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In what follows, we first show the advantages of the pro-
posed method comparing to our previous works in Section 1
and more details about the datasets we used in Section 2.
Then, we present more discussion on hyper-parameter set-
tings in Section 3, including the batch sizes, training epochs,
and backbones. We also explain more details about the
advantages of our DSDL framework (Sections 4 and 5)
and more samples of synthetic neuroimages (Section 6). In
addition, we discussed the potential applications in other
scenarios (Section 7).

1 TECHNICAL NOVELTY

Due to its ability to provide complementary structural and
functional information, multi-modal neuroimaging (e.g.,
MRI and PET) has been commonly used for the diagnosis
of neurodegenerative disorders such as the Alzheimer’s
disease (AD). However, the missing data problem is almost
inevitable in clinical practice due to various reasons, e.g.,
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PET scanning may be rejected by some subjects due to high
cost or concern of radioactive exposure. Many studies on
multi-modal neuroimages simply discard the subjects with
missing PET, leading to a significant decrease of the number
of training subjects. However, deep learning-based diagnos-
tic models, which have become the de facto standard in
medical image analysis, are prone to over-fit the training
dataset and hence exhibit unreliable performance, if the
training dataset is small.

To solve the missing data problem, we attempted, in
our previous works (e.g., [1]), to impute the missing PET
data using the available MRI data based on the observation
that there probably exists underlying relevance between
the images acquired from the same subject but using dif-
ferent modalities. We first resorted 3D Cycle-consistency
Generative Adversarial Networks (3D-cGAN) to learn the
bi-directional mapping between relevant image domains
(i.e., across PET and MRI), where the cycle-consistency loss
is used to capture their probable underlying relationship.
Then, we developed a landmark-based multi-modal multi-
instance learning (LM3IL) model to use the complete MRI
and PET data (i.e., real or synthetic PET + real MRI) for AD
diagnosis and mild cognitive impairment (MCI) conversion
prediction. This previous work achieve good performance
because (1) we directly imputed missing PET scans to almost
double the number of training subjects, leading to a more
reliably-learned diagnostic model; (2) we performed the
classification only on the patches around disease-related
landmarks, which are pre-defined manually.

However, this previous work is an early attempt to
learn data imputation and classification under a two-stage
framework in a data-driven manner and has three limi-
tations. First, the image synthesis and disease diagnosis
are treated as two standalone tasks, and hence the dif-
ference of specificities conveyed by two modalities is ig-
nored. Second, the cycle consistency we used is a weak
constraint to preserve the disease information, since it only
encourages pixel/voxel consistency after two transforma-
tions (i.e., transformed through two synthesis models), not
encouraging the consistency of disease-relevant informa-
tion. Third, the classification performance relies highly on
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the precision of landmarks. However, no landmark set is
universally recognized as precise and comprehensive, since
the pathological changes can be subtle in the early course
of the disease and there can be some overlap with other
neurodegenerative types.

To address these issues, we proposed a disease-image-
specific deep learning (DSDL) framework for joint neuroim-

age synthesis and disease diagnosis using incomplete multi-
modality neuroimages. Specifically, we first designed a
Disease-image-Specific Network (DSNet) with a spatial co-
sine module to implicitly model the disease-image speci-
ficity, and then developed a Feature-consistency Generative
Adversarial Network (FGAN) to impute missing neuroim-
ages. During the image synthesis, we aim to preserve the
disease-image-specific information via using the feature-
consistency constraint, which encourages the multi-layer
feature maps (generated by DSNet) of a synthetic image and
its corresponding real image to be consistent. For instance,
at an early stage of the AD process, subtle physiological
changes can be detected by PET long before any changes are
apparent on MRI. In this case, when imputing the missing
PET scan based on the available MRI scan, our previous
method cannot generate the physiological changes since
they are not apparent on the MRI scan. However, with
the help of the proposed the feature-consistency constraint,
our FGAN can generate the synthetic PET scan that con-
tains the physiological changes via implicitly learning from
same-class PET scans in the training dataset. In this way,
our FGAN is correlated with DSNet, leading the missing
neuroimages to be imputed in a diagnosis-oriented manner.
Hence the synthetic neuroimages are more consistent with
real neuroimages from a diagnostic point of view.

2 DATASET INTRODUCTION

ADNI: The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study [2] is the most widely open-access study
for Alzheimer’s Disease (AD) and is jointly funded by the
National Institutes of Health (NIH) and industry via the
Foundation for the NIH. It is a longitudinal multi-site obser-
vational study of elderly individuals with normal cognition,
mild cognitive impairment (MCI), or AD. Healthy elderly
controls are sampled at 0, 6, 12, 24, and 36 months. Subjects
with MCI are sampled at 0, 6, 12, 18, 24, and 36 months. AD
subjects are sampled at 0, 6, 12, and 24 months. The follow-
up study assesses how well the information (alone or in
combination) obtained from MRI, 18F- FDG PET, etc., can
measure the disease progression in three groups of elderly
subjects mentioned above.

• The ADNI-1 phase was launched in October 2004
and has lasted for 5 years, during which more than
800 subjects have been collected. All subjects are from
multiple participating sites in North America (United
States and Canada). All subjects were scanned with
1.5 T MRI at each time point, and half subjects were
scanned with FDG PET.

• The ADNI-2 phase was launched in September 2011
and has lasted for 5 years. Except for the subjects
in ADNI-1, more than 800 additional subjects have
been collected during this phase. In ADNI-2, all
subjects were scanned with 3T MRI using similar

T1-weighted imaging parameters to those used in
ADNI-1. About half subjects were scanned with FDG
PET using similar parameters to those for ADNI-1.

AIBL: The Australian Imaging, Biomarker & Lifestyle Flag-
ship Study of Ageing (AIBL) [3] is a study to discover
which biomarkers, cognitive characteristics, and health
and lifestyle factors determine subsequent development of
symptomatic AD. It is a 4.5-year prospective longitudinal
study of cognition, launched in November 2006, which is
the largest study of its kind in Australia. This study col-
lected more than 1000 subjects with AD, MCI, and healthy
volunteers from two sites (i.e., Perth and Melbourne). In
AIBL, MRI was performed at 1.5T/3T MRI with similar
T1-weighted imaging parameters to those used in ADNI,
but PET was performed with the parameters different from
those used in ADNI.

For more details, we listed the statistics of the protocols
used for acquiring the baseline MRI and PET scans in Table
SII and Table SIII, respectively in the Supplementary Ma-
terials. The ADNI organization requires a uniform protocol
for data acquirement. As for the AIBL database, the MRI
scanning protocols are similar to the one used for ADNI
(ADNI-1 and ADNI-2), but the PET scanning protocols are
slightly different. For example, the slice thickness of most
PET scans in AIBL is either 2.0 mm or 3.0 mm, which is
different from that of ADNI PET scans, and the radioisotope
for most PET scans in ADNI is F-18 but for 43% PET
scans in AIBL is C-11. Meanwhile, most ADNI contributors
provide data for both ADNI1 and ADNI2 cohorts. Since
similar scanning protocols and the same imaging site may
lead to less-diverse imaging quality, the model learned on
ADNI-1 can adapt to the data in ADNI-2. To cope with the
quality diversity of PET scans in AIBL, we directly used the
synthetic PET for this study.

3 HYPER-PARAMETER DISCUSSION

3.1 Influence of Batch Size
Due to the limitation of GPU memory, we cannot use a large
batch size. To assess the impact of this hyperparameter on
the model’s performance, we set different batch sizes and
performed the AD vs. CN classification task again using
different batch sizes. It shows that, when setting the batch
size to 1, 2, 3, and 4, the proposed model achieves an AUC of
0.9631, 0.9622, 0.9588, and 0.9596, respectively. The results
indicate that the performance of our model is not sensitive
to the batch size. Hence, considering the performance and
complexity, we empirically set the batch size to 1.

3.2 Influence of Maximum Number of Epochs
In Fig. 6, we reported associated performance of image
synthesis obtained after training FGAN different epochs.
It shows that the performance has a broad dynamic range
and has tolerable changes when the number of epochs
approaches to 100. In Fig. S1, we further plotted the training
loss and test loss of DSNet during the first 100 epochs. It
reveals that the test loss of DSNet become relatively stable
after 40 epochs. Therefore, we empirically set the maximum
number of epochs to 100 and 40 for FGAN and DSNet,
respectively.
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TABLE S1
Protocols of baseline MRI scans in ADNI-1, ADNI-2, and AIBL.

Protocol Dataset Parameter (Number of Subjects)

Acquisition Plane ADNI-1 SAGITTAL (844)
ADNI-2 SAGITTAL (846)

AIBL SAGITTAL (665)
Slice Thickness ADNI-1 1.2 (844)

ADNI-2 1.2 (846)
AIBL 1.0 (137), 1.2 (528)

Matrix Z ADNI-1 146.0 (1), 160.0 (332), 162.0 (1), 166.0 (284), 170.0 (90), 180.0 (124), 184.0 (12)
ADNI-2 170.0 (166), 176.0 (466), 196.0 (214)

AIBL 160.0 (527), 170.0 (137), 159.0 (1), 153.0 (1)
Acquisition Type ADNI-1 3D (844)

ADNI-2 3D (846)
AIBL 3D (665)

Manufacturer ADNI-1 GE Medical Systems (410), Philips Medical Systems (103), SIEMENS (331)
ADNI-2 GE Medical Systems (214), Philips Medical Systems (165), SIEMENS (466), Philips Healthcare (1)

AIBL SIEMENS (665)
Mfg Model ADNI-1 Achieva (13), Intera (69), Intera Achieva (6), Avanto (64), GENESIS SIGNA (78), Gyroscan Intera (12), Intera (3), SIGNA

EXCITE (307), SIGNA HDx (25), Sonata (99), SonataVision (7), Symphony (161)
ADNI-2 Achieva (108), Discovery MR750 (90), Discovery MR750w (9), GEMINI (14), Intera (28), SIGNA HDx (9), SIGNA HDxt (9),

Skyra (52), TrioTim (279), Verio (135)
AIBL Avanto (116), TrioTim (426), Verio (123)

Field Strength ADNI-1 1.5 (844)
ADNI-2 3.0 (846)

AIBL 1.5 (116), 3.0 (549)
Weighting ADNI-1 T1 (844)

ADNI-2 T1 (846)
AIBL T1 (665)

TABLE S2
Protocols of baseline PET scans in ADNI-1, ADNI-2, and AIBL.

Protocol Dataset Parameter (Number of Subjects)

Slice Thickness ADNI-1 1.2 (51), 2.0 (71), 2.4 (110), 3.3 (21), 3.4 (53), 4.3 (93)
ADNI-2 1.2 (41), 2.0 (254), 2.4 (157), 3.3 (156), 3.4 (20), 4.3 (45)

AIBL 2.0 (355), 3.0 (142), 3.3 (109)
Manufacturer ADNI-1 CPS (59), GE MEDICAL SYSTMS (67), GEMS (47), Philips Medical Systems (39), Siemens ECAT (51) Siemens/CTI (136)

ADNI-2 CPS (53), GE MEDICAL SYSTMS (184), GEMS (17), Philips Medical Systems (91), Siemens (123), Siemens ECAT (41),
Siemens/CTI (164)

AIBL GE MEDICAL SYSTMS (109), SIEMENS (142), Philips Medical Systems (355)
Mfg Model ADNI-1 ACCEL (17), Advance (47), Allegro Body (C) (10), Discovery HR (5), Discovery LS (46), Discovery RX (3), Discovery ST (13),

EXACT (ACS 1) (3), EXACT (ACS 2) (6), G-PET Brain (C), Gemini TF(C) (4), Guardian Body(C) (17), HR+ (110), HRRT (51),
LSO PET/CT (5), LSO PET/CT (Pico electronics) (22), LSO PET/CT HI-REZ (32)

ADNI-2 1093 (14), 1094 (51), ACCEL (7), Advance (17), Allegro Body (C) (3), Biograph64 (22), Discovery 600 (6), Discovery LS (28),
Discovery RX (11), Discovery ST (45), Discovery STE (94), GEMINI TF Big Bore (14) , GEMINI TF TOF 16 (30) , GEMINI TF
TOF 64 (20), Guardian Body(C) (12), HR+ (157), HRRT (41), LSO PET/CT (Pico electronics) (13), LSO PET/CT HI-REZ (72),
SOMATOM Definition AS mCT (4)

AIBL Allegro Body (C) (353), Biograph128 (123), Biograph128 mCT (19), Discovery 710 (109), GEMINI TF TOF 64 (2)
Radioisotope ADNI-1 C-11 (8), F-18 (391)

ADNI-2 F-18 (673)
AIBL C-11 (262), F-18 (344)

Radio Pharmaceutical ADNI-1 11C-PIB (8), 18F-FDG (391)
ADNI-2 18F-AV45 (284), 18F-FDG (389)

AIBL 11C-PIB (61), 18F-Flutemetamol (48), Flutemetamol (142), Other (355)
Frames ADNI-1 1.0 (70), 4.0 (2), 5.0 (1), 6.0 (252), 7.0 (40), 12.0 (1), 15.0 (2), 17.0 (1), 27.0 (2), 28.0 (1), 30.0 (1), 33.0 (19), 38.0 (1), 39.0 (2)

ADNI-2 1.0 (83), 2.0 (2), 4.0 (247), 6.0 (339), 16.0 (2)
AIBL 1.0 (498), 4.0 (49), 6.0 (59)
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Fig. S1. Training and testing losses for image classification versus
different numbers of training epochs.

3.3 Influence of Generative Model Backbone

In general, there are two alternative backbone structures,
i.e., Decoder-Encoder (DE) backbone and UNet back-
bone [4], available for the generative components. The
structures of DE and UNet were displayed in Fig. S2 (left),
where the major differences are the skip connections and
feature concatenation used in UNet. Fig. S2 (right) shows the
performance metrics of AD vs. CN classification obtained by
using either the MRI scan or PET scan synthesized by either
DE backbone or UNet backbone. It reveals that these two
structures achieve similar results, e.g., the AUC values of
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Fig. S2. The structure (left) of Decoder-Encoder (DE) and UNet back-
bone are displayed in the left while the metric values on image classifi-
cation of scans synthesized by DE and UNet for MRI and PET modality,
respectively.

MRI scans generated by UNet backbone and DE backbone
are 0.9459 and0.9475, respectively. The reason may lie in the
fact that the spatial consistency between a pair of MRI and
PET scans are not strictly held. Following the principle of
Occam’s razor, we use the DE backbone, which is simpler
than the UNet backbone, for this study.

4 ADVANTAGES OF SYNTHETIC DATA
Compared to ”unseen-modality classification methods”,
namely, using different networks for feature extraction and
a shared network for classification, our model has the fol-
lowing three major advantages.

• For each incomplete case, the information of the
missing modality is transformed not only from the
other modality, but also from the complete cases in
the training set via training the image synthesize
model. For instance, the missing PET image of an
incomplete AD subject is synthesized based on both
the MRI image of that subject and the PET images
of AD subjects in the training set, since FGAN used
for image synthesis was trained on both MRI and
PET images in the training set. Therefore, even if a
disease specificity has not become evidenced on the
structural MRI image, our model can still “guess”
it according to the PET images of AD cases in the
training set, given that the image synthesis and clas-
sification are performed in a unified framework in
our solution.

• Suppose our model, in the worst case, cannot benefit
from the complete cases in the training set at all.
From the information point of view, our model uses
the fake ”multi-modality” information, which is only
the information of the available modality. In this
case, our model becomes a ”real unseen-modality
classification method”.

• The proposed multi-modality classification model is
much simpler than the ”real unseen-modality classi-
fication” model, in which one or two of the feature
extraction branches is active in each training epoch.
Alternatively, if training independently two models
for feature extraction and another model for classi-
fication, the system cannot benefit from the unique
advantage of “learning image representation and
classification in a unified framework for simultane-
ous optimization”.

5 ADVANTAGES OF CASCADE MODEL
In our experiments, we followed the cascade strategy to
train DSNet and FGAN components rather than training
then together in an end-to-end strategy. There are four major
reasons for using the cascade model, instead of an end-to-
end one.

• First, the feature-consistency constraint is defined
in the feature extraction part, and hence is vary-
ing during training DSNet. If jointly training DSNet
and FGAN in an end-to-end model, the less-optimal
feature-s obtained in the early training stage will
undermine the convergence of FGAN.

• Second, we design the feature-consistency constraint
to capture the disease-specific information in real
data and then use the information to guide FGAN
to synthesize real-like scans. Thus, it derives the
information only from existing real data and is in-
dependent to training FGAN. Therefore, jointly or
step-wise iteratively training DSNet and FGAN will
not capture more disease-specific information, but
requires more GPU memory and computational re-
sources.

• Third, we need a feature extraction module to mea-
sure the effect of feature-consistency constraint on
FGAN. Thus, we utilize the well-trained DSNet with
freezing weights while training FGAN.

• Finally, as a classification model, DSNet can hardly
converge synchronously with FGAN. Hence, if we
jointly train DSNet and FGAN in an end-to-end way,
the asynchronous convergence of both components
will lead one component to under-fitting or the other
component to over-fitting.

6 MORE DISEASE-RELATED VISUAL EXAMPLES
Besides samples in Fig. 4 in the main text, we supplied more
views of high-resolution examples in Figs. S3-S5, where four
typical subjects (Roster IDs: 4386, 4765, 4997, and 4417) in
ADNI-2 are shown. Basically, it can be seen from Fig. S3
(sagittal MRI views) that the sizes of ventricle in the 4th,
5th, 6th columns are more like the ground truth (7th column)
than the 1st, 2nd, and 3rd columns. It suggests the feature-
consistency constraint can coexist with other consistency
constraint, with minimal impact of voxel-wise-consistency
and cycle-consistency constraints.

Taking into account the results listed in Table 2 (main
text), the conclusion can be supported that the feature-
consistency constraint can help preserve more diagnosis
information during the transformation between two modal-
ities without dropping the visual quality. However, there
may be no metric that can cover all concerned aspects.
Therefore, we still suggest considering the suitable choice
of constraints for a specific task, e.g., using the adversarial
loss to keep the distribution (texture, structure) similarity,
using the pixel-wise-consistency constraint to keep intensity
consistency, and using the feature-consistency constraint to
keep diagnosis consistency.

7 APPLICATION IN ANOTHER SCENARIO
We applied the proposed DSDL framework to a natural
image classification scenario: using grayscale images to
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generate the unknown color images [4] and then jointly
using both grayscale and color images for classification. Two
benchmark datasets for fine-grained classification were con-
sidered. The Oxford Flower-17 (F17) [5] dataset contains 17
flower species with 80 color images per species. The Oxford
Pet-37 (P37) [6] dataset contains 7, 349 color images of 12
kinds of cats and 25 kinds of dogs with roughly 200 images
per class. In both datasets, the images suffer from large
variations in scale, pose, viewpoint angle and illumination.
We randomly selected 75% images per category for training
and used the rest for test.

To adapt our method to this problem, we replace 3D
(de)convolutional kernels to 2D kernels and set the input
size to 224⇥ 224. Since these images have no rigid structure
consistency, the effect of spatial cosine kernel is suppressed.
Noted that, although our DSNet may not be the best choice
for 2D image classification, it is useful for verifying the effec-
tiveness of the proposed feature-consistency constraint. The
quality of synthetic color images was measured by the mean
absolute error (MAE), mean square error (MSE), structural
similarity index measure (SSIM), and peak signal-to-noise
ratio (PSNR), and the performance of image classification
was measure by the area under receiver operating character-
istic (AUC), accuracy (ACC), average precision score (APS),
and F1-Score (F1S).

The experiments include four stages. In the first stage, we
trained two DSNets on color images and grayscale images,
respectively, and reported the classification performance of
each DSNet on the test set in Table S3. In the second stage,
we trained different image generative models to transfer
grayscale images to color images and reported the quality
of synthetic color images in Table S4. In the third stage, the
synthetic color images generated in the second stage were
fed to the DSNet trained on real color images in the first
stage, and the classification performance was reported in
Table S5. In the fourth stage, the predicted scores achieved
by DSNets on grayscale images and synthetic color images
were simply averaged to mimic the multi-modality data.
The corresponding classification performance was reported
in Table S6. Besides, we show several samples from the F17
dataset and P37 dataset and the corresponding synthetic
color images obtained by PixGAN, FGAN, and FPixGAN
in Fig. S6 and Fig. S7. The following four conclusions can be
drawn from these results.

First, the classification performance achieved by using
grayscale images is obviously lower than that achieved by
using color images on both datasets (see Table S3). Thus,
it is possible to boost the performance of grayscale image
classification as long as we can use grayscale images to
generate the missing color images reasonably.

Second, the experimental evidence provided in [7]
demonstrates that (1) the distribution matching constraints
used in GANs may not be able to preserve discriminative
information for either unpaired or paired data transla-
tion, leading to mis-diagnosis of medical conditions, and
(2) using the l1 (MAE) loss, equivalent to a pixel-wise-
consistency constraint, seems to be helpful when the image
quality metric is MAE, which matches the l1 loss rather
than measuring the classification performance. To evaluate
how much discriminative information is preserved by each
generative model, we gave the performance of using only

the discriminative loss (GAN-d), feature-consistency loss
(GAN-f), and pixel-wise consistency loss (GAN-p) in the 1rd
- 3th rows of Table S4 and Table S5, respectively. It shows
that GAN-f achieves the best image classification perfor-
mance, GAN-p achieves best quality of synthetic images,
and GAN-d, which may be good at distribution matching,
achieves lower performance than GAN-f and GAN-p in
color image generation and classification. This conclusion
is consistent with the conclusion that distribution matching
can hardly preserve discriminative information [7]. There-
fore, we suggest considering a suitable constraint for each
specific task, e.g., using the adversarial loss to keep the
distribution (texture / structure) similarity, using the pixel-
wise-consistency constraint to keep intensity consistency,
and using the proposed feature-consistency constraint to
keep classification consistency.

Third, jointly using different constraints may lead to
balanced performance. PixGAN jointly uses the adversar-
ial loss pixel-wise consistency loss, FGAN jointly uses the
adversarial loss and feature-consistency loss, and FPixGAN
jointly uses all three losses. The performance of PixGAN,
FGAN, and FPixGAN was displayed in the 4rd - 6th rows of
Table S4 and Table S5, respectively. Some samples from the
F17 dataset and P37 dataset and the corresponding synthetic
color images obtained by PixGAN, FGAN, and FPixGAN
were illustrated in Fig. S6 and Fig. S7. It reveals that FGAN
outperforms PixGAN in terms of image classification, but
underperforms it in terms of image synthesis. FpixGAN
achieves similar quality of synthetic images to PixGAN and
similar classification performance to FGAN. It demonstrates
again that the feature-consistency constraint is effective
to preserve discriminative information. Moreover, multiple
constraints can be jointly used to balanced performance in
terms of both image generation and classification.

Fourth, combining the grayscale images with the syn-
thetic color images to form pseudo multi-modality images
and using them to perform the classification task may lead
to improved performance (see Table S6). Especially, the
performance of classifying pseudo multi-modality data, in
which the missing color images were generated by the
GANs with the feature-consistency constraint (e.g., FGAN
and FPixGAN), is even compatible to that of classifying
real color images on the F17 dataset. It suggests that the
proposed feature-consistency constraint can be successfully
applied to the transform of grayscale images to color images
for classification purpose.
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TABLE S3
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