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I. Allowed topological charges at the Γ point 

Far-field polarization vectors in the reciprocal space are constrained by the symmetry of the photonic crystal 

slabs (PCSs). Therefore, the eigenvalue of the rotation symmetry can determine the possible topological charges of 

the polarization vortexes1. Here we focus on the allowed charges of the nondegenerate states at high symmetry points 

in the reciprocal space. As for the degenerate states, the possible values of charges carried by the degenerate states 

can be calculated with the eigenvalue of mirror symmetry along with the surrounding mirror-symmetric directions. 

More details can be found in Ref. [2] and we will not discuss them in detail.  

The allowed charges for nondegenerate states exhibiting the corresponding symmetries are summarized in Table 

S1. The nondegenerate states belong to either A or B representation of the mvC  (m = 2, 3, 4, 6) symmetry as given 

in the second row. A and B representations have m
zC  rotational eigenvalues +1 and -1, respectively. The eigenvalue 

of the 2
zC  symmetry is also provided in the fourth row of the table as a supplement to determine which eigenvalue 

of 2
zC  the eigenstates will have when the symmetry is reduced from m

zC  to 2
zC . As can be seen from Table S1, 

for m
zC  symmetry, the charges of the polarization vortex can be determined up to the uncertainty of n m× , where 

n is an integer which can be nonzero for higher bands1,3. For the discussion in the main text, the TE1 band at Γ belongs 

to the B representation of 6vC  symmetry with allowed charge -2. When the symmetry is reduced from 6vC  to 

2vC , the TE1 band at Γ belongs to the B representation of 2vC , thus the allowed charge are 0 or -2 which correspond 

to the left and middle panels of Fig. 2(c), respectively. Meanwhile, since a topological charge cannot suddenly 

disappear, a higher charge should split into multiple integer charges or half-integer charges4 under the symmetry 

reduction. 

 

Symmetry Representation m
zC  2

zC  Allowed charges 

2vC  
A 1+  1+  1 2n+  

B 1−  1−  0 2n+  

3vC  A 1+   1 3n+  

4vC  
A 1+  1+  1 4n+  

B 1−  1+  1 4n− +  
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6vC  
A 1+  1+  1 6n+  

B 1−  1−  2 6n− +  

Table S1. Allowed charges for nondegenerate bands. Here, m = {2, 3, 4, 6}, n  is an integer that can be nonzero for 

higher energy bands.  

 

II. Theoretical models for polarization vortex and scaling rules of Q factor 

Since the polarization vector, ( ) ( ) ( )x yc icφ = +k k k , of the far-field radiation is a continuous function of k  

in the reciprocal space, we can expand them into Taylor series around the Γ point. Then we can derive the form of 

polarization vortexes by implementing the symmetry constraints to determine the coefficients of the Taylor series5. 

Taylor series can be written as: 

 m n
x mn

mn
c a k k+ −= ∑ , (S1) 

 m n
y mn

mn
c b k k+ −= ∑ , (S2) 

Where xc  and yc  are both real, x yk k ik+ = +  and x yk k ik− = − . If the system exhibits symmetry  , then the 

polarization vector should satisfy ( ) ( )φ φ= ±k k  , where the additional “ /+ − ” comes from the symmetry/anti-

symmetry representation of the plane wave basis1.  

As an example, we consider a PCS that belongs to the 6vC  point group and the at-Γ eigenmode has the B1 

representation. For the B1 representation of the 6vC   point group, ( )kφ   fulfills the constraints 

( ) ( )x xk kφ σ σ φ= −  and ( ) ( )y yk kφ σ σ φ= , namely, 

( )( ) ( )1 m n m n m n
mn mn mn mn

mn mn
a ib k k a ib k k+

− + + −+ − = −∑ ∑  (S3) 

( ) ( )m n m n
mn mn mn mn

mn mn
a ib k k a ib k k− + + −+ = −∑ ∑  (S4) 

Therefore, nm mna a=  , nm mnb b= −   and m n+   is an even number. As the 6
zC   rotation symmetry exhibit 

eigenvalue of 1−  for the B1 representation, ( ) ( )6 6
z zC Ck kφ φ= −  is satisfied, namely， 

 ( ) ( ) ( )3 3i m n m n i m n
mn mn mn mn

mn mn
a ib e k k a ib e k kπ π−

+ − + −+ = − +∑ ∑ . (S5) 

Thus, 6N 2m n− = −  . Meanwhile, ( ), | 0x y yk k kφ =   is related to ( ), | 3x y y xk k k kφ =   by the 6
zC   rotation 
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operation, then 

 1 3
2 2

m n m n
mn mn mn

mn mn
a k k a b k k+ − + −

 
= − +  

 
∑ ∑ , (S6) 

which gives rise to ( ) 32 3 1
3 2

i n m
mn mnb e aπ− = − +  

. As a result, the polarization vector becomes 

 ( ) ( )2 4 2 2 6
02 04 13, 2 2 2k k a k a k a k k O kφ + − − + += + + + . (S7) 

By only keeping the lowest order of the expansion, we obtain the polarization vortex as ( ) ( )2

x yk ikφ ∝ −k  for the 

symmetry representation B1. 

The polarization vortexes of other representations can be obtained similarilty. In this way, we can obtain 

polarization vectors radiated from the PCS with point groups of 3vC , 4vC  and 6vC , as summarized in Table 2. 

 

Symmetry Representation n
zC  vσ  dσ  ( )φ k  

3vC  
A1 1+  1+   x yk ik+  

A2 1+  1−   y xk ik−  

4vC  

A1 1+  1+  1+  x yk ik+  

A2 1+  1−  1−  y xk ik−  

B1 1−  1+  1−  x yk ik−  

B2 1−  1−  1+  y xk ik+  

6vC  

A1 1+  1+  1+  x yk ik+  

A2 1+  1−  1−  y xk ik−  

B1 1−  1+  1−  ( )2

x yk ik−  

B2 1−  1−  1+  ( )2

x yi k ik−  

Table 2. Polarization vortexes for nondegenerate states. The eigenvalues of the rotation and mirror symmetry for the 

corresponding representations are also listed in the table for reference. Here, ( )φ k  denotes the polarization vector 
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distribution around a symmetry-protected BIC at the Γ point. 

 

Polarization vortexes in the momentum space are shown in Fig. S1, where BICs are located at the center of the 

polarization vortexes, here the Γ point. The eigenvalues of the rotation and mirror symmetry on polarization vortexes 

are the same as that of the corresponding eigenvector. The topological charge of a vortex is defined as the winding 

number of the polarization direction counterclockwise enclosing the vortex center. As shown in Fig. S1, there is a 

BIC [ ( ) 0kφ = ] with a charge q = +1 for ( ) x yk ikφ ∝ +k  and ( ) y xk ikφ ∝ −k , a BIC with a charge q = −1 for 

( ) x yk ikφ ∝ −k   and ( ) y xk ikφ ∝ +k  , and a higher-order BIC with a charge q = −2 of ( ) ( )2

x yk ikφ ∝ −k  and 

( ) ( )2

x yi k ikφ ∝ −k . 

 

 

Fig. S1 Polarization vortexes in the momentum space. Polarization vectors are a ( ) x yk ikφ ∝ +k  , b 

( ) y xk ikφ ∝ −k  , c ( ) x yk ikφ ∝ −k  , d ( ) y xk ikφ ∝ +k  , e ( ) ( )2

x yk ikφ ∝ −k  and f ( ) ( )2

x yi k ikφ ∝ −k  . 

Topological charges are also provided at the centers of the vortexes. 

 

The geometrical decay of the Q factor away from a BIC follows a scaling rule that can be derived from 

( ) 2
1Q φ k . Therefore for isolated BICs at the Γ point, the scaling rule is 21Q k  for a BIC with a charge 
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1q = ± , and it becomes 41Q k  for a BIC with a charge 2q = − . More general, the scaling rule of an isolated 

BIC with a charge q n= ±  is 21 nQ k  (Ref. 5). We can see that the Q factor in the vicinity of an isolated BIC can 

be magnificently enhanced by increasing the topological charge of the BIC. Meanwhile, when another accidental 

BIC appears close to the isolated BIC at Γ, the scaling rule is modified. Since the accidental BICs considered here 

all exhibit topological charge 1± , the scaling rule in the vicinity of each accidental BIC is 2
BIC1 /Q k k− , where 

BICk  represents the location of the accidental BIC and     represents the norm of a vector. Considering the case 

that the BIC at the Γ point belongs to the B1 representation of the 6vC  point group and there are two accidental 

BICs approaching from opposite directions, the scaling rule becomes 2 24
BIC BIC1Q k k k k k− + . In the limit 

BIC 0k → , the scaling rule becomes 81Q k . Furthermore, merging a higher-order BIC with a charge q n= ±  

with accidental BICs can enhance the Q factor in the vicinity of the Γ point by altering the scaling rule to 2 41 nQ k +
 . 

 

III. Evolution of band structures 

We consider the evolution of band structures when the system symmetry is reduced by elliptic cylindrical holes. 

Unit cells with three different etched holes are shown in Figs. S2a-c, and the corresponding band contours of the 

lowest TE-like band we focus on are shown in Figs. S2d-f. Band contours are similar for the three different etched 

holes except for some minor distortions. As shown in Fig. S2d, when etched holes are cylindrical, band contours have 

rotation symmetry 6
zC  and mirror symmetries vσ  and dσ . When etched holes become elliptic cylindrical holes 

with the semi-major axis along the x-axis, there are distortions in the band contours, which reduces rotation symmetry 

from 6
zC  to 2

zC  and preserves mirror symmetries xσ  and yσ , as shown by the band contours in Fig. S2e. When 

the semi-major axis rotates by θ = 10° with respect to the x-axis, all the mirror symmetries of the band contours are 

further broken with only 2
zC  preserved, as shown in Fig. S2f.  
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Fig. S2 Evolution of the band structures with the variation of etched holes. Schematic of unit cells with a a 

cylindrical hole, b an elliptic cylindrical hole with the semi-major axis along the x-axis and c an elliptic cylindrical 

hole with the semi-major axis rotated by θ = 10° with respect to the x-axis. d-f Simulated band contours of the lowest 

TE-like band in the momentum space for unit cells in a-c, respectively. The period is a = 336 nm. The radius of the 

cylindrical hole is r = 80 nm, and the semi-major axis and semi-minor axis of elliptic cylindrical holes are r1 = 112 

nm and r2 = 80 nm, respectively. The thicknesses of the PCSs are a t = 340 nm and b, c t = 338 nm. 

 

IV. Evolution of BICs with the variation of structural parameters 

The evolution of BICs with the variation of thickness for the structure with cylindrical holes is shown in Fig. 

S3. The trajectories of BICs in momentum space become visible to the eye when we plot a brightness map of Q-

factors. We see that the symmetry-protected BIC always exists at the Γ point, and accidental BICs are gradually tuned 

to the Γ point with the decrease of thickness from t = 340nm. The merging BIC is formed at t = 324.2 nm when 

accidental BICs are gathered at the Γ point, as shown in Fig. 1c the main text. Subsequently, accidental BICs 

disappear because of topological charge annihilation. 



8 
 

 
Fig. S3 The evolution of Q factors with the variation of the thickness. The evolution of Q factors for the structure 

with cylindrical holes. The lattice constant is a = 336 nm and the diameter of the hole is D = 160 nm. 

The evolution of BICs with the variation of the aspect ratio of the elliptic cylindrical hole is shown in Fig. S4. 

When the semi-major axis is located along the x-axis, the symmetry-protected BIC at the Γ point is split into two 

BICs in the ΓΜ direction, as shown in Fig. S4. Here we can only see one BIC near Γ as we only show the positive 

half of the ΓΜ direction. We fix the length of the semi-minor axis at r2 = 80 nm and increase the length of the semi-

major axis so as to change the aspect ratio. We start with t = 342 nm as shown in Fig. S4a. With the increase of the 

semi-major axis, the split BIC is gradually tuned away from the Γ point first and then returns to the Γ point. After the 

two split BICs merge at the Γ point, they split once again and then shift away along the ΓΚ direction. Meanwhile, 

accidental BICs appear in both the ΓΜ and ΓΚ directions and are tuned to shift away from the Γ point with the 

increase of the semi-major axis. When the thickness is decreased to t = 334 nm, as shown in Fig. S4b, the split BIC 

can be tuned to merge with another accidental BIC along the ΓΜ direction. When the thickness is further decreased 

to t = 330 nm as shown in Fig. S4c, with the increase of the aspect ratio, the split BIC and the accidental BIC gradually 

approach each other to form a merging BIC and subsequently annihilate with each other. When the aspect ratio is 

further increased, two BICs emerge and are tuned to shift away from each other.  

 

 
Fig. S4 The evolution of Q factors with the variation of the aspect ratio. The evolution of Q factors versus the 

aspect ratio at a t = 342 nm, b t = 334 nm and c t = 330 nm. The split BIC (magenta dashed line) is located near the 
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Γ point (gray dashed line), and accidental BICs (blue dashed line) are situated on both sides of Γ. In these simulations, 

the period is a = 336 nm, the semi-minor axis is kept at r2 = 80 nm and the semi-major axis along the x-axis (r1) is 

varied to change the aspect ratio.  

 

Next, we study the evolution of the split BICs and accidental BICs with the variation of thickness t. When the 

system symmetry is reduced from 6vC  to 2vC , a symmetry-protected higher-order BIC with topological charge -

2 splits into two BICs in the ΓΚ direction at t = 350 nm. As shown in Fig. S5, with the decrease of t, the two split 

BICs gradually approach the Γ point and merge at t = 346.7 nm (marked by the red horizontal dashed line). After 

that, they are tuned to shift away from each other along the ΓΜ direction. At the same time, accidental BICs are tuned 

to approach the Γ point in both the ΓΜ and ΓΚ directions. Thus the split BICs and accidental BICs merge in the ΓΜ 

direction at t = 334.1 nm (marked by the green horizontal dashed line), and they annihilate with each other 

subsequently when t is further decreased. 

 

 
Fig. S5 The evolution of Q factors with the variation of the thickness. The evolution of Q factors for the structure 

with elliptic cylindrical holes. The two horizontal dashed lines (red and green) mark the thickness of the two merging 

BICs. The split BIC is indicated by a magenta dashed line, and accidental BICs are indicated by blue dashed lines. 

The period is a = 336 nm. The semi-major axis and semi-minor axis of the elliptic cylindrical hole are r1 = 112 nm 

and r2 = 80 nm, respectively. 

 

V. Robustness of merging BICs against fabrication imperfections 

We consider the influence of three typical types of fabrication errors on Q factors. In the first type, the etched hole 
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becomes a conical frustum with different diameters on the top and bottom, as shown in Fig. S6a. Upward and 

downward radiation loss cannot be eliminated simultaneously because of the disappearance of up-down mirror 

symmetry hσ . In the second type, the etched hole has a tilt angle, as shown in Fig. S6b. Both hσ  and 2
zC  are 

broken and the Q factors become finite. In the third type, the diameter of the etched hole has a deviation from the 

designed value, as shown in Fig. S6c. There is no symmetry broken except that off-Γ BICs deviate from the designed 

momenta. The distributions of Q factors with the influence of the three types of fabrication error are shown in Figs. 

S6d-f. We note that the symmetry-protected BIC is protected by 6
zC  and does not disappear by the broken of hσ . 

Compared with isolated BICs, Q factors of merging BICs maintain sufficient large in a broad wavevector range even 

though BICs have been broken. Similarly, merging BICs at off-Γ points are vastly superior to isolated BICs in a broad 

wavevector range, as shown in Fig. S7. Therefore, merging BICs are more robust in preserving high Q factors against 

fabrication imperfections. 

 

Fig. S6 Evolution of Q factors under fabrication errors for BICs at Γ. The unit cell with holes replaced by a 

conical frustums and b tilted holes and c holes with different radii. d, e, and f show the Q factor evolution near 

merging BICs (solid lines) and isolated BIC (dashed lines) under the parameters variation in a, b and c, respectively. 

Here apart from the varying parameters, other parameters are the same as Fig. 1 in the main text, t = 324.2 nm for the 

merging BIC and t = 300 nm for the isolated BIC. 
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Fig. S7 Evolution of Q factors under fabrication errors for off-Γ BICs. The unit cell with holes replaced by a 

conical frustums and b tilted holes and c holes with a different semi-minor axis. d, e, and f show the Q factor evolution 

near merging BICs (solid lines) and isolated BIC (dashed lines) under the parameters variation in a, b and c, 

respectively. Here apart from the varying parameters, other parameters are the same as Fig. 3 in the main text, t = 

334.1 nm for the merging BIC and t = 338 nm for the isolated BIC. 

 

Next, we demonstrate that merging BICs are quite robust over varying thicknesses when there are three types of 

fabrication errors. As shown in Figs. S8 and S9, when the thickness has a deviation from the merging BIC, Q factors 

have a slight change and remain sufficiently large over a broad wavevector range. Therefore, the ability to overcome 

scattering loss is preserved. 
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Fig. S8 Robustness over varying thicknesses for BICs at Γ. The Q factor evolution near merging BICs under the 

thickness variation for the etched hole with a conical frustums and b tilted holes and c holes with different radii. 

Inserts are diagrams of the unit cell. Here, 1 1 4 nmr r′− = , 0.6α = °  and 1 4 nmr∆ = . 

 

Fig. S9 Robustness over varying thicknesses for off-Γ BICs. The Q factor evolution near merging BICs under the 

thickness variation for the etched hole with a conical frustums and b tilted holes and c holes with a different semi-

minor axis. Inserts are diagrams of the unit cell. Here, 1 1 4 nmr r′− = , 0.6α = °  and 1 4 nmr∆ = . 

 

VI. Intrinsic loss of materials 

The total Q factor is determined by the contribution of both radiation loss and intrinsic loss, following 

tot rad i

1 1 1
Q Q Q

= + , where radQ  and iQ  represent the Q factors when considering only the radiation loss and intrinsic 

loss, respectively. It is dominated by the intrinsic loss of materials at merging BICs, as shown in Fig. S10a. Hence 

materials with ultralow intrinsic loss, such as Si3N4 and Si, etc., are ideal choices for a high-Q cavity in the frequency 

range of interest. Here in our case for the merging BICs, the Q factors keep sufficiently large in a broad wavevector 

range even though materials have an unavoidable intrinsic loss, as shown in Figs. S10b and c. 

 
Fig. S10 The influence of intrinsic loss on merging BICs. a Numerical calculation for the evolution of Q factors 
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with an intrinsic loss of materials at merging BICs. The distribution of Q factors for merging BICs at the Γ point (b) 

and an off-Γ point (c). Im(n) = 610−  in b and c. Other structural parameters keep the same as Fig. 1 and Fig. 3 in the 

main text for t = 324 nm and t = 334 nm, respectively. 

 

VII. Merging BICs in degenerate bands 

As shown in Fig. 1b, TE2 and TE3 bands are degenerate at the Γ point. The representations of the TE2 (TE3) band 

in the ΓΜ and ΓΚ directions are A (B) and B (A), respectively. Hence the degenerate state at Γ belongs to E2 

representation of the 6vC  group and is a higher-order BIC with topological charge -2. Meanwhile, there can also be 

accidental BICs around the Γ point when the structural parameters are suitable. As shown in Fig. S11a, a symmetry-

protected BIC at the Γ point is surrounded by 12 accidental BICs for the TE2 band. Polarization distribution shows 

that the symmetry-protected BIC has a topological charge -2, accidental BICs in the ΓΜ direction have a charge -1, 

and accidental BICs in the ΓΚ direction have a charge +1. With the decrease of the thickness, accidental BICs are 

gradually tuned to the Γ point as shown in Fig. S11b, and eventually merge at t = 312.4 nm. It is interesting to note 

that the merging BICs on the TE2 and TE3 bands appear at the same t. When the thickness is further decreased, 

accidental BICs appear on the TE3 band (Fig. S11c) and then move away from the Γ point as shown in Fig. S11d. 

Polarization distribution in Fig. S11c indicates that the accidental BICs possess -1 and +1 charges in the ΓΜ and ΓΚ 

directions, respectively.  
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Fig. S11 Merging BICs on the degenerate bands. Simulated polarization distribution with Q factors as the 

background for a the TE2 band at t = 313 nm and c the TE3 band at t = 311.5 nm. Calculated Q factors evolution with 

the variation of the thickness for b the TE2 band and d the TE3 band. The bright curves indicate the trajectories of 

BICs. The parameters used are the same as Fig. 1 in the main text.  

 

VIII. Stokes parameters S3 of the polarization vectors 

 
Fig. S12 Polarization ellipse parameters. a-c Simulated Stokes parameter S3 distributions for the structures 

investigated in Fig. 1c, Fig. 2c and Fig. 4c in the main text, respectively. The magnitude of S3 is small (< 0.04) within 

the interesting range which shows that the polarization vectors are almost linear.  
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