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Supplementary text 

Estimation of the number of generations AB fish held in lab  

According to the ZFIN website (https://zfin.org/action/genotype/view/ZDB-GENO-960809-7), 

the AB line was brought into the lab in the 1970s. By 1991, the AB fish were 70 generations 

removed from the AB-wt fish used to establish the line. From this we can assume that 3.4 

generations were produced per year (since 21 years = 70 generations). Since we do not have an 

exact number of generations from then, as each lab has different protocols, we extrapolated these 

numbers to give us an estimate of the number of generations the AB-wt (lab) fish had been in a 

laboratory environment at the start of this experiment. Extrapolating from 1991-2017 (26 years ´ 

3.4 generations) gives 88.4 generations and a total of 158 generations from establishing the line. 

We therefore used the estimate of over 150 generations in this paper. 

 
 
Supplementary Data 

Link to all raw data: https://figshare.com/s/91f03a69303257e477f1 
  



Supplementary figures 

 

 

Figure S1: Thermal profiles showing the raw traces for how acclimation temperatures (10-38°C; (a) wild fish, 15 

aquaria & (b) lab fish, 15 aquaria) were reached and maintained over the entire experimental period (38°C was 

terminated before the end of the experiment due to high mortality) 

 

 

 
Figure S2: Growth (length), condition and maximum swim speed (individuals) of lab and wild fish acclimated 

from 10-36(38)°C. b - Specific growth rate for length for each individual fish. c - Condition of fish after 35 days of 

acclimation (calculated as the Fulton´s condition index). d - Maximum swim speed of individual fish measured in a 

swim respirometer. (see Table S4 & S6) 
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Figure S3: Heat map showing the difference in liver (a) and brain (b) gene expression between wild and lab fish. 

If there are no differences between wild and lab fish then the colour is white, this then proceeds along a colour gradient 

with the strongest green showing a higher expression in wild fish and the darkest blue a higher expression in lab fish. 

Genes are grouped according to their function and colours represent relative expression within these groups. Fish were 

only sampled at 10, 18, 28, 30 & 36°C in the brain and at 10, 12, 16, 18, 20, 24, 26, 28, 30, 34, and 36°C in the liver. 
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Figure S4: Metabolic gene expression using qPCR in wild and lab zebrafish acclimated from 10-36°C. a - Relative 

quantity of AMP-activated protein kinase subunit alpha-1 (prkaa1); b - Relative quantity of succinate dehydrogenase 

subunit A (sdha); c- Relative quantity of thyroid hormone receptor alpha-A (thraa). Wild fish are illustrated by green 

circles and lab fish by blue triangles.  

 
 

 
Figure S5: Behaviours corresponding to Fig. 2e & f, pre (a) and post (b) alarm cue time spent bottom dwelling 

and post-cue activity (c) in lab and wild zebrafish acclimated from 10-36°C. Wild fish: green circles, lab fish: blue 

circles. Statistically significant differences indicated on each panel: Temp –significant effect of temperature on trait, 

Pop – significant difference between wild and lab fish (at 23°C), Pop x Temp – significant interaction (see Table S4-

S6) 
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Figure S6: Additional behaviours: time spent freezing, time at the surface, and distance from the surface, in lab 

and wild zebrafish acclimated from 10-36°C. All behaviours were analysed pre-alarm cue (baseline) and post-alarm 

cue. The alarm cue response was quantified as the change in behaviour. Wild fish: green circles, lab fish: blue circles. 

Statistically significant differences indicated on each panel: Temp –significant effect of temperature on trait, Pop – 

significant difference between wild and lab fish (at 23°C), Pop x Temp – significant interaction (see Table S4-S6) 
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Figure S7: Coefficient of variation for weight of the fish at the (a) start and (b) end of the experiment. During 

phenotyping not all individuals from each tank were measured but the measured ones were assumed to be representative 

for that temperature. The coefficient of variation in weight at the start and end of the experiment shows how much 

variation there was at each temperature and how representative the measured individuals are. At the start of the 

experiment the two populations (wild: green circles; lab: blue triangles) show consistent variation within population 

but overall there is less variation in the lab than wild. By the end of the experiment the variation at the colder 

temperatures was similar as the start but at the warmer temperatures both wild and lab fish had converged and show 

similar variation.  
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Figure S8: Design of the behavioural arena. The behavioural tests were conducted in eight parallel arenas (a) with 

one fish in each (b). The tanks had white back and sides, and clear front where the video recording was taken from. A 

pipette tip introduced chemical cues at the centre top of the arenas.  
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Supplementary Tables 

 

Table S1: Statistical output from ANOVA´s comparing whether acclimation temperature (T), population (P; 

wild or lab) and the interaction between them (TxP) differs in a range of traits. 

 

 Temperature  

(T) 

Population  

(P) 

Interaction  

(T x P) 

Weight  

(W) 

F-valuedf p-value F-valuedf p-value F-valuedf p-value F-valuedf p-value 

Behaviour         

Activity  74.773,193 <0.0001 77.521,193 <0.0001 3.753,193 0.012 - - 

Change in activity  7.712,163 0.0006 42.201,163 <0.0001 3.542,163 0.031 - - 

Change in bottom-

dwelling 

  

13.182,175 <0.0001 28.381,175 <0.0001 3.432,175 0.034 - - 

Physiology         

Response time 42.162,97 <0.0001 1.071,97 0.303 3.822,97 0.025 - - 

Max swim speed 109.343,74 <0.0001 6.211,74 0.015 1.643,74 0.187 - - 

Thermal tolerance 3559.92,212 <0.0001 34.891,212 <0.0001 11.882,212 <0.0001 10.821,212 0.0012 

SMR 57.462,69 <0.0001 2.931,69 0.091 3.182,69 0.048 6.041,69 0.017 

MMR 78.613,72 <0.0001 20.191,72 <0.0001 3.803,72 0.014 - - 

Aerobic scope 32.473,17 <0.0001 17.641,17 0.0006 1.1493,17 0.358 - - 

Growth rate 197.693,522 <0.0001 277.741,522 <0.0001 4.683,522 0.003 - - 

         

Cellular         

RBC size 23.332,108 <0.0001 0.0051,108 0.944 1.351,108 0.264 - - 

RNA:DNA 

 

0.071,128 0.790 3.551,128 0.062 0.601,128 0.440 - - 

Genes         

ghra muscle  38.512,111 <0.0001 28.951,111 <0.0001 0.442,111 0.646 - - 

igf1 muscle 9.121,107 0.003 5.871,107 0.017 5.361,107 0.022 - - 

hsp70 muscle 150.691,113 <0.0001 13.251,113 0.0004 142.291,113 <0.0001 - - 

hsp90 muscle 221.641,113 <0.0001 1.101,113 0.297 0.571,113 0.452 - - 

hsp70 liver 46.621,106 <0.0001 9.511,106 0.003 41.431,106 <0.0001 - - 

hsp90 liver 379.071,105 <0.0001 22.151,105 <0.0001 194.741,105 <0.0001 - - 

hsp70 brain 22.042,31 <0.0001 4.821,31 0.036 9.412,31 0.0006 - - 

hsp90 brain 

 

70.692,31 <0.0001 12.521,31 0.001 13.822,31 <0.0001 - - 



 

 

 



Table S3: Primers used for gene expression analysis by qPCR 

 

 



 
 
 

  

Table S4: Statistical output from ANOVA´s comparing whether acclimation temperature (T), population (P; 

wild or lab) and the interaction between them (T´P) differs in a range of traits (supplementary data traits 

only) 
 

 

 

 

 
 
 
 

 Temperature  

(T) 

Population  

(P) 

Interaction  

(T x P) 

F-valuedf p-value F-valuedf p-value F-valuedf p-value 

Behaviour       

Time freezing (alarm cue response)  17.623,173 <0.0001 28.361,173 <0.0001 1.373,173 0.254 

Time at surface (alarm cue response)  1.011,177 0.317 0.651,177 0.420 8.771,177 0.003 

Distance to surface (pre-cue) 4.861,209 0.029 1.091,209 0.299 0.441,209 0.851 

Distance to surface (post-cue) 10.702,178 <0.0001 5.861,178 0.017 2.562,178 0.080 

Distance to surface (alarm cue response) 11.222,175 <0.0001 7.901,175 0.006 3.312,175 0.039 

Activity (post-cue) 50.403,164 <0.0001 1.931,164 0.167 0.493,164 0.690 

Physiology       

Growth % length day-1 300.293,520 <0.0001 340.521,520 <0.0001 7.483,520 <0.0001 

Condition 17.812,522 <0.0001 36.471,522 <0.0001 4.112,522 0.017 

Max swim speed (indiv) 12.752,95 <0.0001 0.151,95 0.699 3.242,95 0.044 

Genes       

prkaa1 muscle  9.901,106 0.002 15.681,106 <0.0001 0.442,111 0.646 

sdha muscle 18.451,101 <0.0001 9.951,101 0.002 2.731,101 0.101 

thraa muscle 7.402,102 0.001 25.331,102 <0.0001 0.472,102 0.625 



Table S5: Statistical output from Chi-squared tests for one physiological and six behavioural traits. The test 

sequentially adds acclimation temperature (T), population (P; wild or lab) and the interaction between them 

(T´P) into the model to compare whether there is a significant difference from the NULL model. 
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