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Recurrent chromosomal translocations in sarcomas create a mega-complex that 

mislocalizes NuA4/TIP60 to Polycomb target loci 
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Figure S1 (Related to Figure 1).  EPC1-PHF1 fusion protein associates with TIP60 as well as 

PRC2 complexes and enhances cell proliferation. 

(A) Indicated FLAG tagged constructs were transiently transfected in HEK293T and affinity purified 

by FLAG-resin after co-transfection with HA tagged KAT5 and ING3 and analyzed by western 

blotting. The left panel shows the normalized expression of transiently transfected FLAG tagged 

constructs. The right panel is the FLAG purification showing interaction with KAT5 and ING3. 

(B) Colony formation assay in HEK293T cells. EPC1-PHF1 transfected cells show higher colony 

counts compared to controls. Upper panel shows quantification (n=2, error bars represent range 

of the values).  

(C) FLAG affinity purification from stably transfected HEK293T cell lines (over-expression). The left 

panel shows relative expression levels of the indicated cell lines. The right panel is the western 

blot analysis of FLAG affinity purification showing interaction of EPC1-PHF1 fusion protein with 

endogenous TIP60 complex subunits (TRRAP, EP400, BRD8, KAT5, ING3, Baf53a, DMAP1) and 

EZH2.  
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Figure S2 (Related to Figure 1). HAT and HMT activity of the mega-complex and the effect of 

EPC1-PHF1 on global H3K27me3 levels. 

(A,B) Mass Spectrometry analysis of the tandem affinity purified EPC1-PHF1 complex. Table with 

total spectral counts of peptides enriched in the affinity purification. Peptides highlighted in light-

grey are NuA4/TIP60 complex components, peptides highlighted in darker-grey are PRC2.1 

complex subunits. Replicates of Figure 1C-E using the same construct (A) or a EPC1-PHF1-3FLAG-

HA-2A-puro cell line (B). 

(C) Liquid HAT assay: Quantification of the Histone Acetyltransferase (HAT) assay in Figure 1H 

measuring the incorporation of 3H-Acetyl moiety on chromatin substrates by scintillation counting 

(Counts Per Minute/CPM, error bars are based on technical replicates). Reaction with purified 

EPC1-PHF1 complex (Figure 1C) shows elevated CPM, indicating HAT activity. EPC1 (1-581) is the 

positive control. 

(D) Liquid HMT assay: Quantification of the Histone Methyltransferase (HMT) assay in Figure 2F 

measuring incorporation of 3H-Methyl moeity on chromatin substrates by scintillation counting 

(Counts Per Minute/CPM, error bars are based on technical replicates). Reaction with purified 

EPC1-PHF1 complex (Figure 1C) shows elevated CPM, indicating HMT activity. PHF1 fraction 

(PRC2) is the positive control. 

(E) Immuno-blotting of acid extracted histones from EPC1-PHF1 and control cell lines (K562) with 

H3K27me3 antibody. H4 antibody is used as loading control for histones. Global level of 

H3K27me3 does not change in K562 with the expression of the EPC1-PHF1 fusion protein. 
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Figure S3 (Related to Figure 2): Histone marks changes at EPC1-PHF1 bound loci. 

(A,B,E,F,I,J) Density Plots of H4 acetyl and H3K27me3 enrichment in K562 cell lines in indicated 

partitions of EPC1-PHF1 peaks.  

(C,D,G,H,K,L) Boxplots showing H4 acetyl and H3K27me3 enrichment level in K562 cell lines in 

indicated partitions. Statistics were computed using bins; n= number of regions analyzed where 

1 region is 100 bins. p-value calculated by Wilcoxon testing. 
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Figure S4 (Related to Figure 2): Gene transcription changes induced by EPC1-PHF1. 

(A) Volcano plot of differential gene expression analysis (microarray) comparing the EPC1-PHF1 

expressing K562 cell line versus a Mock/empty vector K562 cell line. 

(B,C,D) Gene expression changes at genes bound by EPC1-PHF1 in the isogenic cell lines and the 

indicated partitions. p-value calculated by Wilcoxon testing. 
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Figure S5 (Related to Figure 2 and 3):   

(A) Venn diagram showing the number of EPC1-PHF1 FLAG ChIP-seq peaks that overlap with EPC1-

PHF1 HA CUT and RUN peaks in K562 cell lines. See also Table S1. 

(B) Partitions used for heatmaps in C, D and E.  

(C) Enrichment of FLAG ChIP-seq or HA CUT and RUN signal in K562 cell lines. The heatmaps show 

regions bound by EPC1-PHF1 (determined by HA CUT and RUN), partitioned based on overlap 

with EPC1(1-581) and/or PHF1 FLAG peaks.  

(D) Enrichment of H4-penta-acetyl ChIP-seq signal at regions bound by EPC1-PHF1 (determined 

by HA CUT and RUN), partitioned based on overlap with EPC1(1-581) and/or PHF1 FLAG peaks.  

(E) Enrichment of H3K27me3 ChIP-seq signal in K562 cell lines at regions bound by EPC1-PHF1 

(determined by HA CUT and RUN), partitioned based on overlap with EPC1(1-581) and/or PHF1 

FLAG peaks.  
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Figure S6 (Related to Figure 3):  

(A) Relative protein expression levels of EPC1(1-581), PHF1 and EPC1-PHF1 K562 cell lines used 

for ChIP-seq (in Figures 2, 3). EPC1-PHF1 is less expressed than other constructs. Western blotting 

from whole cell extracts was done with anti-FLAG and Tubulin is used as loading control. 

(B,C) H3K27me3 and H3K36me3 levels at control gene regions: (B) ChlP-qPCR at a H3K36me3 

positive locus, RPSA gene body; (C) ChlP-qPCR at a H3K27me3 positive region, HOXA9. (Values are 

represented as ratio of %IP/input chromatin of H3K36me3 or H3K27me3 and H3) (n=2, error bars 

represent Range of the values). 

(D) ChIP-sequencing tracks of selected EPC1-PHF1 bound genes (LIF, TBX3, KLF14, SAMD11) 

showing increase in H4 acetylation and decrease in H3K27me3.  

(E,F) Western blotting of purified fractions for normalization: (E) PHF1 and EPC1-PHF1 complexes 

were normalized for Histone Methyltransferase Assay (HMT) in Figure 3H using EZH2 antibody 

(5ul of Mock, 5ul of EPC1-PHF1 and 1.875ul of PHF1 were used for the assay). (F) EPC1(1-581) and 

EPC1-PHF1 complexes were normalized for Histone Acetyltransferase Assay (HAT) in Figure 3I 

using KAT5 antibody. (2ul of Mock, 2ul of EPC1-PHF1, 0.635ul of EPC1(1-581) were used for the 

assay) 

(G) Histogram showing increased sequencing read means of EPC1-PHF1-FLAG ChIP signal versus 

mock control at the peaks of de novo acetylation detected is cells expressing the fusion near 

HOXD13. SAMD11 is a positive control for PHF1-FLAG reads while RPSA shows enrichment for 

EPC1(1-581)-FLAG reads. 
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Figure S7 (Related to Figure 3): Spreading of the EPC1-PHF1 complex and its associated histone 

marks. 

(A) Schematic representation of the possible mechanism of spreading of the EPC1-PHF1 complex 

and its associated histone marks, based on the reported mechanism of H3K27me3 spreading in 

cis and far cis through long range chromatin contacts (Oksuz et al., 2018). 

(B) Representative ChIP-seq tracks at a spreading site - HOXC gene cluster, highlighted regions 

show changes in chromatin marks compared to control. 

(C) Representative ChIP-seq tracks at a nucleation site - EVX1 at HOXA gene cluster, highlighted 

regions show changes in chromatin marks compared to control. 

(D) Representative ChIP-seq tracks at a nucleation site - HOXB gene cluster, highlighted regions 

show changes in chromatin marks compared to control. 

(E) Representative ChIP-seq tracks at a spreading site - CYP26B1, proximal to HOXD gene cluster, 

highlighted regions show changes in chromatin marks compared to control. 

(F) Representative ChIP-seq tracks at a nucleation site - LHX2 (Lim Homeobox 2), highlighted 

regions show changes in chromatin marks compared to control. 
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Figure S8 (Related to Figure 4): JAZF1 associates with the NuA4/TIP60 complex. 

(A) Protein sequence alignment: Human JAZF1 and yeast Sfp1 show homology in the zinc-finger 

domains. Black boxes show exact amino acid conservation, grey boxes show conservation of 

amino acids with similar polarity.  

(B) Model depicting the relationship between SFP1 and NuA4 in S. cerevisiae. Sfp1 is a 

transcriptional activator that responds to nutrients and stress, being regulated by TORC1 and 

Mrs6. In the nucleus, Sfp1 and the NuA4 complex co-operate to regulate the expression of 

Ribosomal Protein (RP) and Ribosomal Biogenesis (RiBi) genes.   

(C) JAZF1 interacts with the TIP60 complex. Table of proteins (numbers represent total spectral 

counts) co-purified with JAZF1 in the chromatin fractions from HEK293 cells upon multiple cell 

compartment affinity purification coupled to tandem mass spectrometry analysis (MCC-AP-

MS/MS) (Data from two biological replicates; Interactions with an FDR below 20% in both 

replicate runs and interactions observed in only one replicate run with an FDR < 10% are 

reported). 

(D) Mass Spectrometry analysis of the JAZF1-3xFLAG-2xStrep affinity purified from K562 cells. 

Table with total spectral counts of peptides present in the tandem affinity purified fraction shown 

in Figure 4A-B. Peptides highlighted in purple are NuA4/TIP60 complex components, peptides 

highlighted in red are other known JAZF1 interacting proteins, in green are histones.  

(E) Immunoprecipitation of JAZF1 with the EPC1-PHF1 fusion. Myc-tagged JAZF1 construct was 

transiently expressed in FLAG-tagged K562 cell lines expressing Tag (Mock), EPC1(1-581), PHF1 or 

EPC1-PHF1) from the AAVS1 locus. Immunoprecipitation was performed with Anti-FLAG-resin and 

analyzed by western blotting with Anti-Myc antibody. JAZF1 interacts with EPC1(1-581) and EPC1-

PHF1.  See Figure 4C for data with JAZF1(1-124) construct. 
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Figure S9 (Related to Figure 5): The JAZF1-SUZ12 fusion mislocalizes histone marks. 

(A) H4K8ac ChIP-qPCR at EGFP reporter (+300bp after promoter) after induced recruitment of 

indicated proteins.  

(B) Flow cytometry analysis of replicates used for ChIP-qPCR in (A). The histogram shows % of 

cells transfected with EPC1, PHF1, EPC1-PHF1 or EPC1 (1-581) expressing high GFP upon ABA 

treatment. 

(C) Protein expression level of JAZF1-SUZ12, JAZF1-Nterm, SUZ12-C-term and empty tag (3xFLAG-

2xStrep) from the AAVS1 locus in K562 cells.  Anti-FLAG western blotting on whole cell extracts 

and GAPDH is used as loading control. 

 (D, E) H3K27me3 and H3K36me3 levels in JAZF1-SUZ12 expressing cells at control loci. (D) ChlP-

qPCR at a H3K36me3 positive locus, RPSA gene body; (E) ChlP-qPCR at a H3K27me3 positive 

region, HOXA9. (Values are represented as ratio of % of input chromatin of H3K36me3 or 

H3K27me3 and H3) (n=2, error bars represent Range of the values). 
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Figure S10 (Related to Figure 5): Gene expression changes in JAZF1-SUZ12 expressing cells 

(A) Heatmap of differential expression analysis comparing JAZF1-SUZ12 expressing K562 cell line 

and empty vector K562 cell line (Mock). 

(B) GSEA using the Gene Ontology database (Biological Processes) was performed on upregulated 

genes in JAZF1-SUZ12 expressing K562 cell line. 15 associated significant gene sets with lowest 

padj values (< 0.05) calculated by FDR method are presented. 

(C) Pathway over-representation analysis using the ENCODE and ChEA Consensus TFs from ChIP-

X library was performed on upregulated genes in JAZF1-SUZ12 expressing K562 cells. The 

associated Transcription factors (EZH2 and SUZ12) with the padj values below 0.05 are presented. 

(D) Pathway over-representation analysis using the ENCODE Histone Modifications database 

(2015) was performed on upregulated genes in JAZF1-SUZ12 expressing K562 cells. The associated 

histone modification (H3K27me3) with the padj values below 0.05 are presented. 
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Figure S11 (Related to Figure 5): Differential Expression analysis in LG-ESS patient samples 

showing the presence of JAZF1-SUZ12 fusion 

(A) Volcano plot showing significantly differentially expressed genes from pairwise comparisons 

of Uterus Tumor to Endometrial Normal tissue. 

(B,E,F) GSEA using the Hallmark Gene Sets from Gene Ontology – Biological pathways, KEGG 

Pathways and Molecular Signatures Database (MSigDB) was performed on differentially 

expressed genes in Uterus Tumor patient sample compared to the Endometrial normal tissue. 

Associated significant gene sets with lowest padj values (< 0.05) calculated by FDR method are 

presented. 

(C) Pathway over-representation analysis using the ENCODE Histone Modifications database 

(2015) was performed on differentially expressed genes in Uterus Tumor sample in comparison 

to the Endometrial normal tissue. The associated histone modifications with the  padj values 

(hypergeometric distribution) below 0.05 are presented. 

(D) Pathway over-representation analysis using the ENCODE and ChEA Consensus TFs from ChIP-

X library was performed on differentially expressed genes in Uterus Tumor sample in comparison 

to the Endometrial normal tissue. The associated Transcription factors with the padj values 

(hypergeometric distribution) below 0.05 are presented. 
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Figure S12 (Related to Figure 5): Differential Expression Pathway analysis in LG-ESS patient 

samples showing the presence of JAZF1-SUZ12 fusion 

(A) GSEA using the Gene Ontology database (Biological Processes) was performed on 

differentially expressed genes in Endometrial Tumor sample in comparison to the paired 

Endometrial Normal tissue from the same patient. 25 of the associated significant gene sets with 

lowest padj values (< 0.05) calculated by FDR method are presented. 

(B) Pathway over-representation analysis using the ENCODE and ChEA Consensus TFs from ChIP-

X library was performed on differentially expressed genes in Endometrial Tumor sample in 

comparison to the paired Endometrial normal tissue. The associated Transcription factors with 

the padj values (hypergeometric distribution) below 0.05 are presented. 

(C) Pathway over-representation analysis using the ENCODE Histone Modifications database 

(2015) was performed on differentially expressed genes in Endometrial Tumor sample in 

comparison to the paired Endometrial normal tissue. The associated histone modifications with 

the padj values (hypergeometric distribution) below 0.05 are presented. 

(D,E) GSEA using the KEGG Pathways and Molecular Signatures Database (MSigDB) was 

performed on differentially expressed genes in Endometrial Tumor sample in comparison to the 

paired Endometrial Normal tissue. Associated significant gene sets with lowest padj values (< 

0.05) calculated by FDR method are presented. 
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SUPPLEMENTARY METHODS 

 

Acid Extraction of Histones 

EPC1-PHF1-Flag Tagged K562 and control cells were grown to 107 cell density in 100mm dishes, 

harvested, washed twice in 1XPBS. Cells were pelleted and resuspended in 1ml lysis buffer (PBS 

containing 0.5% Triton X 100 (v/v), 2 mM phenylmethylsulfonyl fluoride (PMSF), 0.02% (w/v) 

NaN3, 5mM sodium Butyrate) for 10 min, nuclei were spun down, resuspended in half volume of 

lysis buffer and centrifuged. Pellet was resuspended in 250 µl 0.2N HCl, incubated overnight at 

4C, centrifuged. Supernatant containing acid extracted histones was neutralized with 1/10 

volume of NaOH. Histones were quantified by Bradford assay, resolved on 15% SDS-PAGE, and 

Immunoblotted with anti-H3K27me3 and anti-H4 antibodies. 

(https://www.abcam.com/protocols/histone-extraction-protocol-for-western-blot) 

 

Colony formation assay: HEK293T were transfected using the calcium phosphate method and 

then grown under selection with 300ug/ml hygromycin B for two weeks. Colonies that formed 

were fixed with methanol and colored with a solution of Giemsa stain for easier visualization. 

Plates were scanned using an Epson Perfection 4870 scanner; colonies in the images were 

counted using Alpha Imager software.  

 

Multiple cell compartment affinity purification coupled to tandem mass spectrometry (MCC-

AP-MS/MS) : Inducible EcR-293 stable cell line containing pMZI empty vector as control, pMZI-

JAZF1 were generated as previously described (Jeronimo et al. 2007). Protein expression was 

induced with 3 µM ponasterone A (Life Technologies) and cells were harvested after 48h. Protein-
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protein interactions of JAZF1 were identified using two biological replicate runs for each bait of 

the multiple cell compartment affinity purification coupled to tandem mass spectrometry (MCC-

AP-MS/MS) procedure, as recently described  (Lavallee-Adam et al. 2013), (Cloutier et al. 2014)). 

The eluates were precipitated with trichloroacetic acid (TCA) and stored at -80 °C until liquid 

chromatography (LC) MS/MS analysis. Proteins were solubilized, digested with trypsin and 

analyzed by tandem mass spectrometry as previously described (Cloutier et al. 2014). Protein 

database searching was performed with Mascot 2.2 (Matrix Science) against the human NCBInr 

protein database. Reliability assessment of protein-protein interactions identified with MCC-AP-

MS/MS was performed using our previously published software package Decontaminator 

(Lavallee-Adam et al. 2011). pMZI empty vector controls were used to train Decontaminator’s 

Bayesian inference algorithm. Decontaminator assigned a False Discovery Rate (FDR) to each 

protein-protein interaction in our dataset using a leave-one-out procedure. Interactions with a 

FDR below 20% in both replicate runs of MCC-AP-MS/MS and interactions observed in only one 

replicate run with a FDR < 10% were reported. 

 

Mass spectrometry Analysis of Purified Complexes : Purified complexes were run on preparative 

gels (Bolt 12% Bis-Tris, Invitrogen) over 1 cm, to stack all proteins into 1 band, stained with Sypro 

Ruby (Bio-Rad) and excised under UV lamp. The gel slice was reduced, alkylated, and digested 

based on the original protocol (Wilm et al. 1996). Briefly, proteins were reduced with 10 mM DTT 

at 56°C for 15 minutes and alkylated with 100 mM iodoacetamide for 15 minutes. Trypsin 

digestion was performed using modified porcine trypsin (Sequencing grade, Sigma) at 37°C for 16 

h. Digestion products were extracted sequentially using 25 mM ammonium bicarbonate, then 
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50% acetonitrile with 5% formic acid and finally 100% acetonitrile. The recovered extracts were 

pooled, vacuum centrifuge dried and stored at -80°C until MS analysis.  

Proteins identification by mass spectrometry – TripleTOF 5600: Each sample (5 μL) was directly 

loaded at 400 nL/min onto an equilibrated HPLC column. The peptides were eluted from the 

column over a 90 min gradient generated by a NanoLC-Ultra 1D plus (Eksigent, Dublin CA) nano-

pump and analyzed on a TripleTOF 5600 instrument (AB SCIEX, Concord, Ontario, Canada). The 

gradient was delivered at 200 nL/min starting from 2% acetonitrile with 0.1% formic acid to 35% 

acetonitrile with 0.1% formic acid over 90 min followed by a 15 min clean-up at 80% acetonitrile 

with 0.1% formic acid, and a 15 min equilibration period back to 2% acetonitrile with 0.1% formic 

acid, for a total of 120 min. To minimize carryover between each sample, the analytical column 

was washed for 3 h by running an alternating sawtooth gradient from 35% acetonitrile with 0.1% 

formic acid to 80% acetonitrile with 0.1% formic acid, holding each gradient concentration for 5 

min. Analytical column and instrument performance were verified after each sample by loading 

30 fmol bovine serum albumin (BSA) tryptic peptide standard (Michrom Bioresources Inc. 

Fremont, CA) with 60 fmol α-casein tryptic digest and running a short 30 min gradient. TOF MS 

calibration was performed on BSA reference ions before running the next sample to adjust for 

mass drift and verify peak intensity. The instrument method was set to data dependent 

acquisition (DDA) mode, which consisted of one 250 milliseconds (ms) MS1 TOF survey scan from 

400–1300 Da followed by 20 100 ms MS2 candidate ion scans from 100–2000 Da in high sensitivity 

mode. Only ions with a charge of 2+ to 4+ that exceeded a threshold of 200 cps were selected for 

MS2, and former precursors were excluded for 10 s after one occurrence. 

Proteins identification by mass spectrometry – Orbitrap Fusion: Peptide samples were 

separated by online reversed-phase (RP) nanoscale capillary liquid chromatography (nanoLC) and 
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analyzed by electrospray mass spectrometry (ESI MS/MS). The experiments were performed with 

a Dionex UltiMate 3000 nanoRSLC chromatography system (Thermo Fisher Scientific) connected 

to an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) equipped with a 

nanoelectrospray ion source. Peptides were trapped at 20 μl/min in loading solvent (2% 

acetonitrile, 0.05% TFA) on a 5mm x 300 μm C18 pepmap cartridge pre-column (Thermo Fisher 

Scientific) during 5 minutes. Then, the pre-column was switch online with a self-made 50 cm x 75 

um internal diameter separation column packed with ReproSil-Pur C18-AQ 3-μm resin (Dr. Maisch 

HPLC) and the peptides were eluted with a linear gradient from 5-40% solvent B (A: 0,1% formic 

acid, B: 80% acetonitrile, 0.1% formic acid) in 90 minutes, at 300 nL/min. Mass spectra were 

acquired using a data dependent acquisition mode using Thermo XCalibur software version 

3.0.63. Full scan mass spectra (350 to 1800m/z) were acquired in the orbitrap using an AGC target 

of 4e5, a maximum injection time of 50 ms and a resolution of 120 000. Internal calibration using 

lock mass on the m/z 445.12003 siloxane ion was used. Each MS scan was followed by acquisition 

of fragmentation spectra of the most intense ions for a total cycle time of 3 seconds (top speed 

mode). The selected ions were isolated using the quadrupole analyzer in a window of 1.6 m/z and 

fragmented by Higher energy Collision-induced Dissociation (HCD) with 35% of collision energy. 

The resulting fragments were detected by the linear ion trap in rapid scan rate with an AGC target 

of 1E4 and a maximum injection time of 50ms. Dynamic exclusion of previously fragmented 

peptides was set for a period of 20 sec and a tolerance of 10 ppm. 

Mass spectrometry data were stored, searched, and analyzed using the ProHits laboratory 

information management system (LIMS) platform (Liu et al. 2016). Within ProHits, AB SCIEXWIFF 

files were first converted to an MGF format using WIFF2MGF converter and to an mzML format 

using ProteoWizard (v3.0.4468) (Kessner et al. 2008) and the AB SCIEX MS Data Converter (V1.3 
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beta). The mzML files were searched using Mascot (v2.3.02). The spectra were searched with the 

RefSeq database (version 57, January 30th, 2013) acquired from NCBI against a total of 72,482 

human and adenovirus sequences supplemented with common contaminants from the Max 

Planck Institute (http://141.61.102.106:8080/share.cgi?ssid=0f2gfuB) and the Global Proteome 

Machine (GPM; http://www.thegpm.org/crap/index.html). The database parameters were set to 

search for tryptic cleavages, allowing up to two missed cleavage sites per peptide with a mass 

tolerance of 40 ppm for precursors with charges of 2+ to 4+ and a tolerance of +/- 0.15 amu for 

fragment ions. Deamidated asparagine and glutamine and oxidized methionine were allowed as 

variable modifications. 
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SUPPLEMENTARY TABLES 

Table S1: related to Figures 2 and 3 and Supplementary figures S3, S4 and S5 
Quality control FASTQC 
Annotated Peak Calls- FLAG, H4ac, H3K27me3  
Annotated partitions of EPC1-PHF1 Flag peaks 
Flag enrichment (Row means) at EPC1-PHF1 H4ac peaks 
Microarray Differential Expression analysis 
EPC1-PHF1-HA CUT and RUN peak calls 
List of overlapping peaks between EPC1-PHF1 FLAG ChIP-seq and EPC1-PHF1 HA CUTnRUN- seq  
Antibodies used 
ChIP-qPCR primers used 
 
 
Table S2: related to Figure 5 and Supplementary figure S11 
JAZF1-SUZ12- K562 -RNA-seq-differential expression analysis 
JAZF1-SUZ12- K562 -RNA-seq-GO enrichment 
JAZF1-SUZ12- K562 -RNA-seq- ChEA-ENCODE TF enrichment 
JAZF1-SUZ12- K562 -RNA-seq- Encode Histone Mark enrichment 
 
 
Table S3:  related to Figure 5 and Supplementary figure S12 
Star fusion prediction of fusions 
ESS patient sample-RNA-seq-differential expression analysis, TPM, DE 
Paired Endometrial cancer vs normal GSEA : GO , KEGG, Hallmark Pathways, ChEA-Encode TF, 
Encode Histone mark. 
Uterus Tumor Vs Endometrial Normal GSEA: GO, KEGG, Hallmark, ChEA, histone mark 




