”). The corresponding author confirmed the invasion mechanisms and response 42 
benefits for all cases where the original coder had recorded uncertainty in their determination. As a kind 43 
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of sensitivity analysis to this effect, we also reran analyses without data where the response benefit was 44 
uncertain. 45 

Data analysis 46 

Effect size calculation  47 

In order to compare treatment effects across cases, we computed Hedges’ d effect sizes.  Hedges’ d is 48 
an estimate of the standardized mean difference of treatment from baseline and is not biased by small 49 
sample size (96). We calculated the effect size (d) as: 50 

d = 
!!	#	!"

$  J           (Eq. 1) 51 

where XT is the observed treatment mean response, XB is the observed baseline mean response, S is the 52 
pooled standard deviation, and J is a weighting factor based on the number of replicates (96, 97). S is 53 
calculated as: 54 

S =  !(&!#'))!#	*	(&"#'))"#
&!	*	&"	#'

           (Eq. 2) 55 

and J is calculated as: 56 

 J = 1	 −	 +
,(&!*&"#-)#'

          (Eq. 3) 57 

where nT is the number of replicates in the treatment, nB is the number of replicates in the baseline, %.-is 58 
the treatment standard deviation, and %/-is the control standard deviation (96). All cases included 59 
information on the standard error, standard deviation, or confidence interval around the mean, which we 60 
converted to standard deviation.  61 

The variance around d was calculated as: 62 
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This variance calculation reduces bias in the precision, since it is independent of the magnitude of d (98, 64 
99). 65 

The baseline (XB) for single stressor treatments (invasion or GEC) was the observed control 66 
response (XC). To determine whether observed INV&GEC effects differed from that expected from 67 
combining the two single stressors (i.e., to identify whether the interactions between invasion and GEC 68 
were additive, antagonistic, or synergistic), we calculated a predicted additive effect by combining the 69 
results of the individual stressor treatments:  70 

Xp = (XI - XC) + (XGC - XC) + XC          (Eq. 5) 71 

where Xp is the predicted additive response to interaction treatment, XI is the observed mean response to 72 
invasion treatment, XGC is the observed mean response to global environmental change treatment, and 73 
XC is the mean observed control response (100). Where nB was specified in Eq. 2 and 3, we used (nI + 74 
nGC) to represent the sample size of the predicted additive response (100). There were 49 cases where 75 
Xp was impossibly negative (e.g., a negative value of biomass, survival, or abundance); we replaced 76 
these with zeros before calculating the predicted additive Hedges’ d. 77 

 We examined the data for outliers prior to performing meta-analyses. Eight cases had recorded 78 
standard deviations of zero for at least one treatment effect, which produced NA’s or infinite Hedges’ d 79 
values. After removing these cases, we visually examined the distribution of Hedges’ d values and 80 
removed one case with a Hedges’ d of over -200, a much higher magnitude than other cases (Fig. 81 
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S1.2A). We thus analyzed 458 cases from 95 studies, compared to 467 cases from 95 studies in the 82 
original dataset. 83 

To test whether the inclusion of other potential outliers affected the results, we compared the 84 
results comparing mean effect sizes and treatment effects (Fig. 2 in main text) with a dataset with 85 
additional potential outliers removed. We chose to remove an additional 8 cases from this comparison 86 
dataset with Hedges’ d’s with absolute values of 30 or higher, based on z-scores (Table S1.3) and visual 87 
assessment (Fig. S1.2B).  88 

Regression analysis 89 

We fit three types of regression models: 90 

1) A model with treatment as the only predictor, to compare the overall mean effect sizes of the 91 
three treatments (Fig. 2, main text) 92 

2) Five models (one for each predictor: GEC; invasion mechanism; response class; ecosystem 93 
setting; or experiment type) with the predictor and treatment, to compare mean treatment 94 
effects across categories of the predictor (Fig. 3A and Fig. 4A, main text, and Fig. S2.8, 95 
Appendix part 2) 96 

3) Three models, one for each treatment, comparing the effects of all predictors (GEC, invasion 97 
mechanism, response class, ecosystem setting, and experiment type) for that treatment (Fig. 98 
S2.7, Appendix part 2) 99 
 100 

Each model included a random effect for the study identity and treated the calculated effect size 101 
(d) as distributed normally around a true effect size with variance equal to the calculated variance around 102 
d. Models that included data on all three treatments (not including the third type described above) also 103 
included a random effect for the case identity. All estimated model parameters were given uninformative 104 
priors (dnorm(0, 1/10000); dunif(0,100) for standard deviations). Models were run for 50,000 iterations, 105 
with 30,000 for adapting and 1,000 for burn-in. We used the Gelman-Rubin’s statistic (101) to check for 106 
model convergence; all models converged with a Gelman-Rubin’s statistic of <=1.01. We also calculated 107 
Bayesian p-values comparing: (a) sums of squares differences from the mean; and (b) mean values of 108 
observed and simulated data. Bayesian p-values were close to 0.5 for all models, suggesting adequate 109 
model fit. 110 

Estimates of mean Hedges’ d values depend on the sign (positive or negative) of the treatment 111 
effects; thus, we treated the signs of effects as normative (i.e., either beneficial or detrimental to the 112 
native species, community, or ecosystem) to make the sign more consistently meaningful. This required 113 
some subjectivity in assigning a benefit or detriment classification to measured responses (see above, 114 
“Data categorization”). We therefore re-analyzed data in regressions after removing cases with a less 115 
certain benefit/detriment distinction, to determine how these cases affected the results. We removed 148 116 
cases where the coding authors reported uncertainty in the benefit/detriment assignment, including all 117 
cases with responses classified as nutrients, allocation, or behavior. The resulting dataset comprised 310 118 
cases from 78 studies measuring effects on abundance, biomass, diversity, physiology, reproduction, 119 
size, or survival. 120 

Fisher’s tests 121 

We used Fisher’s tests to examine differences in the types of INV&GEC interactions across categories of 122 
predictors (GEC, invasion mechanism, response class, ecosystem setting, and experiment type). 123 
However, these tests do not account for potential pseudo-replication between multiple cases from the 124 
same study. Thus, we also performed Fisher’s tests on a reduced dataset of one case per study. We 125 
randomly selected one case per study (i.e., the first case listed in the dataset for each study) after 126 
ordering data with the least frequent response classes first, to retain some data for each category of 127 
measured response. 128 
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Publication bias 129 

We used funnel plots and Spearman’s rank correlation tests to look for publication bias in the dataset, 130 
comparing the Hedges’ d scores for invasion, GEC, and INV&GEC treatments to the precision in Hedges’ 131 
d estimates and pooled sample sizes (100, 102). We also examined the relationship between precision 132 
and sample sizes and the residuals of the intercept mixed effect model, which accounted for some of the 133 
variation in Hedges’ d scores across studies (102) (Fig. S2.3, Appendix part 2). 134 

 135 
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 137 
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Figures and tables 387 

 388 
Fig. S1.1. Diagram showing the steps we used to filter studies from the database search to use in 389 
analysis and the number of studies excluded and retained at each step.  390 
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 391 
Figure S1.2. Visual assessment of Hedges’ d distributions and outliers. We removed one case with a 392 
Hedges’ d value < -200 (A), in addition to eight cases with NA or infinite Hedges’ d values, from the 393 
dataset prior to analysis (shown in red). To examine the effect of potential outliers on results, we 394 
performed a secondary analysis on a dataset clipped to exclude cases with Hedges’ d values with an 395 
absolute value of 30 or higher (B; excluded points shown in red). This cutoff was chosen based on visual 396 
examination of outliers and because this value approximated three standard deviations around the mean 397 
of each treatment (z-scores, shown as blue shaded areas in B; see Table S1.3).  398 

  399 
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 400 

Table S1.1. Full search terms used in Web of Science to find papers focusing on invasions and one or 401 
more global environmental change (GEC) factors. 402 

GEC type Full search term 

Warming TS=((Invasi* OR invader* OR exotic* OR alien* OR non-native* OR nonnative* OR 

non-indigenous OR nonindigenous OR naturalized OR introduc*) AND (Impact* OR 

effect*) AND (Experim* OR manipula*) AND (Warm* OR heat* Or thermal OR 

temperature increase OR temperature manipulation* OR climate change 

experiment)) 

Nitrogen 

deposition 

TS=((Invasi* OR invader* OR exotic* OR alien* OR non-native* OR nonnative* OR 

non-indigenous OR nonindigenous OR naturalized OR introduc*) AND (Impact* OR 

effect*) AND (Experim* OR manipula*) AND (Nitrogen AND (deposition OR fertili* 

OR add* OR suppl* OR enrich* OR enahnc* OR applic* OR input*))) 

O2 depletion TS=((Invasi* OR invader* OR exotic* OR alien* OR non-native* OR nonnative* OR 

non-indigenous OR nonindigenous OR naturalized OR introduc*) AND (Impact* OR 

effect*) AND (Experim* OR manipula*) AND (eutroph* OR hypoxia OR oxygen OR 

anoxi* OR oxygen deplet* OR O2 deplet*)) 

Drought TS=((Invasi* OR invader* OR exotic* OR alien* OR non-native* OR nonnative* OR 

non-indigenous OR nonindigenous OR naturalized OR introduc*) AND (Impact* OR 

effect*) AND (Experim* OR manipula*) AND (Drought OR water stress* OR rainout 

OR rain out OR rain-out OR precipitation exclusion* OR rain exclusion* OR 

precipitation removal*)) 

CO2 addition TS=((Invasi* OR invader* OR exotic* OR alien* OR non-native* OR nonnative* OR 

non-indigenous OR nonindigenous OR naturalized OR introduc*) AND (Impact* OR 

effect*) AND (Experim* OR manipula*) AND ((CO2 OR carbon dioxide) AND 

(increase* OR enhance* OR enrich* OR elev*))) 

Altered pH TS=((Invasi* OR invader* OR exotic* OR alien* OR non-native* OR nonnative* OR 

non-indigenous OR nonindigenous OR naturalized OR introduc*) AND (Impact* OR 

effect*) AND (Experim* OR manipula*) AND (pH)) 

 403 

  404 
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Table S1.2. Definitions and ecological scales of response class categories used as predictors in meta-405 
analysis. 406 

Response 

class 

Definition  Scale 

Abundance Number or density of individuals Species, 

community 

Allocation Carbon or size allocation to different tissues (e.g., specific leaf area, 

height:width ratio) 

Species, 

community 

Behavior Individual activity, such as aggressive or feeding behaviors Species 

Biomass Mass of individuals or populations, including proxy measures such as 

chlorophyll a concentration in freshwater systems 

Species, 

community 

Diversity Biodiversity (e.g., species richness, evenness) Community 

Physiology Metabolic or immune processes or related enzyme activity Species 

Nutrient Nutrient concentrations in tissues, nutrient or other resource 

availability, or ecosystem-level carbon or nutrient cycling 

Species, 

community, 

ecosystem 

Reproduction Reproductive output or development of reproductive tissues (e.g., 

flowers) 

Species, 

community 

Size Body size, limb/body part size, or growth Species, 

community 

Survival Survivorship or mortality rate Species, 

community 

 407 

 408 

Table S1.3. Means, standard deviations, and z-scores of Hedges’ d values for each treatment (excluding 409 
values greater than 200 or less than -200).  410 

Treatment Mean +/- SD Z-score bounds 

Invasion -2.18 +/- 8.10 (-22.14—26.49) 

GEC -0.95 +/- 6.31 (-17.97—19.86) 

INV&GEC -2.21 +/- 8.57 (-23.49—27.92) 

411 
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Appendix part 2: Supplementary results 412 
 413 

 414 
Figure S2.1. Numbers of cases and studies in each category in the dataset used for analysis (total ncases = 458, nstudies = 95). Most studies 415 
contributed multiple cases because they measured multiple responses, focused on multiple species, or examined multiple global environmental 416 
changes. 417 

 418 
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 419 
Figure S2.2. Relationships between global environmental change (GEC) type and ecosystem setting (A), invasion mechanism (B), and trophic 420 
level of invasive species (C) across studies in the dataset used for analysis. Note that a single study could have multiple invasive species, but 421 
each study only occurred in one ecosystem setting. 422 
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 423 
Figure S2.3. Funnel plots examining potential publication bias in the dataset used for analysis, comparing the precision in Hedges’ d values to: 1) 424 
the Hedge’s d values (top row) and 2) the residuals of the mixed effects model estimating the means of each treatment (bottom row). Results of 425 
Spearman’s rank correlation tests are shown in the top right corner of each panel. There was some evidence of publication bias in the data (A-C), 426 
particularly for global environmental change (GEC) treatments (A), with more negative Hedges’ d values in studies with high precision and high 427 
sample sizes. However, accounting for differences in studies with random effects largely removed this trend (D-F).428 
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 429 
Figure S2.4. Invasion (INV) and combined invasion and global environmental change (INV&GEC) effects 430 
were both significantly more negative than GEC effects across all cases and studies. Bars represent the 431 
differences between the estimated mean Hedges’ d’s of the GEC, invasion, and INV&GEC treatments 432 
estimated from a Bayesian mixed-effect model, with white circles showing the mean and grey bars 433 
showing the 95% credible interval of the posterior distribution. Credible intervals that do not cross the 434 
zero line (dark grey bars) are considered significantly different from zero.435 
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 436 
Figure S2.5. Results comparing treatment mean effect sizes and the distributions of combined stressor 437 
(INV&GEC) interaction types were robust to treatment of outliers (top row) and assessment of whether a 438 
higher value of a measured response was considered beneficial or detrimental to the ecosystem (bottom 439 
row). We re-ran analyses with subsets of the data with mean effect sizes ranging from -30 to 30 440 
(compared to -200 to 200 in the main analysis; see SI part 2; ncases = 450, nstudies = 95) and with only 441 
cases with responses for which we were able to confidently assess whether a higher value indicated a 442 
beneficial or detrimental outcome (ncases = 310, nstudies = 78). Results are similar to those reported in the 443 
main text (Fig. 2). Mean effect sizes (Hedges’ d) of invasion (INV) and INV&GEC treatments were more 444 
negative than global environmental change (GEC) treatments (A, C; white circles show the mean and 445 
grey bars show the 95% credible interval of the posterior distribution for each treatment mean). 446 
Antagonistic interactions were most common, and synergistic interactions were mostly more negative 447 
than expected from the individual stressor effects (“Synergistic (-)”; B, D).  448 

 449 
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  450 
Figure S2.6. Mean effect sizes and the distribution of combined stressor (INV&GEC) interaction types 451 
were somewhat similar between studies of plant (top row) and animal (bottom row) invasive species. In 452 
studies of both plant and animal invasions, mean effect sizes (Hedges’ d) of invasion (INV) and INV&GEC 453 
treatments were more negative than global environmental change (GEC) treatments (A, C; white circles 454 
show the mean and grey bars show the 95% credible interval of the posterior distribution for each 455 
treatment mean). Antagonistic interactions were most common, and synergistic interactions were mostly 456 
more negative than expected from the individual stressor effects (“Synergistic (-)”; B, D) in studies of both 457 
plant and animal invasions. Most studies focused on plant invasions (ncases = 335, nstudies = 66), and the 458 
overall trends described in the main text are similar to those of plant studies. Animal invasion studies 459 
were less common (ncases = 120, nstudies = 28) but showed similar trends.460 
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 461 

 462 
Figure S2.7. Results of full mixed-effect models predicting Hedges’ d’s of each treatment. Effects are considered non-significant if 95% credible 463 
intervals cross zero (shown in lighter colors). Bars are color-coded by predictor variable (purple = ecosystem setting, red = experiment type, green 464 
= global environmental change factor, orange = invasion mechanism, blue = response class). Intercepts represent warming studies with 465 
competitive invasions in a terrestrial lab/greenhouse experiment and cases where the measured response was biomass. Invasion (INV) effects 466 
were generally negative across categories (i.e., without significant differences from the negative intercept) except for significantly less detrimental 467 
effects on abundance, allocation, body size, and physiology. Global environmental change (GEC) and combined (INV&GEC) effects were more 468 
negative with drought and on tissue allocation. GEC effects were less detrimental with depleted O2 (nstudies = 2) and more detrimental in studies 469 
with invasions acting via chemical/physical mechanisms. 470 
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 471 
Figure S2.8. Mean effect sizes (Hedges’ d) of invasion (INV), global environmental change (GEC) and 472 
combined (INV&GEC) treatments (top) and distributions of INV&GEC interaction types (bottom) across 473 
invasion mechanisms (A-B), ecosystem settings (C-D), and experiment types (E-F). White circles show 474 
the mean and grey bars show the 95% credible interval of the posterior distribution for the mean effect 475 
size for each GEC type (A, C, E). Credible intervals that do not cross the zero line (dark grey bars) are 476 
considered significantly different from zero. Invasion and INV&GEC effects were negative, on average, in 477 
terrestrial systems, with competitive invaders, and in lab/greenhouse studies and mesocosm studies. 478 
Invasion effects were also negative, on average, with invasive species acting via predation and in 479 
freshwater systems. However, none of these effects were significant when controlling for other variation 480 
across cases (see Fig. S2.7). GEC effects tended to be negative with invasive species acting via 481 
chemical/physical impacts, perhaps because most of these studies focused on terrestrial plants (Fig. 482 
S2.2). There was no difference in the distributions of interaction types across any of these predictors (B, 483 
D, F).484 
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 485 
Figure S2.9. Effect sizes (Hedges’ d) of invasion (INV), global environmental change (GEC) and 486 
combined (INV&GEC) treatments (A) and distributions of INV&GEC interaction types within the full 487 
dataset used for analysis (B) and the dataset reduced to one case per study (C) across global 488 
environmental change (GEC) types. (A) Colored points represent calculated Hedges’ d’s from individual 489 
cases. White circles show the mean and grey bars show the 95% credible interval of the posterior 490 
distribution for the mean effect size for each GEC type. Credible intervals that do not cross the zero line 491 
(dark grey bars) are considered significantly different from zero. (B) INV&GEC interaction types varied 492 
across GECs (simulated p-value = 0.017) in the full dataset (see panel A for sample sizes). (C) There 493 
were no differences in INV&GEC interaction types across GECs in the reduced dataset with only one 494 
case per study (simulated p-value = 0.916). 495 
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  496 
Figure S2.10. Effect sizes (Hedges’ d) of invasion (INV), global environmental change (GEC) and combined (INV&GEC) treatments (A) and 497 
distributions of INV&GEC interaction types within the full dataset used for analysis (B) and the dataset reduced to one case per study (C) across 498 
response classes. (A) Colored points represent calculated Hedges’ d’s from individual cases. White circles show the mean and grey bars show the 499 
95% credible interval of the posterior distribution for the mean effect size for each response class. Credible intervals that do not cross the zero line 500 
(dark grey bars) are considered significantly different from zero. (B) INV&GEC interaction types varied across response classes (simulated p-value 501 
= 0.001) in the full dataset (see panel A for sample sizes). (C) There were no differences in INV&GEC interaction types across response classes in 502 
the reduced dataset of one case per study (simulated p-value = 0.680). 503 


