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1 Methods

1.1 Study design and population expanded

Training and testing (internal) The study incorporated training and testing data, from 01 April 2020 to 01 April 2021,
capturing both the first surge (23 March 2020 - 30 May 2020) and second surge (07 September 2020 – 01 April 2021) of the
COVID-19 pandemic in the UK, in line with and our original studies available dates (UK Office for national statistics). In total
51,157 patient admissions were recorded and incorporated over this period.

Validation (internal) The internal validation was performed on data from the same 5-hospital group in London in the period
immediately following surge 2, to the latest available data (02 April 2021 - 13 August 2021), incorporating 43,375 patient
admissions.

Validation (external) External validation was also performed on an internationally separate university-affiliated geriatric
hospital in Geneva during Switzerland’s first surge of COVID-19 (01 February 2020 – 31 May 2020), using 40,057 patient
admissions.

Study population inclusion) In all datasets, all inpatients with a bed allocation were included in the formation of the dataset
(i.e. construction of the contact networks, recording of contextual background data). However, only inpatients spending three or
more consecutive days in the hospital were included as samples to predict HOCI versus control.

1.2 Infection prevention and control measures

The Infection Prevention and Control (IPC) measures employed by the London hospital trust aligned with national recommen-
dations1. A comprehensive strategy of inpatient COVID-19 screening was deployed which included admission screening on
day 3-5, day 7 and weekly thereafter (changing to daily for the first seven days following admission date, from 01 December
2021). Throughout the pandemic, a robust surveillance programmev from Price and Mookerjee et al.2 was employed to identify
HOCI cases, with HOCIs triggering full IPC investigations, patient, and contact isolation, as well as screening. During the first
surge in Geneva, syndromic surveillance of hospitalised patients was conducted, as well as ad-hoc screening of patients during
outbreak management. In addition, patients were screened prior to transfer between hospital sites as of April 2020.

1.3 Background spatial information

5-hospital group in London The 1,200 bed hospital group contained 96 wards, a mixture of nightingale, bay, and side-room
layouts. These wards were located over different 17 specialities and 19 buildings3. Moreover, comprising of historical buildings,
the architecture spans multiple centuries of building design.

1.4 Patient pathways as trajectories

We consider the spatial temporal pathway histories of N hospital patients represented by a set of trajectories T =
{

T1,T2,T3, ...,TN
}

.
Each trajectory Tn is a time-ordered set of spatial-temporal locations

Tn =
{

l1, l2, l3, ..., lkn

}
, n = 1, . . . ,N , (1)

where each element li = (vi, ti) is a tuple that contains the spatial location (hospital room, hospital ward, or hospital building)
vi ∈V visited by the individual at time ti.

We use the spatial-temporal locations to identify patient contacts and construct the contact network that forms the basis of this
manuscript.
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1.5 Contact definition

We extract the set of all contacts, C, between N patients. Formally, we define a contact between two patients when they coincide
at a location, i.e when their trajectories intersect i.e. Tn∩Tm 6= /0. Each contact event then takes the form,

c = (ni,n j, t), (2)

where ni and n j indicate patients who came into contact at time t.

‘Coincidence’ of patients can be defined in different ways, and we investigate three alternative measures of contact: (1) The first
requires two patients to reside simultaneously in the same room, (2) the second requires two patients to reside simultaneously
in the same ward, and (3) the third requires two patients simultaneously in the same building. All definitions were used by the
hospitals epidemiology team to capture different potential routes of transmission.

1.6 Time-varying contact network

The set of all contacts C forms the basis of a time-dependent contact network G(t) = (N(t),E(t)). Edges E(t) are a subset of
the total contacts E(t) ⊂C, for all contacts c occurring at time t. We compute time-dependence of the contact network by
including all edges present within a relevant time window 4. Thus, the windowed time varying contact network G(tn,...,tm),
captures all contact events occurring between tn and tm. Moreover, since G(tn,...,tm) can capture multiple interactions between
two individuals, we consider individual realisations as a weighted graph, with edges weighted by the duration E(tn,...,tm)

i j = {wi j}
of contact between individuals ni and n j during tn and tm. For example, for a given time window, if two patients spent three
days in the same spatial location then = {wi j}= 3. For a full introduction into time-varying networks we direct the reader to a
review by Holme and Saramäkid 5.

1.7 Network Centrality measures

Here we outline different measures of network centrality utilised in this study. For an expanded introduction, we direct the
reader to Newman 6. Each of the below equations is applied to every windowed time-varying contact network, and the resulting
value provides a unique variable of an individual ni between tn and tm.

Analysis was primarily performed in Python7 and NetworkX8, and the final release code also makes use of the igraph9 R
package.

Degree The degree of a node ni is the number of edges to other nodes n j in the network G, given as deg(ni).

Degree centrality The degree centrality of a node ni is the fraction of nodes connected to ni among all other nodes in the
network G:

Cdeg(ni) =
deg(ni)

N−1
. (3)

Closeness centrality The closeness centrality10 of a node ni is the reciprocal of the average shortest path distance to all
other nodes n j which are reachable:

Cclose(ni) =
N−1

∑n j d(n j,ni)
, (4)

where d(n j,ni) is the shortest path distance between nodes n j and ni.

PageRank centrality Given the adjacency matrix A of the graph G, the PageRank11 centrality xi of node ni is given by:

xi = α ∑
k

ak,i

dk
xk +β , (5)

where α and β are constants and dk is the out-degree of node k if such degree is positive, and dk = 1 if it is zero.
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Local clustering coefficient For the local Clustering coefficient of a node ni
12, 13, we first consider only its immediate

neighbourhood, Πi, i,e. all nodes that are directly connected to ni,

Πi = {ni : ei j,E ∧ ei j ∈ E}. (6)

The size of Πi, is the number of nodes in Πi, i.e. ki = |Πi|, and the localised clustering coefficient for an undirected graph is
then finally computed as the ratio of number edges among nodes in Πi and the maximally possible number of edges among
them:

Cclust(ni) =
2|{e jk : n j,nk ∈Πi,e jk ∈ E}|

ki(ki−1)
, (7)

where ki is the number of neighbours of a node.

Betweenness centrality The Betweenness centrality14 of a node ni is the sum of the fractions of all pairs of shortest paths
that pass through it:

Cbetween(ni) = ∑
s,t,∈N

σ(s, t|N j)

σ(s, t)
. (8)

where σ(s, t) is the total number of shortest paths and σ(s, t|n j) the number of shortest paths passing through nodes other than
ni.

K-core We employ a general definition of centrality as given by the k-core number of node ni
15. The K-core number is

obtained via a k-core decomposition over G. Specifically, this obtained by iteratively removing nodes with degrees smaller than
k, until the minimum degree in the network is k. The K-core value of a node ni is then given by,

kc(ni) = k, (9)

if it belongs to the k-core, but not in the (k+1)-core. According to this measure, the most central nodes will have the highest
k-core number.

1.8 Network centrality with respect to infectious nodes

In addition to the measures of network centrality described in the previous section, we also introduce two new measures that we
adapt from the degree and closeness centrality, respectively. Instead of capturing a node’s centrality with respect to all other
nodes in the network, we consider their centrality with respect to only the infectious nodes. These adapted centrality measures
therefore directly consider the background distribution of infections, as well as the position of an individual within the contact
network in relation to potential disease sources.

Infectious Degree. We define the infected degree of a node ni by the number of connected nodes that are also in the infectious
set I:

degn j∈I(ni). (10)

Infectious Degree centrality. Much like the degree centrality of a node, the infectious degree considers the immediate local
connectivity of node ni. However, instead of considering all other immediate contacts, the Infectious Degree only counts
connections to immediate contacts n j if they are in the set of infected patients I:

C′deg(ni) = degn j∈I(ni). (11)

Infectious Closeness centrality. Similarly, the infectious closeness centrality introduces an adaption to the closeness
centrality by restricting the measure to consider only the infectious set I. Thus, infectious closeness centrality only considers
the reciprocal of the average shortest path distance to all other nodes n j that are reachable and in the infectious set I:

C′close(ni) =
N−1

∑n j∈I d(n j,ni)
. (12)
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1.9 Global network metrics

Additional to the above node-centric measures we also extracted variables of the entire graphs16. Global network metrics can,
for example, give insight into how a pathogen will spread over the connections17.

Coefficient of variation We quantified heterogeneity in the number of contacts of each individual by the coefficient of
variation (CV) in the degree distribution. The CV can, for example, indicate the presence of ‘super-spreaders’ (a minority of
individuals who infect many others18) and can indicate how fast a disease will spread directly across a contact network19, 20.
We compute the CV of a graph G as the ratio of standard deviation, σ , over mean, µ , of the degree distribution:

CV =
σ

µ
. (13)

Global Clustering coefficient The global clustering coefficient is a measure of how tightly connected nodes are across the
whole graph and is well-known indicator of disease spreading dynamics21. For example, a high global clustering coefficient
indicates a fast spread of the disease 21. For an undirected graph G, the clustering coefficient is given by,

C(G) =
∑i, j,k Ai jA jkAki

∑i ki(ki−1)
, (14)

where A is the adjancy matrix of G, and ki is given by:

ki = ∑ j Ai j. (15)

1.10 Dynamic forecasting framework

To incorporate dynamic variables of contact into a prediction framework, we study rolling 14-day windows (the upper bound
incubation period of COVID-1922) and forecast patient infection over the subsequent seven days. Over each temporal window,
we construct a contact network G capturing all contact between individuals N between tn and tm.

From the series of successive contact networks G(1), . . . , G(T ) , we engineer their corresponding variable matrices X (1), ...,X (T )

that include hospital environmental variables, patient clinical variables, and several notions of network centrality computed
from the time-varying contact networks. These variable matrices are then used to predict the vectors of detected infections
Y (1), . . . , Y (T ) over the subsequent seven days. The final step is then taking the samples from all time-windows, and aggregating
them into a single data-set, X and Y , for model construction.

1.11 Data samples

A data sample is constructed for each patient present in a given time window and labelled as either HOCI or control, depending
on whether a patient did or did not become infected over the subsequent seven days respectively. Since COCI cases were
most likely infected prior to hospital admission, we do not include them in the prediction dataset (however, they do exist as
infectious patients within the contact network and contributing to background environmental variables). Given the rolling
window approach, a single patient can appear multiple times in the final aggregated dataset. Therefore, some HOCI cases
will initially be labelled as controls if they have spent time in the hospital without being SARS-CoV-2–positive during the
forecasting period.

1.12 Univariate analysis statistical correction

Univariate analyses of variables were conducted over the data samples by grouping and averaging variables across patients as a
form of statistician correction23, 24. This correction thus meant that each patient is represented by a single data-point in the
analysis, as apposed to multiple, conferring to their appearance across different time windows. Statistical testing was then
performed using either the Mann-Whitney25 or the Chi-squared test26, and reported using a p<0.05 significance threshold.
Implementation was performed using the compareGroups R package27.
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Figure S1. Overview of forecasting framework. Patient pathways are extracted from electronic health records which
specify the locations each patient has visited over the duration of their hospital stay. Pathways are overlaid with COVID-19
testing results, capturing the space-time positions of patients that tested positive for COVID-19. Forecasting is based on
extracting individual patient clinical variables (fixed) and hospital contextual variables (dynamic) during a defined time
window, as well as variables capturing the centrality of a patient within the different contact networks (dynamic). We iterate
variable extraction over multiple time windows and use the cumulative information for model training and predictions.
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1.13 Statistical models

In our study, we implemented and compared the performance of the various common machine learning classifier models which
have been used in previous studies. Tree based classifiers have proven themselves to be highly predictive across a wide range of
medical prediction problems, hence we investigated three tree based classifiers: (i) the XGBoost model28, (ii) Boosted decision
trees, and (iii) a Random forest classifier29. We also investigated a Logistic regression model, which was fitted using a LASSO
regression framework29, a support vector machine (SVM)30, as well as Neural network models31, which have all shown varying
levels of efficacy in healthcare prediction tasks. As further validation and as an additional benchmark we used two simpler, but
still effective, prediction models, namely the Naive Bayes classifier and the K-nearest neighbour classifier29.

All models were implemented using R32 from the Caret33, and XGBoost34 packages. Visual plotting was done using ggplot2 35.

1.14 Model tuning

All model hyper parameters where selected using a Bayesian optimiser36 via optimising 5-fold cross validation AUC-ROC
performance over the training dataset. As opposed to an exhaustive, grid, or random search, Bayesian optimisation utilises
results from prior evaluations to inform subsequent parameter selections, and identify optimal combinations. We used the
ParBayesianOptimization in R 37 to implement Bayesian optimisation with a Gaussian Process using the Expected Improvement
acquisition function36. In order to identify the optimal hyper parameters over models with differing numbers of parameters and
complexity of search spaces, we performed subsequent interactions until no performance increase was observed.

For each model, the following parameters below hyper parameters were included in the optimisation:

• XGBoost: max_depth, min_child_weight, subsample, colsample_bytree, gamma_param.

• Random Forest: mtry, ntree.

• Boosted decision trees: n.trees, (interaction.depth, shrinkage, n.minobsinnode.

• Logistic regression (LASSO): alpha, lambda.

• SVM: sigma, C.

• Neural network: size, decay.

• Naive Bayes classifier: fL, usekernel, adjust.

• K-nearest neighbour: k.

1.15 Collapsed performance metrics

To account for any bias based on the number of predictions made per patient (i.e. the longer a patient stays in hospital, the
greater the number of forecasts produced), we collapsed each confusion matrix down, grouping the predictions by single
patients. Specifically, any prediction of a HOCI for a patient who had not been a HOCI would be a False Positive; anyone
prediction labelled as a HOCI was considered a True Positive if they had tested positive in at least one of the subsequent 7-day
forecasting horizons. Similarly, controls consistently predicted controls were a single True Negative, and False Negative was
any control predicted HOCI at least once. This operation is, in essence, a collapsing of the original confusion matrix and results
in one recorded prediction to evaluate over, even if a patient has been in the hospital over multiple time windows.

Balanced accuracy, Sensitivity, Specificity, Positive Predicted Values, Negative Predicted Values, and both the Positive and
Negative Likelihood Ratios could then be computed typically over the reduced confusion matrix.

7/19



1.16 Data pre-processing

We partitioned our data-set into a 70-30 split, using the initial 70% of samples for model training, and retained 30% for testing.
Over the training set, a 5-fold cross validation strategy was used for model fitting and comparison. To ensure no bias in the
data, we also performed a patient aware data split, ensuring samples from a single patient could not appear in both the train and
test set, and additionally a patient could not appear simultaneously in both the train and validation sets during cross validation.

To address the small proportion of infected samples relative to non-infected samples we employed a sampling strategy, which
re-balanced the training data-set. Specifically, we chose an under-sampling strategy, avoiding oversampling as a means to
balance our data to prevent over-fitting and to reduce computational overheads 38.

1.17 SHAP Values

We computed SHAP values 39 to rank the variable contributions to model prediction outputs (SHAP values computed as
specified in Liu and Just et al.40). SHAP originates in game theory, explaining how predictions change when a particular
variable is removed from the model. A SHAP value’s magnitude and direction give direct insight into whether a variable
contributes to a certain class of predicted labels for each given sample. As well as computing SHAP values for a sample and
variables combinations, SHAP values can also estimate variable importances by aggregating results across variables.

1.18 Variable selection and ranking

To rank variables and eliminate co-linearity, we employed a recursive variable elimination and cross-validation strategy which
performs selection by initially starting with a full model and iteratively removing variables based on their importance41.
We followed the implementation in ref41, however, to suit our data we: (i) replaced the Random Forest classifier with an
XGBoost model, since it’s performance was highest in our exploratory model comparison; (ii) used SHAP values39, as a less
biased method to attribute variable importance. Finally we investigated two selection criteria, firstly one based on the overall
maximisation of cross-validation AUC, and secondly, the maximisation of cross-validation AUC for models below a variance
inflation factor (VIF)42 threshold of 5. Since a VIF of above 5 would suggest redundancy in variables42, a marginal loss in
cross validation performance could be tolerated for a more concise and explainable model.
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2 Results

2.1 Patient training and testing inclusion

Patients to forecast infections

Patients to generate background variables 

Eligible patients
(N=51,157) 

Positive test result 
for SARS-CoV-2 

(N=3,439) 

COCI: Positive SARS-CoV-2 
test ≤ 2 days in hospital

(N=2,950) 

No positive test result 
for SARS-CoV-2 

(N=47,718) 

HOCI: Positive SARS-CoV-2 
test ≥ 3 days in hospital

(N=489) 

non-HOCI: Consecutive length 
of stay ≥ 3 days in hospital

(N=21,087) 

non-COCI: Consecutive length 
of stay ≤ 2 days in hospital

(N=26,631) 

1 

Figure S2. Patient dataset inclusion diagram. Patients in hospital two days or fewer only contributed to background
variables, whereas patients in hospital three or more days are part of both the generation of background variables and the
forecasting dataset.

2.2 Study periods comparison

We compared the epideomology of in hospital COVID-19 between UK surges 1, and surge 2 across the 5 hospital group (Table
S1). We also provide an incluision of both the data post surge 2 from the UK which was used for internal validation, as well as
Geneva surge 1 used for the external validation. Information regarding COVID-19 variants sourced from the Sanger institute.
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Table S1. Comparison of datasets. Each dataset was analysed and compared between periods. This included a comparison
of the case time series, background hospital contextual statistics, and then contact networks (taken as the median local
measurements, or overall global metrics).

Variable UK Surge 1 UK Surge 2 UK post Surge 2 Geneva
(23/03/2020 –
30/05/2020)

(07/09/2020 –
31/03/2021)

(02/04/2021 –
10/08/2021)

(01/02/2020 –
31/05/2020)

Time series case analysis
Day length 72 206 132 121
HOCIs 167 406 186 138
COCIs 940 1870 1260 143
Daily HOCI proportion 15.1% 17.8% 12.9% 51.8%
Correlation (Lag 0) 0.59; 5.8e-08 0.79; 1.1e-44 0.33; 8.4e-05 0.57; 1.7e-05
Correlation (Lag 5) 0.53; 4.3e-06 0.74; 1.5e-36 0.31; 4.3e-04 0.52; 2.3e-04
Average Alpha variant
prevalence 0% 59.30% 27.90% n/a

Average Delta variant
prevalence 0% 1.10% 71.10% n/a

Hospital contextual statistics
Total patients 7,321 33,975 43,375 40,057
COVID-19 prevalence 15.10% 6.70% 3.30% 0.70%
Median LoS 2 20 23 3
Contact network analysis
Room
Median degree 3 4 5 29
Median closeness 0.01 0.06 0.6 0.7
Clustering coefficient 0.56 0.58 0.59 0.8
Coefficient of variation 0.79 0.75 0.76 1.055
Ward
Median node degree 18 23 24 n/a
Median node closeness 0.14 0.18 0.19 n/a
Clustering coefficient 0.59 0.63 0.62 n/a
Coefficient of variation 0.80 0.78 0.79 n/a
Building
Median node degree 57 70 76 n/a
Median node closeness 0.29 0.30 0.31 n/a
Clustering coefficient 0.65 0.66 0.70 n/a
Coefficient of variation 1.02 1.13 1.12 n/a
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2.3 COCI versus HOCI

R = 0.74, p < 0.01
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Figure S3. Correlation between COCI and HOCI time series. The figure shows the correlation between COCI and HOCI
during the training and testing period (23 March 2020- 31 March 2021). Each time series comprises counts of newly identified
COVID-19 cases amongst patients and are labelled according to COCI/HOCI definitions.
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2.4 Time-varying contact network summary
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Figure S4. Summary statistics of time-varying contact networks. For all contact networks (room/ward/building) we
computed summary statistics using a one week window (the total number of connected patients, average degree, number of
connected components, maximum component size, average component size, coefficient of variation, and the clustering
coefficient).
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2.5 Statistical model selection
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Neural network

Naive bayes

Logistic regression

Boosted decision trees

Random forest

XGBoost

0.80 0.84 0.88

Cross validation AUC

M
od

el

Figure S5. Performance comparison by statistical models. Each model (see section 1.13) was examined using 5-fold
cross validation over the training data, and tuned with a Bayesian optimisation strategy (see section 1.14). The top three models
were all based on decision trees (coloured purple), with the best performing model being XGBoost. For the final reported
model in the main manuscript, we thus focus exclusively on XGBoost.
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2.6 Model calibrations
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Figure S6. Callibration plots for test (London) data models by variable set. The smoothed true probability of actual
outcomes of each group is plotted against the predicted probabilities43. A perfectly calibrated model would align to the
45-degree line. In terms of performance, the models built on clinical variables alone showed non-accurate calibration. In
contrast, the contextual, the network variables (room/ward/building) in addition to the risk factor models showed accurate
calibration.
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Figure S7. Callibration plots for validation (Geneva) data models by variable set. The smoothed true probability of
actual outcomes of each group is plotted against the predicted probabilities43. A perfectly calibrated model would align to the
45-degree line. Comparatively, the contextual risk factors showed poorer calibration than the network room-risk factors.
However, the combined network and contextual risk factor model demonstrated the most accurate calibration in the Geneva
dataset.
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Figure S8. Callibration plots for validation (London) data models by variable set. The smoothed true probability of
actual outcomes of each group is plotted against the predicted probabilities43. A perfectly calibrated model would align to the
45-degree line. The contextual risk factors showed very poor calibration. The network room-risk factors, and the combined
network and contextual risk factor models, on the other hand, demonstrated more accurate calibration, with the combined
model showing higher accuracy in terms of calibration, as did it also in the London test dataset.
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2.7 Model performance for different HOCI definitions

For each of the main variable sets (All-variables, clinical variables, contextual variables, and all-networks variables) we broke
down the performance by the three HOCI categories (Definite/Probable/Indeterminate) which reflect liklihood of hospital
acquisition. Together the 465 HOCIs broke down into 150 definite cases, 122 probable cases, and 193 indeterminate.

Across the full model using all variables, performance stratified by HOCI definition (Indeterminate/Probable/Definite) showed
a general increase in the predictability of HOCIs with the confidence in hospital acquisition (Table S2). Performance broken
down model variable sets (Clinical, Environmental, and Network) also exhibited an increasing performance by the confidence
in HOCI. For example, the clinical variable models only slightly better predicting indeterminate-HOCI than random (0.51
AUC-ROC) but increasing to 0.70 AUC-ROC for definite-HOCI. Similarly, despite the environmental variable set performing
well for probable-HOCI and definite-HOCI, it performed no better than random for indeterminate-HOCI (0.5 AUC-ROC).

Across all HOCI definitions, models based exclusively on network variables achieved jointly the highest, or the highest
performance. Overall, the consistently higher performance of models using solely network variables suggests that contact
network variables alone intrinsically encompass risk non-attributable to more standard variables for disease prediction.

Table S2. Summary of London-test set performance by HOCI-type. Performance breakdown is shown using alternative
variable sets for predicting all HOCI cases, indeterminate-HOCI, probable-HOCI and definite-HOCI.

Variable set

AUC-ROC (95% CI)

(Indeterminate/
Probable/
Definite)

Balanced Accuracy

(Indeterminate/
Probable/
Definite)

Sensitivity

(Indeterminate/
Probable/
Definite)

Specificity

(Indeterminate/
Probable/
Definite)

All
0.72 (0.6-0.84)/
0.87 (0.82-0.92)/
0.91 (0.88-0.94)

0.65/
0.80/
0.86

0.60/
0.89/
0.97

0.70/
0.72/
0.75

Clinical
0.51 (0.39-0.63)/
0.6 (0.53-0.67)/
0.7 (0.66-0.74)

0.54/
0.66/
0.64

0.54/
0.66/
0.64

0.31/
0.31/
0.33

Contextual
0.5 (0.38-0.62)/
0.75 (0.68-0.82)/
0.89 (0.86-0.92)

0.43/
0.77/
0.81

0.43/
0.77/
0.81

0.64/
0.66/
0.68

Network
0.73 (0.61-0.85)/
0.89 (0.84-0.94)/
0.91 (0.88-0.94)

0.70/
0.80/
0.86

0.70/
0.80/
0.86

0.70/
0.72/
0.75
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2.8 Variable selection ranking

Table S3. Variable elimination results over all variables. We present the top ten variables as ranked in order of inclusion
via the variable elimination procedure.

variable order variable Cross validation AUC
1 Background hospital COVID-19 prevalence 0·81
2 Infected closeness centrality (ward) 0·84
3 Infected degree centrality (ward) 0·84
4 Background hospital HOCI prevalence 0·86
5 Infected degree (building) 0·86
6 Infected degree centrality (room) 0·87
7 Infected degree (ward) 0·88
8 Clustering coefficient (ward) 0·88
9 K-core number (building) 0·88
10 Infected closeness centrality (building) 0·88

Table S4. Variable elimination results over all risk factor variables. We present the top ten variables as ranked in order of
inclusion via the variable elimination procedure.

Feature order Feature Cross validation AUC
1 Background hospital COVID-19 prevalence 0·82
2 Infected closeness centrality (ward) 0·82
3 Infected degree centrality (ward) 0·84
4 Background hospital HOCI prevalence 0·86
5 Infected degree centrality (room) 0·88
6 Infected degree (building) 0·88
7 Clustering coefficient (ward) 0·88
8 K-core number (ward) 0·88
9 Age 0.89
10 Infected degree centrality (building) 0·89

Table S5. Variable elimination results over hospital contextual risk factors and network-ward risk factors. We
present the top ten variables as ranked in order of inclusion via the variable elimination procedure.

Variable order Variable Cross validation AUC-ROC
1 Background hospital COVID-19 prevalence 0·81
2 Infected degree centrality (ward) 0·85
3 Infected closeness centrality (ward) 0·85
4 Background hospital HOCI prevalence 0·85
5 Infected degree (ward) 0·87
6 Clustering coefficient (ward) 0·87
7 Total hospital bed occupancy 0·87
8 Closeness centrality (ward) 0·87
9 K-core number (ward) 0·87
10 Betweenness centrality (ward) 0·87
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