
Supplementary Note 1 Related works.
Dimension reduction algorithms are extremely popular for examining and processing biological
datasets1,2,3,4,5,6, and other types of scientific data such as radio frequency fingerprint data7, hyper-
spectral imagery8, and text documents9,10.

DR methods can generally be separated into two categories: local and global methods. Global
methods include principal components analysis (PCA)11, multidimensional scaling (MDS)12, and
non-negative matrix factorization (NMF)13, which aim mainly to preserve distances between pairs
of points. In scRNA-seq data analysis, these methods are often used as a preprocessing step (though
in this work we focus on data visualization rather than preprocessing).

Comparing to the global methods, local methods are more commonly used for direct visualiza-
tion of preprocessed biological data. Well-known examples of this category include Isomap14, Lo-
cal Linear Embedding (LLE)15, Laplacian Eigenmap16, and more recent methods such as t-SNE17,
UMAP18 and PaCMAP19. These methods aim to preserve local neighborhoods (that is, which points
are within the k nearest neighbors). Local methods typically preserve cluster structure, but may fail
to preserve the overall layout of clusters in the space, and we will give several examples throughout
this work of such cases.

The popular algorithm t-SNE17 interprets distances in high-dimensional space as probabilities
of whether the two points of interest should be neighbors. This approach aims to ensure that local
neighborhood structure is preserved. Then, during the projection to low dimensions, t-SNE ensures
that distances in the low-dimensional space follow a Student t-distribution with a single degree of
freedom. Forcing distances in the low-dimensional space to follow such a long-tailed distribution
avoids the crowding problem, which is when a large proportion of the distances are almost zero.

Myriad t-SNE variants have aimed to improve t-SNE by enabling faster running times, gaining
robustness to hyperparameter changes and improving global structure preservation e.g., ref20,21, and
multiple new algorithms have been created based on the framework of t-SNE. Prominent examples
that are used in computational biology include viSNE22, UMAP18, and Opt-SNE23. With a better
initialization created by unsupervised machine learning algorithms (such as spectral clustering) and
better loss functions, these algorithms improve global structure preservation and run-time efficiency,
though they do not completely solve these problems, as we will show.

Recent studies on DR algorithms shed light on how the loss function affects the rendering of
local structure24, and provide guidance on how to design good loss functions so that the local and
global structure can both be preserved simultaneously19.

Besides general DR methods, two other categories of methods are also used specifically for
scRNA-seq data analysis – 1) graph visualization methods and, 2) variational-inference based meth-
ods.

Graph visualization methods, such as ForceAtlas225 were originally designed to visualize graphs
instead of unstructured data. Recently, researchers have been applying these algorithms to k-Nearest
Neighbor graphs constructed on the scRNA-seq data, and generating visualizations. Notable variants
include SPRING26 and PHATE27.

Variational-inference-based methods build statistical models from scRNA-seq data, and assume
that gene expression, as measured by unique molecular identifier (UMI) counts, are controlled by
a few latent variables. The inferred latent variables are used for downstream analysis. Prominent
examples in this category include ZIFA28, ZINB-WaVE29, scVI1, scVIs2 and GLM-PCA30. The
focus of our proposed evaluation framework is the visualization performance of these algorithms.
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As a result, algorithms that are usually used as pre-processing methods that lead to more than three
dimensions, such as global methods and variational-inference-based methods, are not discussed in
detail and are not evaluated by the framework in this study. The use of DR methods for preprocessing
has been reviewed previously31.

Supplementary Note 2 Extra figures

(a) PaCMAP (good local and good global structure) (b) UMAP (good local but bad global
structure)

(c) PCA (bad local and good global
structure)

Supplementary Figure 1: Illustration of local and global structure preservation and non-preservation,
using the Kazer et al. 32 PBMC dataset. The three figures were generated from the same preprocessed
data with different DR algorithms (PaCMAP, UMAP or PCA). Boundaries on the figure were gener-
ated using k-nearest neighbors: for each background point on the 2D grid, color was assigned based
on the majority vote of the k nearest (k=20) data points. The dataset was pre-processed by PCA
with 70 PCs generated. Upper left: the PaCMAP visualization preserves both local structure and the
global structure. Upper right: UMAP does not preserve global structure well since the different sub-
types of DCs are placed separately. (kNN acc is k-nearest neighbors accuracy.) Lower: PCA does
not preserve local structure well, reflected by the low kNN (k=5) accuracy. Thus for PCA, points
from different classes are mixed together, resulting in unclear boundaries.

Supplementary Figure 1 shows DR results on the Kazer et al. 32 PBMC dataset with PaCMAP,
UMAP and PCA, and demonstrates different type of structures we discuss in Section 2.1 and Sec-
tion 2.2. Supplementary Figure 2 shows the DR results on the Kang et al. 33 dataset. Supplementary
Figure 3 shows DR results on the MNIST dataset, with the supervised kNN evaluation. Supplemen-
tary Figure 4 shows DR results of art-SNE on the Kazer et al. 32 HIV-infection PBMC dataset, Stuart
et al. 34 bone marrow dataset, and MNIST dataset.
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Supplementary Figure 2: Measuring global structure preservation with random triplet accuracy. Vi-
sualization of the Kang et al. 33 dataset. The triplet accuracy score (acc) is the random triplet accuracy
mentioned in Section 2.2. TriMap and PaCMAP achieve the highest level of global structure out of
all the DR algorithms.

Supplementary Note 3 Robustness of DR algorithm with differ-
ent runs

DR algorithms can behave differently under different random seeds based on the implementations.
To ensure the results we obtained are generally useful, we have perform our experiments on the
embeddings generated with five different random seeds for each algorithm. Nevertheless, it is still
necessary to provide a qualitative analysis on the robustness of each algorithm. Here in Supple-
mentary Figure 5, we choose to use the Kazer et al.32 dataset that is used for Figure 5 to perform a
qualitative analysis on the effect of different random seeds on t-SNE, UMAP, TriMap and PaCMAP.
From the results we can see that t-SNE, TriMap and PaCMAP are relatively consistent under the
selected implementations, whereas UMAP sometimes generates different embeddings. In addition,
UMAP fails to preserve the local structure of some clusters in some rare cases.
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Supplementary Figure 3: Measuring local structure preservation with kNN (k=5) supervised clas-
sification. Visualizations of MNIST dataset generated by different algorithms. The accuracy score
(acc) and decision boundaries were created by a kNN (k = 5) classifier, where 90% of the dataset
was used for the purpose of computing and visualizing decision boundaries (lighter color shades).
The remaining 10% of the data were points on which test accuracies were computed, using the 90%
of the data as possible neighbors (darker color shades). We conducted the experiment this way to be
consistent with the training/test split on the SVM experiment. Similar to the SVM experiment, here
ForceAtlas 2 does not preserve local structure well.

Supplementary Note 4 Notes on Implementation

Supplementary Note 4.1 Difference between t-SNE variants
The default openTSNE settings incorporate advice from art-SNE35, so except for perplexity, the
other hyperparameter settings are similar. The default openTSNE adopts a perplexity of 30, whereas
for art-SNE, the perplexity is a combination of 30 and n/100 where n is the sample size. For t-SNE,
we used the python-centric openTSNE implementation, whereas for art-SNE, we used the FIt-SNE
implementation that is more widely used in the biological domain. The reason for such choices is
because both implementations are widely used and they could have different behavior, so we include
both of them for experiments.

Supplementary Note 4.2 Version of software packages being evaluated
The packages used to preprocess the scRNA-seq data are Seurat and SCANPY. The packages used
to implement DR algorithms are open-TSNE v0.3.13 for t-SNE, FItSNE v1.2.1 for t-SNE with the
hyperparameters described in35(art-SNE), umap-learn 0.5.0 for UMAP, fa2 v0.3.5 for ForceAtlas2,

4



Supplementary Figure 4: art-SNE’s DR results using the Kazer et al. 32 HIV-infection PBMC dataset,
Stuart et al. 34 bone marrow dataset, and hand-written digit MNIST dataset.

PaCMAP 0.3.0 for PaCMAP, TriMap 0.1.0 for TriMap, and PHATE 1.0.7 for PHATE.

Supplementary Note 5 Local structure preservation evaluation
procedure and results

Supplementary Note 5.1 Local Supervised evaluation

Supplementary Table 1: Measuring local structure preservation with SVM supervised classification
(for datasets that possess class labels). SVM accuracy and standard deviation over 10 folds are
reported in the table. Here methods that focus on local structure, such as PaCMAP, t-SNE and art-
SNE, perform well. Bold is used for the best performance, italics is used when the result is not
significantly different from the best one (defined by a one-sided t-test with P value of 0.05). Mean
and standard deviation are computed over 5 repetitions.

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
DUO 4EQ 0.587 ± 0.000 0.758 ± 0.003 0.760 ± 0.002 0.676 ± 0.004 0.728 ± 0.008 0.729 ± 0.002 0.757 ± 0.009 0.657 ± 0.015
DUO 8EQ 0.610 ± 0.000 0.789 ± 0.003 0.784 ± 0.002 0.740 ± 0.001 0.784 ± 0.004 0.748 ± 0.009 0.807 ± 0.002 0.743 ± 0.005
KAZER 0.817 ± 0.000 0.936 ± 0.001 0.935 ± 0.000 0.918 ± 0.000 0.935 ± 0.003 0.938 ± 0.000 0.940 ± 0.002 0.921 ± 0.004
MURARO 0.663 ± 0.000 0.953 ± 0.001 0.953 ± 0.001 0.918 ± 0.000 0.946 ± 0.001 0.952 ± 0.001 0.958 ± 0.000 0.953 ± 0.003
KANG 0.733 ± 0.000 0.955 ± 0.002 0.952 ± 0.002 0.945 ± 0.000 0.953 ± 0.001 0.954 ± 0.001 0.957 ± 0.001 0.916 ± 0.004
STUART 0.460 ± 0.000 0.841 ± 0.002 0.837 ± 0.002 0.817 ± 0.001 0.837 ± 0.004 0.832 ± 0.002 0.848 ± 0.001 0.764 ± 0.012
ZHENG MOUSE 0.379 ± 0.001 0.840 ± 0.001 – 0.716 ± 0.000 0.802 ± 0.011 0.728 ± 0.000 0.791 ± 0.008 –
CAO 0.286 ± 0.000 0.742 ± 0.006 – 0.593 ± 0.000 0.741 ± 0.012 0.639 ± 0.003 0.720 ± 0.013 –
MAMMOTH 0.863 ± 0.000 0.943 ± 0.001 0.933 ± 0.000 0.867 ± 0.000 0.925 ± 0.012 0.894 ± 0.004 0.901 ± 0.016 0.861 ± 0.006
MNIST 0.470 ± 0.000 0.971 ± 0.000 0.950 ± 0.000 0.827 ± 0.000 0.972 ± 0.000 0.963 ± 0.001 0.975 ± 0.000 0.859 ± 0.017
HIERARCHICAL 0.738 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.963 ± 0.019

Supplementary Note 5.2 Local Unsupervised evaluation
The evaluation procedure for local unsupervised evaluation is as follows:

• Step 1) Find k nearest neighbors for each point in the preprocessed dataset. For each point
with index i, we have a set of neighbors N(i), which is of size k.

• Step 2) Perform dimension reduction on the xi’s. Here, we hope that the DR method keeps the
neighbor relationships from the high dimensional space.
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Supplementary Figure 5: DR algorithms’ performances for different runs. All the results were gener-
ated with default parameters for consistency. We can see that UMAP is not very robust, and in some
cases it has generated incorrect local structure (see circled red clusters on the first and the fourth
column.)

• Step 3) Find k nearest neighbors for each point in the low-dimensional space. For each point
with index i, we have a new set of neighbors N′(i).

• Step 4) Compute the proportion of intersection between the two sets N(i) and N′(i) for each
index i, and then compute the average proportion of neighbors preserved.

Supplementary Table 3 summarizes the preservation of neighborhood for different visualizations of
all datasets.

Supplementary Note 6 Running time table
Supplementary Table 4 contains the running time for each algorithm.
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Supplementary Table 2: kNN Accuracy for datasets that possess class labels, for k=5. kNN accuracy
and standard deviation over 10 folds are reported in the table. Similar to the SVM experiment, local
methods such as t-SNE, art-SNE and PaCMAP perform well. Mean and standard deviation are
computed over 5 repetitions. Bold is used for the best performance, italics is used when the result is
not significantly different from the best one (defined by a one-sided t-test with P value of 0.05).

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
DUO 4EQ 0.516 ± 0.000 0.747 ± 0.003 0.748 ± 0.002 0.690 ± 0.002 0.722 ± 0.008 0.713 ± 0.006 0.740 ± 0.004 0.661 ± 0.007
DUO 8EQ 0.568 ± 0.000 0.798 ± 0.003 0.801 ± 0.005 0.740 ± 0.003 0.772 ± 0.007 0.762 ± 0.004 0.788 ± 0.006 0.713 ± 0.007
KAZER 0.791 ± 0.000 0.932 ± 0.000 0.931 ± 0.001 0.922 ± 0.000 0.933 ± 0.000 0.933 ± 0.001 0.935 ± 0.001 0.918 ± 0.005
MURARO 0.662 ± 0.000 0.961 ± 0.001 0.961 ± 0.001 0.962 ± 0.001 0.957 ± 0.001 0.955 ± 0.002 0.961 ± 0.002 0.954 ± 0.002
KANG 0.711 ± 0.000 0.959 ± 0.001 0.959 ± 0.001 0.953 ± 0.000 0.957 ± 0.001 0.959 ± 0.001 0.962 ± 0.001 0.925 ± 0.005
STUART 0.420 ± 0.000 0.845 ± 0.001 0.845 ± 0.001 0.830 ± 0.001 0.837 ± 0.001 0.838 ± 0.001 0.846 ± 0.001 0.791 ± 0.003
ZHENG MOUSE 0.317 ± 0.000 0.901 ± 0.006 – 0.709 ± 0.004 0.818 ± 0.005 0.734 ± 0.011 0.774 ± 0.007 –
CAO 0.210 ± 0.000 0.839 ± 0.008 – 0.579 ± 0.008 0.773 ± 0.005 0.668 ± 0.002 0.743 ± 0.009 –
MAMMOTH 0.883 ± 0.000 0.984 ± 0.000 0.984 ± 0.000 0.961 ± 0.000 0.984 ± 0.001 0.966 ± 0.001 0.968 ± 0.004 0.960 ± 0.002
MNIST 0.414 ± 0.000 0.976 ± 0.000 0.972 ± 0.000 0.821 ± 0.001 0.973 ± 0.000 0.964 ± 0.001 0.976 ± 0.000 0.873 ± 0.015
HIERARCHICAL 0.719 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.988 ± 0.007

Supplementary Table 3: Unsupervised local evaluation; fraction of neighborhood (k=30 neighbors)
that are successfully preserved. Mean and standard deviation are computed over 5 repetitions. Bold
is used for the best performance, italics is used when the result is not significantly different from the
best one (defined by a one-sided t-test with P value of 0.05). Here, t-SNE and art-SNE preserve the
most neighborhood information from the high dimensional space.

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
ZHENG ERCC 0.090 ± 0.000 0.197 ± 0.001 0.182 ± 0.002 0.091 ± 0.001 0.175 ± 0.002 0.181 ± 0.002 0.142 ± 0.001 0.102 ± 0.001
ZHENG MONOCYTE 0.077 ± 0.000 0.146 ± 0.001 0.145 ± 0.000 0.086 ± 0.000 0.108 ± 0.001 0.116 ± 0.001 0.100 ± 0.001 0.081 ± 0.000
DUO 4EQ 0.089 ± 0.000 0.211 ± 0.001 0.210 ± 0.001 0.138 ± 0.000 0.163 ± 0.001 0.161 ± 0.001 0.150 ± 0.002 0.123 ± 0.002
DUO 8EQ 0.089 ± 0.000 0.211 ± 0.001 0.209 ± 0.000 0.138 ± 0.000 0.163 ± 0.001 0.161 ± 0.000 0.148 ± 0.001 0.123 ± 0.001
KAZER 0.011 ± 0.000 0.171 ± 0.000 0.149 ± 0.000 0.051 ± 0.000 0.072 ± 0.000 0.062 ± 0.000 0.061 ± 0.001 0.047 ± 0.001
MURARO 0.118 ± 0.000 0.518 ± 0.002 0.505 ± 0.001 0.381 ± 0.001 0.469 ± 0.002 0.446 ± 0.005 0.424 ± 0.004 0.323 ± 0.002
KANG 0.034 ± 0.000 0.217 ± 0.000 0.211 ± 0.000 0.118 ± 0.000 0.135 ± 0.001 0.134 ± 0.001 0.125 ± 0.001 0.104 ± 0.001
STUART 0.022 ± 0.000 0.176 ± 0.000 0.162 ± 0.000 0.083 ± 0.000 0.103 ± 0.001 0.095 ± 0.001 0.095 ± 0.001 0.082 ± 0.001
ZHENG MOUSE 0.002 ± 0.000 0.101 ± 0.001 – 0.021 ± 0.001 0.033 ± 0.001 0.024 ± 0.001 0.025 ± 0.000 –
CAO 0.001 ± 0.000 0.073 ± 0.001 – 0.011 ± 0.000 0.024 ± 0.001 0.014 ± 0.001 0.019 ± 0.001 –
MAMMOTH 0.462 ± 0.000 0.773 ± 0.001 0.787 ± 0.001 0.547 ± 0.000 0.709 ± 0.002 0.596 ± 0.004 0.640 ± 0.007 0.434 ± 0.004
MNIST 0.017 ± 0.000 0.345 ± 0.000 0.307 ± 0.000 0.081 ± 0.000 0.156 ± 0.001 0.123 ± 0.000 0.135 ± 0.000 0.109 ± 0.002
HIERARCHICAL 0.061 ± 0.000 0.148 ± 0.000 0.126 ± 0.000 0.108 ± 0.000 0.078 ± 0.000 0.086 ± 0.000 0.076 ± 0.000 0.077 ± 0.002

Supplementary Note 7 Details on Datasets
We picked ten published scRNA-seq transcriptomics datasets, shown in Supplementary Table 5.
Supplementary Figure 6 provides a visualization of all datasets generated by PaCMAP.

Besides the scRNA-seq datasets, we also used two well-studied general datasets to demonstrate
the visualization effects of DR algorithms, which are the Mammoth dataset39,40 and the MNIST
handwritten figure dataset41. In addition, we used two synthetic datasets, the Gaussian linear dataset
and the Three Stage Hierarchical Gaussians dataset (denoted as Hierarchical) for a deeper look at
the evaluation of global structure preservation. Details about the generation process are provided in
Section 2.2 and Supplementary Note 7.1 in the supplementary materials.

For preprocessing the scRNA-seq dataset, we use the packages Seurat42 and SCANPY43. The
preprocessing workflows using these packages are similar, and here we introduce how we do the
preprocessing using the Seurat package. The raw count matrix data was usually log-normalized us-
ing the “NormalizeData” function in the Seurat package, where the feature counts for each cell are
divided by the total counts for that cell, multiplied by a scaling factor and then log-transformed. The
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Supplementary Table 4: Running time comparison. Mean and standard deviation are computed over
5 repetitions. Bold is used for the best performance, italics is used when the result is not significantly
different from the best one (defined by a one-sided t-test with P value of 0.05). For each algorithm,
the running time is defined as the time required to transform the preprocessed dataset with shape
N × d into a low-dimensional embedding with shape N × 2, using the default convergence criteria
for each algorithm. Therefore, for ForceAtlas2, the nearest-neighbor graph construction time is also
included for fairness. For the Zheng Mouse and Cao datasets, art-SNE ran out of memory, and
PHATE cannot finish these datasets within a time limit of 24 hours.

DATASET SIZE T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
ZHENG ERCC 1015 00:00:11 00:00:08 00:00:01 00:00:05 00:00:01 00:00:01 00:00:02
ZHENG MONOCYTE 2612 00:00:15 00:00:10 00:00:04 00:00:10 00:00:03 00:00:02 00:00:32
DUO 4EQ 3994 00:00:17 00:00:12 00:00:06 00:00:17 00:00:04 00:00:03 00:00:39
DUO 8EQ 3994 00:00:16 00:00:12 00:00:06 00:00:17 00:00:04 00:00:03 00:00:39
KAZER 59286 00:02:14 00:19:15 00:02:19 00:01:01 00:01:04 00:00:38 00:08:56
MURARO 2282 00:00:17 00:00:14 00:00:03 00:00:09 00:00:03 00:00:02 00:00:31
KANG 13999 00:00:43 00:01:03 00:00:26 00:00:17 00:00:13 00:00:08 00:00:55
STUART 30672 00:01:26 00:05:35 00:01:12 00:00:34 00:00:32 00:00:20 00:01:51
ZHENG MOUSE 1306127 01:13:41 – 01:42:08 01:00:02 00:30:38 00:20:52 –
CAO 2058652 02:43:38 – 03:04:53 00:34:25 01:08:16 00:42:20 –
MAMMOTH 10000 00:00:58 00:00:45 00:00:15 00:00:20 00:00:09 00:00:06 00:00:45
MNIST 70000 00:03:05 00:33:37 00:02:29 00:01:05 00:01:16 00:00:49 00:13:11
HIERARCHICAL 62500 00:01:54 00:14:07 00:01:37 00:00:56 00:01:04 00:00:36 00:01:34

Supplementary Table 5: scRNA-seq datasets we used in this paper. Cells are from human tissue for
the datasets of Kazer et al. 32 , Kang et al. 33 , Stuart et al. 34 , Duò et al. 36 , Muraro et al. 37 .

ABBREVIATION AUTHOR TISSUE CELLS GENES NOTES

ZHENG ERCC 38 – N/A N/A SPIKE-IN ONLY; 1015 ENTRIES WITH 91 COLUMNS

ZHENG MONOCYTE 38 MONOCYTES 2612 14175 1 CELL TYPE; BIOLOGICAL NEGATIVE CONTROL

DUO 4EQ 38 PBMCS 3994 15568 4 EQUAL CLUSTERS OF FLUORESCENCE
36 ACTIVATED CELL SORTING

DUO 8EQ 38 PBMCS 3994 15716 8 EQUAL CLUSTERS OF FLUORESCENCE
36 ACTIVATED CELL SORTING

KAZER 32 PBMCS 59286 16980 AUTHORS COMPUTATIONALLY IDENTIFIED 7 TYPES

MURARO 37 PANCREAS 2282 18962 AUTHORS COMPUTATIONALLY IDENTIFIED 9 TYPES

KANG 33 PBMCS 13999 14053 AUTHORS COMPUTATIONALLY IDENTIFIED 13 TYPES

STUART 34 BONE MARROW 30672 17009 AUTHORS COMPUTATIONALLY IDENTIFIED 25 TYPES

ZHENG MOUSE 38 MOUSE BRAIN 1306127 27998 BENCHMARKING COMPUTATIONAL SPEED

CAO 3 MOUSE EMBRYO 2058652 26183 BENCHMARKING COMPUTATIONAL SPEED

normalization of the scRNA-seq counts is important to correcting for cell-to-cell differences in cap-
ture efficiency, sequencing depth, and other technical confounders44. Next, a group of, for example,
2000 genes with high variability, were selected as relevant features, using method “FindVariableFea-
tures” in the Seurat package, where feature variance is calculated on the values standardized using
their observed mean and expected variance. Then, the chosen features will be scaled and centered
using the “ScaleData” method in Seurat package. Finally PCA was applied to reduce the dimension-
ality of the dataset to at most 100 PCs using the “RunPCA” method in the Seurat package.

In Section 2.4, we study DR algorithms’ sensitivity to other preprocessing methods, specifically
GLM-PCA30. GLM-PCA is a preprocessing method that attempts to address the problems caused
by the arbitrary choice of pseudocount in the log-normalization, the use of highly variable genes and
the PCA step.

We added two simulated datasets that allow us to determine whether DR methods preserve known
structure. These are the Gaussian Linear Dataset and the Three-Stage Hierarchical Dataset.
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Supplementary Figure 6: Visualization of all datasets involved in this paper. All the results are
generated with PaCMAP, and colored with the original labels.

Gaussian Linear Dataset: Subplot (c) in Figure 4 shows DR results for the Gaussian Linear dataset.
The Gaussian Linear dataset was created to demonstrate different DR algorithms’ global structure
preservation capacity. The synthetic dataset is generated from 20 isotropic Gaussians existing in
50-dimensional space, separated by equal distances along a line. Although most DR algorithms
successfully capture the general left-to-right arrangement of the clusters, popular DR methods such
as t-SNE cannot capture this global information under default parameter settings.
Three-Stage Hierarchical Gaussians Dataset: Another hierarchical Gaussian dataset was created to
simulate the differentiation of cells, similar to previous reports19,35. This dataset consists of 125
micro clusters, arranged into 5 macro and 25 meso clusters. Each micro cluster includes 500 ob-
servations. See Supplementary Note 7.1 for the detailed data generation process. Subplot (d) in
Figure 4 summarizes the visualization results of different DR algorithms for this dataset. We can see
that t-SNE and UMAP fail to preserve the global structure since micro clusters from the same macro
clusters are not placed together, whereas PaCMAP and TriMAP successfully retain this information.
ForceAtlas2 performs very well here.
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Supplementary Note 7.1 Generation process for the Three-layer Hierarchical
Gaussians dataset

The Three-layer Hierarchical Gaussians dataset was first introduced by Wang et al. 19 to check the
ability of different DR algorithms to preserve multi-scale, complicated hierarchical structures. The
data generation process was as follows:

1. We sampled five macro cluster centers from a 50-dimensional multivariate normal distribution
with zero mean (050) and a covariance matrix that is equal to the identity matrix multiplied by
10000 (i.e., 10000× 150).

2. We then sampled five meso cluster centers for each of the macro clusters (5× 5 =25 in total)
using a 50-dimensional multivariate normal distribution whose mean values are the macro
cluster centers and whose covariance matrices are equal to the identity matrix multiplied by
1000 (i.e., 1000× 150).

3. We then sampled five micro cluster centers for each of the meso clusters (25 × 5 =125 in
total) using a 50-dimensional multivariate normal distribution whose mean values are the meso
cluster centers and whose covariance matrices are equal to the identity matrix multiplied by
100 (i.e., 100× 150).

4. Finally, for each of the one hundred and twenty five micro cluster centers, we sampled five hun-
dred observations from a 50-dimensional multivariate normal distribution whose mean values
are the micro cluster centers and whose covariance matrices are equal to 10× 150.

Supplementary Note 8 Global structure preservation results
We utilized the random triplet accuracy, distance Spearman correlation, k-nearest classes preserva-
tion, and centroid distance correlation to quantitatively evaluate the global structure preservation for
DR methods. Supplementary Table 6, Supplementary Table 7, Supplementary Table 8, Supplemen-
tary Table 9 summarize the result for different visualizations of all datasets.

Supplementary Table 6: Random Triplet Accuracy calculated over different visualizations of multi-
ple datasets. Mean and standard deviation are computed over 5 repetitions. Bold is used for the best
performance, italics is used when the result is not significantly different from the best one (defined
by a one-sided t-test with P value of 0.05). Traditional methods like PCA perform well.

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
ZHENG ERCC 0.605 ± 0.006 0.603 ± 0.006 0.582 ± 0.006 0.576 ± 0.003 0.576 ± 0.008 0.619 ± 0.008 0.598 ± 0.007 0.592 ± 0.008
ZHENG MONOCYTE 0.741 ± 0.003 0.688 ± 0.004 0.686 ± 0.002 0.728 ± 0.003 0.690 ± 0.005 0.725 ± 0.004 0.725 ± 0.004 0.723 ± 0.002
DUO 4EQ 0.804 ± 0.001 0.693 ± 0.003 0.697 ± 0.002 0.768 ± 0.001 0.691 ± 0.021 0.779 ± 0.002 0.767 ± 0.013 0.724 ± 0.009
DUO 8EQ 0.808 ± 0.003 0.696 ± 0.002 0.697 ± 0.003 0.768 ± 0.002 0.718 ± 0.017 0.784 ± 0.005 0.779 ± 0.003 0.729 ± 0.009
KAZER 0.820 ± 0.001 0.735 ± 0.010 0.762 ± 0.003 0.803 ± 0.001 0.750 ± 0.012 0.822 ± 0.000 0.791 ± 0.001 0.816 ± 0.002
MURARO 0.759 ± 0.004 0.694 ± 0.004 0.729 ± 0.005 0.777 ± 0.001 0.699 ± 0.009 0.757 ± 0.006 0.744 ± 0.006 0.753 ± 0.004
KANG 0.812 ± 0.001 0.727 ± 0.003 0.744 ± 0.004 0.777 ± 0.001 0.768 ± 0.012 0.792 ± 0.003 0.795 ± 0.003 0.794 ± 0.003
STUART 0.728 ± 0.001 0.711 ± 0.003 0.671 ± 0.005 0.713 ± 0.001 0.662 ± 0.009 0.769 ± 0.001 0.754 ± 0.001 0.727 ± 0.006
ZHENG MOUSE 0.719 ± 0.000 0.697 ± 0.000 – 0.719 ± 0.000 0.722 ± 0.003 0.768 ± 0.000 0.762 ± 0.003 –
CAO 0.704 ± 0.000 0.663 ± 0.001 – 0.702 ± 0.000 0.626 ± 0.012 0.756 ± 0.000 0.679 ± 0.003 –
MAMMOTH 0.962 ± 0.001 0.819 ± 0.001 0.830 ± 0.002 0.947 ± 0.001 0.807 ± 0.004 0.862 ± 0.001 0.869 ± 0.004 0.655 ± 0.006
MNIST 0.685 ± 0.001 0.623 ± 0.001 0.643 ± 0.001 0.635 ± 0.000 0.609 ± 0.003 0.603 ± 0.000 0.614 ± 0.006 0.619 ± 0.002
HIERARCHICAL 0.868 ± 0.001 0.693 ± 0.001 0.742 ± 0.003 0.842 ± 0.001 0.504 ± 0.008 0.648 ± 0.001 0.805 ± 0.002 0.506 ± 0.002
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Supplementary Table 7: Distance Spearman Correlation: spearman correlation between pairwise
distances in high- and low-dimensional embeddings. Mean and standard deviation are computed
over 5 repetitions. Bold is used for the best performance, italics is used when the result is not
significantly different from the best one (defined by a one-sided t-test with P value of 0.05).

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
ZHENG ERCC 0.304 ± 0.000 0.308 ± 0.004 0.248 ± 0.006 0.221 ± 0.009 0.214 ± 0.006 0.435 ± 0.008 0.292 ± 0.017 0.272 ± 0.001
ZHENG MONOCYTE 0.763 ± 0.000 0.599 ± 0.003 0.570 ± 0.005 0.758 ± 0.000 0.670 ± 0.003 0.770 ± 0.003 0.706 ± 0.003 0.754 ± 0.001
DUO 4EQ 0.837 ± 0.000 0.576 ± 0.002 0.588 ± 0.005 0.709 ± 0.000 0.550 ± 0.070 0.732 ± 0.004 0.717 ± 0.012 0.617 ± 0.008
DUO 8EQ 0.837 ± 0.000 0.575 ± 0.003 0.586 ± 0.003 0.709 ± 0.000 0.616 ± 0.078 0.734 ± 0.004 0.728 ± 0.003 0.622 ± 0.008
KAZER 0.828 ± 0.000 0.631 ± 0.034 0.697 ± 0.007 0.786 ± 0.000 0.673 ± 0.033 0.843 ± 0.001 0.772 ± 0.004 0.793 ± 0.004
MURARO 0.867 ± 0.000 0.460 ± 0.008 0.551 ± 0.004 0.860 ± 0.000 0.519 ± 0.036 0.741 ± 0.005 0.602 ± 0.011 0.788 ± 0.002
KANG 0.796 ± 0.000 0.581 ± 0.008 0.616 ± 0.008 0.700 ± 0.000 0.670 ± 0.031 0.765 ± 0.003 0.746 ± 0.003 0.736 ± 0.005
STUART 0.695 ± 0.000 0.551 ± 0.006 0.422 ± 0.016 0.679 ± 0.000 0.433 ± 0.011 0.844 ± 0.001 0.648 ± 0.003 0.607 ± 0.009
ZHENG MOUSE 0.742 ± 0.000 0.522 ± 0.001 – 0.685 ± 0.000 0.714 ± 0.008 0.871 ± 0.001 0.714 ± 0.000 –
CAO 0.583 ± 0.000 0.479 ± 0.002 – 0.617 ± 0.000 0.442 ± 0.054 0.798 ± 0.001 0.523 ± 0.003 –
MAMMOTH 0.992 ± 0.000 0.761 ± 0.001 0.791 ± 0.001 0.986 ± 0.000 0.814 ± 0.009 0.839 ± 0.003 0.877 ± 0.008 0.328 ± 0.022
MNIST 0.559 ± 0.000 0.366 ± 0.001 0.432 ± 0.001 0.381 ± 0.000 0.328 ± 0.008 0.198 ± 0.001 0.323 ± 0.022 0.341 ± 0.012
HIERARCHICAL 0.891 ± 0.000 0.524 ± 0.004 0.639 ± 0.006 0.854 ± 0.000 0.015 ± 0.023 0.419 ± 0.004 0.806 ± 0.005 0.025 ± 0.006

Supplementary Table 8: k-nearest classes preservation. Mean and standard deviation are computed
over 5 repetitions. Bold is used for the best performance, italics is used when the result is not
significantly different from the best one (defined by a one-sided t-test with P value of 0.05). We
choose k to be a dynamic value that depends on the k = bC+2

4
c, where C is the number of classes in

the dataset. PCA and ForceAtlas2 have better performance across all datasets.

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
DUO 4EQ 1.000 ± 0.000 0.750 ± 0.000 0.500 ± 0.000 1.000 ± 0.000 0.400 ± 0.200 0.800 ± 0.100 0.450 ± 0.100 0.500 ± 0.000
DUO 8EQ 0.812 ± 0.000 0.750 ± 0.000 0.688 ± 0.000 0.938 ± 0.000 0.800 ± 0.100 0.738 ± 0.025 0.787 ± 0.031 0.812 ± 0.040
KAZER 0.857 ± 0.000 0.686 ± 0.035 0.700 ± 0.029 0.786 ± 0.000 0.686 ± 0.035 0.786 ± 0.000 0.714 ± 0.000 0.757 ± 0.035
MURARO 0.500 ± 0.000 0.333 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.511 ± 0.042 0.578 ± 0.027 0.467 ± 0.075 0.567 ± 0.022
KANG 0.590 ± 0.000 0.446 ± 0.021 0.487 ± 0.016 0.615 ± 0.000 0.513 ± 0.036 0.600 ± 0.031 0.533 ± 0.019 0.574 ± 0.013
STUART 0.540 ± 0.000 0.596 ± 0.003 0.548 ± 0.008 0.551 ± 0.002 0.577 ± 0.007 0.595 ± 0.011 0.652 ± 0.008 0.606 ± 0.003
ZHENG MOUSE 0.469 ± 0.000 0.433 ± 0.004 – 0.443 ± 0.002 0.473 ± 0.008 0.477 ± 0.002 0.538 ± 0.003 –
CAO 0.544 ± 0.000 0.511 ± 0.005 – 0.523 ± 0.000 0.497 ± 0.027 0.637 ± 0.002 0.580 ± 0.004 –
MAMMOTH 1.000 ± 0.000 0.788 ± 0.000 0.697 ± 0.000 1.000 ± 0.000 0.739 ± 0.024 0.848 ± 0.000 0.855 ± 0.023 0.582 ± 0.012
MNIST 0.600 ± 0.000 0.713 ± 0.016 0.767 ± 0.000 0.733 ± 0.000 0.640 ± 0.053 0.667 ± 0.000 0.653 ± 0.027 0.667 ± 0.000
HIERARCHICAL 0.535 ± 0.000 0.278 ± 0.002 0.511 ± 0.002 0.492 ± 0.001 0.083 ± 0.012 0.310 ± 0.009 0.407 ± 0.006 0.072 ± 0.008

Supplementary Note 9 Notes on Hyper-parameter Sensitivity
The most common hyper-parameter of DR methods supposedly controls the balance between local
structure and global structure preservation (e.g., t-SNE’s perplexity). However, as pointed out by
Wang et al. 19 , such parameters generally consider the number of nearest neighbors to be preserved
when optimizing the low dimensional layout. By that logic, these parameters cannot control global
structure since the number of neighbors is a local quantity. Changing this parameter would not
preserve global structure, it would only preserve slightly longer-distance local structure. By contrast,
PaCMAP does not capture global structure by increasing the number of nearest neighbors. Instead,
it applies forces to “mid-near” points, which robustly preserves global structure, and thus bypasses
the hyper-parameter tuning problem.

Although manual parameter tuning is undesirable in unsupervised dimension reduction tasks, we
note that it is often beneficial to adjust algorithms’ parameters according to the size of a dataset in
an automated way. DR in larger datasets often benefits when more graph components (e.g., pairs, or
triples) are used to optimize the low dimensional embedding. Thus, some algorithms (e.g., PaCMAP)
enable the choice of parameters to be adapted to the size of the dataset.
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Supplementary Table 9: Centroid distance correlation. We choose k using the same rule for k-nearest
classes preservation. Mean and standard deviation are computed over 5 repetitions. Bold is used for
the best performance, italics is used when the result is not significantly different from the best one
(defined by a one-sided t-test with P value of 0.05). PCA, ForceAtlas2 and TriMap achieve the best
results on this metric.

DATASET PCA T-SNE ART-SNE FORCEATLAS2 UMAP TRIMAP PACMAP PHATE
DUO 4EQ 0.976 ± 0.000 0.928 ± 0.000 0.831 ± 0.000 0.928 ± 0.000 0.508 ± 0.115 0.817 ± 0.047 0.827 ± 0.099 0.754 ± 0.024
DUO 8EQ 0.968 ± 0.000 0.833 ± 0.004 0.799 ± 0.006 0.983 ± 0.000 0.917 ± 0.074 0.978 ± 0.002 0.920 ± 0.013 0.911 ± 0.013
KAZER 0.900 ± 0.000 0.803 ± 0.011 0.534 ± 0.027 0.822 ± 0.000 0.679 ± 0.023 0.964 ± 0.002 0.820 ± 0.019 0.716 ± 0.012
MURARO 0.862 ± 0.000 0.347 ± 0.012 0.545 ± 0.012 0.841 ± 0.000 0.708 ± 0.036 0.755 ± 0.012 0.569 ± 0.126 0.870 ± 0.006
KANG 0.560 ± 0.000 0.366 ± 0.010 0.353 ± 0.016 0.579 ± 0.001 0.435 ± 0.017 0.806 ± 0.015 0.564 ± 0.017 0.537 ± 0.010
STUART 0.843 ± 0.000 0.564 ± 0.004 0.363 ± 0.021 0.734 ± 0.001 0.267 ± 0.022 0.756 ± 0.006 0.394 ± 0.005 0.478 ± 0.016
ZHENG MOUSE 0.745 ± 0.000 0.322 ± 0.003 – 0.426 ± 0.000 0.450 ± 0.014 0.677 ± 0.005 0.397 ± 0.002 –
CAO 0.400 ± 0.000 0.318 ± 0.005 – 0.303 ± 0.000 0.279 ± 0.051 0.754 ± 0.001 0.422 ± 0.007 –
MAMMOTH 0.999 ± 0.000 0.830 ± 0.004 0.859 ± 0.002 0.998 ± 0.000 0.830 ± 0.007 0.867 ± 0.004 0.928 ± 0.004 0.346 ± 0.025
MNIST 0.864 ± 0.000 0.770 ± 0.002 0.804 ± 0.002 0.857 ± 0.000 0.786 ± 0.023 0.844 ± 0.001 0.754 ± 0.029 0.799 ± 0.013
HIERARCHICAL 0.892 ± 0.000 0.526 ± 0.004 0.636 ± 0.006 0.856 ± 0.000 0.008 ± 0.027 0.413 ± 0.004 0.802 ± 0.002 0.014 ± 0.005
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