SUPPLEMENTAL MATERIALS

Table of Contents

Supplemental Methods	2
Supplemental Table I	5
Supplemental Table II	6
Supplemental Table III	7
Supplemental Table IV	8
Supplemental Table V	9
Supplemental Table VI	10

Supplemental Methods

Patient characteristics

Pregnancy history was obtained by parental interview at time of enrollment and review of medical records. Patients who were adopted or conceived with donor gametes were excluded. The echocardiogram, catheterization, and operative reports were reviewed to determine cardiac phenotypes. Extracardiac structural anomalies were obtained from the medical records as previously defined⁴. and review of medical records

Whole genome sequencing and variant identification

Whole genome sequencing was completed on 1812 PCGC trios (patient and parents). DNVs (coding and noncoding) arising in CHD probands were identified by comparing CHD probands' WGS to their parents' WGS as previously described²⁰. In brief, genomic DNAs from venous blood or saliva were prepared for sequencing using a PCR-free library preparation or SK2-IES library preparation. All samples were sequenced on an Illumina Hi-Seq X Ten with 150-bp paired reads to a median depth >30x per individual. Reads were aligned to GRCh37 or GRCh38 with the Burrows-Wheeler Aligner (BWA-MEM)⁵¹. GATK Best Practices recommendations were implemented for base quality score recalibration (QSR), indel realignment, and duplicate removal⁵². Standard hard filtering parameters were used for SNV and indel discovery across all, followed by N+1 joint genotyping and variant QSR^{53,54}.

Identification and confirmation of de novo variants

DNV identification was jointly performed for both cases and controls. First, candidate DNVs were identified separately by three computational pipelines from PCGC members at three centers- Columbia, Harvard and Mount Sinai. Seven hundred forty-eight of the CHD patients were previously described²⁰. DNVs in the remaining 1064 CHD patients were identified after minor modifications of the previously reported pipeline. At Columbia, parameters for DNV identification were proband genotype quality (GQ) \geq 70, parent GQ \geq 30, parent read depth \geq 10, Fisher's exact test strand bias >25, variant quality by depth > 2 for SNVs and > 1 for indels, ReadPosRankSum <-3 (indel), proband alternative allele depth >5,

proband allele balance ≥ 0.2 , parent alternative allele ratio $\leq 3.5\%$, variant allele count (AC) <3, position AC <4, and allele frequency < 1E-04 in the Genome Aggregation Database (gnomAD) and 1000 Genomes databases^{55,56}. Harvard required GATK PASS, proband GQ >= 60, parent GQ >= 30, proband alternative allele depth >6, parent depth >= 10, AC < 3 across all trios, allele frequency < 1E-04 in the gnomAD and 1000 Genomes databases^{55,56} Mount Sinai required variants to be GATK PASS AC <3, GQ > 30, and proband allele balance 0.2-0.8, proband alternative allele depth >4, parent alternative allele ratio <= 0.1. MUC genes, HLA genes, and non-standard chromosomes were excluded. Variants within regions UCSC Genome Browser Tracks⁵⁷ identified by RepeatMasker (mappability >1 in 300 bp, low complexity, segmental duplications) or DAC and Duke exclusion lists were also excluded. After the initial candidate DNV identification, all candidate DNVs identified by any of these three pipelines were next collaboratively re-evaluated by both FreeBayes⁵⁸ and DeepVariant⁵⁹. Variants from any pipeline that were FreeBayes PASS and DeepVariant score >30 were considered true. After the initial candidate DNV identification, all candidate next collaboratively both from any pipeline

Genomic Risk Score

Common biallelic single nucleotide polymorphisms were identified by filtering for PASS filter, minimum depth 10, minimum genotype quality 20, and minor allele frequency > 0.05. Positions were then filtered to remove genotypes with >10% missingness or Hardy-Weinberg equilibrium threshold of 1e-6. Polygenic scores for Type 2 Diabetes²⁷ (PGS000014) and hypertension²⁸ (PGS000706) were downloaded from the PGS Catalog⁶⁰ (pgscatalog.org) and lifted from hg19 to hg38. Plink 1.9 was then used to determine genomic risk scores (GRS) for mothers. After filtering, GRS were calculated for 1730 patients. Comparisons between patient or maternal GRS and DNV counts were made using a Poisson linear model as described below.

Pathogenic CHD Variants

One hundred thirty-eight human dominant CHD genes were identified from the ClinVar and Online Mendelian Inheritance in Man databases^{15,16} (Supplemental Table 4). Rare coding variants in exome and genome sequencing were identified as previously described^{1,17}. A proband was considered to have a pathogenic CHD variant if a *de novo* loss-of function (stopgain, frameshift or canonical splice site) variant, or rare inherited loss-of-function variant, was identified in a dominant CHD gene.

Statistical Analysis

Prevalence of gestational diabetes was compared with published US birth cohorts^{18,19}. Pre-pregnancy maternal body mass index (BMI) was calculated as kg/m². Odds ratios were calculated using a Fischer's exact test. P-values were calculated either with two-sided binomial unpaired t-tests, Fisher's exact tests, or Poisson generalized linear model as indicated. The R package *stats* was used for the Poisson generalized linear model to determine the relationship of patient DNV count with maternal diabetes status, maternal BMI status of <25 or >30, maternal age at patient birth, father age at patient birth, or the interaction between these factors as indicated. 'Significant' p-values were identified using a Bonferroni correction for the number of independent tests per comparison, summing all tests in related Tables and Supplemental Tables as specified in each caption.

Supplemental Table I. Cohort Summary

Cohort	Probands, Number	Mother Age in Years, Mean (Range)	Father Age in Years, Mean (Age)	Female, Number (%)	Binomial p-value for Number Female, compared	With ECA, Number (Percent)	Maternal BMI >30, Number (Percent)	Maternal Diabetes, Number (Percent)	Hypoplastic Left Heart Syndrome, Number (percent)	Tetralogy of Fallot, Number (percent)	Left-sided Conotruncal Defect, Number (percent)	Heterotaxy, Number (percent)	Atrial Septal Defect, Number (percent)	Other, Number (percent)	T-test p- value for CHD Type Counts
All PCGC	12842	30.1 (13.0-55.3)	32.6 (13.6-68.9)	5823/12842 (45%)	-	4043/12817 (32%)	3453/10994 (31%)	1212/12842 (9%)	687 (5%)	1964 (15%)	5484 (43%)	344 (3%)	659 (5%)	3704 (29%)	-
With Diabetes during Pregnancy	1212	32.5 (16.0-48.4)	34.9 (18.0-68.9)	534/1212 (44%)	0.42*	495/1212 (41%)	533/1078 (49%)	1212/1212 (100%)	53 (4%)	203 (17%)	512 (42%)	44 (4%)	48 (4%)	352 (29%)	0.07
Without Diabetes, during Pregnancy or Historical	11471	29.8 (13.0-55.3)	32.4 (13.6-66.7)	5218/11471 (45%)	0.87*	3518/11447 (31%)	2874/9775 (29%)	0/11471 (0%)	634 (6%)	1730 (15%)	4911 (43%)	291 (3%)	600 (5%)	3305 (29%)	0.84
With BMI >30	1605	30.7 (14.0-48.4)	33.2 (16.4-60.7)	706/1605 (44%)	0.45*	594/1601 (37%)	1605/1605 (100%)	399/1605 (25%)	101 (6%)	250 (16%)	674 (42%)	47 (3%)	50 (3%)	483 (30%)	0.08
With BMI <25	7066	29.8 (13.0-55.3)	32.3 (13.6-66.6)	3222/7066 (46%)	0.8*	2100/7048 (30%)	0/7066 (0%)	390/7066 (6%)	368 (5%)	1071 (15%)	3061 (43%)	177 (2%)	387 (5%)	2002 (28%)	0.35
PCGC WGS	1812	31.1 (15.4-47.3)	33.5 (16.5-60.3)	722/1811 (40%)	-	536/1812 (30%)	378/1693 (21%)	188/1812 (10%)	128 (7%)	369 (20%)	784 (43%)	54 (3%)	107 (6%)	370 (20%)	-
With Diabetes	188	33.1 (20.3-42.7)	35.9 (20.6-60.3)	72/188 (38%)	0.81**	69/188 (37%)	89/170 (52%)	188/188 (100%)	6 (4%)	40 (22%)	86 (48%)	4 (2%)	10 (5%)	33 (18%)	0.06
Without Diabetes	1605	30.9 (15.4-47.3)	33.2 (16.5-59.8)	643/1604 (40%)	0.94**	462/1605 (29%)	278/1506 (18%)	0/1605 (0%)	121 (8%)	321 (20%)	689 (43%)	45 (3%)	97 (6%)	332 (21%)	0.82
With BMI >30	259	31.2 (18.4-45.2)	33.8 (18.2-60.3)	95/259 (37%)	0.49**	94/259 (36%)	259/259 (100%)	71/259 (27%)	19 (7%)	52 (20%)	113 (44%)	10 (4%)	10 (4%)	53 (20%)	0.07
With BMI <25	1075	30.9 (15.4-47.3)	33.2 (16.5-58.0)	426/1074 (40%)	0.95**	312/1075 (29%)	0/1075 (0%)	56/1075 (5%)	76 (7%)	217 (20%)	456 (42%)	28 (3%)	76 (7%)	222 (21%)	0.38

Abbreviations: BMI, body mass index; CHD, congenital heart disease; ECA, extracardiac anomaly; PCGC, Pediatric Cardiac Genomics Consortium * compared to All PCGC; ** compared to PCGC WGS; p-value threshold for significance 0.00625 based on 8 comparisons

Supplemental Table II. Extracardiac Anomalies by Maternal Age

Mothers 20-30 years old

Exposure Status	Extracardiac Anomalies Present, Number	Extracardiac Anomalies Absent, Number	Fisher OR (95% Cl, p-value)
GDM Exposed	88	158	1.39 (1.24-1.56, 1.84E-08)
GDM Non-Exposed	1444	3417	-
Maternal BMI >30	231	431	1.34 (1.12-1.61, 1.38E-03)
Maternal BMI <25	859	2154	-

Mothers 30-40 years old

Exposure Status	Extracardiac Anomalies Present, Number	Extracardiac Anomalies Absent, Number	Fisher OR (95% Cl, p-value)
GDM Exposed	202	301	1.52 (1.25-1.84, 1.47E-05)
GDM Non-Exposed	1581	3586	-
Maternal BMI >30	294	490	1.40 (1.18-1.65, 6.82E-05)
Maternal BMI <25	989	2302	-

Abbreviations: BMI, body mass index; CI, confidence interval; GDM, gestational diabetes mellitus; OR, odds ratio Bonferroni p-value threshold: 7.14E-03 (7 total comparisons in Main and Supplemental Tables)

Supplemental Table III. Pairwise GLM with Interaction Term								
GLM Exclusing Patients with ASD or "other" diagnoses	Diabetes Exposure, P- Value (Parameter Esimate, Standard Error)	Father Age, P- Value (Parameter Esimate, Standard Error)	Mother Age, P- Value (Parameter Esimate, Standard Error)					
Mother Age	х	x	<2E-16 (0.03, 5.9E-4)					
Father Age	х	<2E-16 (0.02, 4.7E-04)	x					
Mother Age + Father Age	х	<2E-16 (0.02, 7.3E-04)	<2E-16 (0.01, 8.9E-04)					
Diabetes	3.93E-09 (0.06, 0.01)	х	х					
Mother Age + Diabetes	0.95 (6.8E-04, 0.01)	х	<2E-16 (0.03, 5.9E-04)					
Father Age + Diabetes	0.65 (-4.6E-03, 0.01)	<2E-16 (0.02, 4.7E-04)	x					
Mother Age + Father Age + Diabetes	0.38 (-0.01, 0.01)	<2E-16 (0.02, 7.2E-04)	<2E-16 (0.01, 8.9E-04)					

Abbreviations: ASD, atrial septal defect; GLM, generalized lienar model

GLM comparison Bonferroni p-value threshold 0.0038 (13 total comparisons including Main and Supplemental Tables)

Supplemental Table IV. Parental Age Interaction By Generalized Linear Model

GLM Co- Variates	Diabetes Exposure, P-Value (Parameter Esimate, Standard Error)	Father Age, P-Value (Parameter Esimate, Standard Error)	Mother Age, P- Value (Parameter Esimate, Standard Error)	Interaction Term, P- Value (Parameter Esimate, Standard Error)
Mother + Father Age + Interaction	х	<2E-16 (0.03, 2.2E- 03)	6.43E-15 (0.02, 2.2E- 03)	1.58E-05 (-2.8E-04, 6.4E-05)
Diabetes + Father Age + Interaction	0.85 (0.01, 0.05)	<2E-16 (0.02, 4.3E- 04)	х	0.80 (-3.3E-04, 1.3E- 03)
Diabetes + Mother Age + Interaction	0.63 (0.03, 0.06)	х	<2E-16 (0.03, 5.3E- 04)	0.68 (-7.2E-04, 1.7E- 03)

Abbreviations: GLM, generalized linear model

GLM comparison Bonferroni p-value threshold 0.0038 (13 total comparisons including Main and Supplemental Tables)

Supplemental Table V. CHD Genes

geneName						
ABCC9	MED13L					
ACTB	MEIS2					
ACVR2B	MYH6					
ADAMTS10	NF1					
ARHGAP31	NKX2-5					
ARID1A	NODAL					
ARID1B	NOTCH1					
ASXL1	NOTCH2					
BBS1	NR2F2					
BCOR	NRAS					
BRAF	NSD1					
CACNA1C						
CDK15	PITX2					
CFC1	PKD1					
CHD4	PKD2					
CHD7	PTPN11					
CITED2	RAD21					
COL1A1	RAF1					
COL2A1	RAI1					
COL3A1	RBFOX2					
COX7B	RPI 35A					
CREBBP	RPL5					
CRELD1	RPS10					
DGCR2	RPS17					
DLL4	RPS19					
DYNC2H1	RPS24					
ECE1	RPS26					
	RPS7					
	SEMV3E					
EP300	SETRP1					
ETS1	SF3B4					
FBN1	SHH					
FBN2	SHOC2					
FGF8	SKI					
FGFR1	SMAD2					
FLT4	SMAD3					
FIVIR1						
FOXCI	SMARCAA					
FOXF1	SMARCB1					
GATA4	SMARCE1					
GATA5	SMC3					
GATA6	SMS					
GDF1	SON					
GJA1	SOS1					
GLI3	SOX2					
	50X9 TAD2					
HCCS	TRX1					
HRAS	TBX20					
JAG1	ТВХЗ					
KANSL1	TBX5					
KAT6A	TCOF1					
KAT6B	TFAP2B					
KDM6A	TGFBR1					
KMT2D						
KIVI ZU KRAS	TSC1					
IBR	TSC2					
LEFTY2	TWIST1					
MAP2K1	ZEB2					
MAP2K2	ZFPM2					

Supplemental Table VI. Association of Exposures with Presence of Loss-of-Function Variant in Dominant Human CHD Gene

Exposure Status	Patients with LoF CHD Gene Variant	Patients without LoF CHD Gene Variant	Fisher OR (95% CI, p-value)
Diabetes Exposure	17	338	
No Diabetes Exposure	157	3123	1.0 (0.56-1.68, 1.0)

Abbreviations: CHD, congenital heart disease; CI, confidence interval; LoF, loss of function; OR, odds ratio