Cell Reports, Volume 39

Supplemental information

Proinflammatory signaling in islet β cells

propagates invasion of pathogenic

immune cells in autoimmune diabetes

Annie R. Piñeros, Abhishek Kulkarni, Hongyu Gao, Kara S. Orr, Lindsey Glenn, Fei Huang, Yunlong Liu, Maureen Gannon, Farooq Syed, Wenting Wu, Cara M. Anderson, Carmella Evans-Molina, Marcia McDuffie, Jerry L. Nadler, Margaret A. Morris, Raghavendra G. Mirmira, and Sarah A. Tersey Cell Reports, Volume 39

Supplemental information

Proinflammatory signaling in islet β cells

propagates invasion of pathogenic

immune cells in autoimmune diabetes

Annie R. Piñeros, Abhishek Kulkarni, Hongyu Gao, Kara S. Orr, Lindsey Glenn, Fei Huang, Yunlong Liu, Maureen Gannon, Farooq Syed, Wenting Wu, Cara M. Anderson, Carmella Evans-Molina, Marcia McDuffie, Jerry L. Nadler, Margaret A. Morris, Raghavendra G. Mirmira, and Sarah A. Tersey

Supplemental Figure S1: β cell-specific deletion of Alox15 protects against development of T1D in NOD mice, related to Figure 2. *NOD-Alox15loxp/+* mice were crossed with *NOD-Pdx1PB-CreERTM* mice to generate *NOD-Cre+* and *NOD-* $\Delta\beta$ mice. At 6 weeks of age, the mice were administered 3 daily intraperitoneal injections of 2.5 mg of tamoxifen. (A) Quantitative RT-PCR from RNA isolated from the spleen, BMDM (bone marrow-derived macrophages), BMDC (bone marrow-derived dendritic cells), or hypothalamus at 8 weeks of age for *Alox15*. (B) Quantitative RT-PCR from isolated islets at 8 or 12 weeks of age for spliced *Xbp1*. (C) Images of whole pancreatic sections from representative mice at 8 weeks of age, immunostained for insulin (*brown*) and counterstained with hematoxylin. Scale bars, 500 µm. (D) Quantification of β -cell mass. (E) Average insulitis score. (F) Insulitis score distribution percentage at 8 weeks of age. (G) Insulitis score distribution percentage at 12 weeks of age. Data are expressed as the mean ± SEM. *P <0.05.

Supplemental Figure S2: Knockout of Alox15 protected β cells from cytokine-induced death, related to Figure 2. Isolated islets were treated with and without cytokines mixture and live and dead cell area was quantitated. Representative images of islets from wildtype and *Alox15-/-* islets stained for live cells (*green*) and dead cells (*magenta*). Scale bars, 100 µm.

Supplemental Figure S3: Single-cell RNA-seq analysis of islets of control and NOD- $\Delta\beta$ mice, related to STARS methods, Figure 4, and Figure 5. Islets were isolated from *NOD-Cre*+ and *NOD-\Delta\beta* mice at 8 weeks of age, dissociated into single cells, and analyzed for scRNA-seq using 10x genomics. (A) Markers for 7 major populations of immune cells inside the islets: CD45, F4/80, CD11b, CD11c, Ly6C, CD4 and CD19. Color assignments represent levels of expression. (B,C) GO-GSEA analysis performed in macrophage and dendritic cell clusters.

Skipped Exon

Mutually Exclusive Exons

3

Ratio

Alternative 5' Splice Site

Alternative 3' Splice Site -log₁₀(P-value)

Retained Intron

Supplemental Figure S4: Gene ontology pathway analysis of alternatively spliced transcripts in cytokine-treated human islets, related to Figure 6. Publicly available data from human islets (N=10 donors) treated with proinflammatory cytokines or control conditions were subjected to Gene Ontology pathway analysis for each of 5 mRNA splicing modes. Shown are the major Gene Ontology pathways and their respective p values and gene ratios.

Supplemental Table S2: Human islet donor characteristics, related to STAR methods and Figure 6.

Donor ID	Age (yr)	Sex	Ethnicity /Race	BMI	Cause of Death	History of Diabetes	Islet Source ¹
RRID:SAMN19470079	39	М	White	27.6	Anoxia	No	IIDP; Scharp-Lacy
RRID:SAMN19591106	61	М	Hispanic/ Latino	29.3	Cerebrova scular Stroke	No	IIDP; So CA Islet Cell Resource Center
RRID:SAMN19897466	28	F	Hispanic/ Latino	24.7	Cerebrova scular Stroke	No	IIDP; University of Pennsylvania
RRID:SAMN19859645	58	М		27.4	Neurologic al	No	University of Alberta Islet Core
RRID:SAMN19796386	40	М		31.7	Neurologic al	No	University of Alberta Islet Core

¹IIDP = Integrated Islet Distribution Program

Supplemental Table S3: Oligonucleotide sequences, Related to STAR Methods

Mouse Gene	Sequence
Actb Forward	5'-CCCTAGGCACCAGGGTGTGA-3'
Actb Reverse	5'-GCCATGTTCAATGGGGTACTTC-3'
Alox15 forward	5'-CTCTCAAGGCCTGTTCAGGA-3'
Alox15 reverse	5'-GTCCATTGTCCCCAGAACCT-3'
Atf4 forward	5'-GCAGTGTTGCTGTAACGGACA-3'
Atf4 reverse	5'-CGCTGTTCAGGAAGCTCATCT-3'
Cd274 forward	5'-GCATTATATTCACAGCCTGC-3'
Cd274 reverse	5'-CCCTTCAAAAGCTGGTCCTT-3'
ll10 forward	5'-TGCACTACCAAAGCCACAAG-3'
ll10 reverse	5'-TAAGAGCAGGCAGCATAGCA-3'
II12 forward	5'-ATGACCCTGTGCCTTGGTAG-3'
ll12 reverse	5'-TCTCCCACAGGAGGTTTCTG-3'
ll1b forward	5'-AACCTGCTGGTGTGTGACGTTC-3'
ll1b reverse	5'-CAGCACGAGGCTTTTTTGTTGT-3'
ll6 forward	5'-GAGGATACCACTCCCAACAGACC-3'
ll6 reverse	5'-AAGTGCATCATCGTTGTTCATACA-3'
Ins1 forward	5'-AGCAAGCAGGTCATTGTTCC-3'
Ins1 reverse	5'-GACGGGACTTGGGTGTGTAG-3'
Mafa forward	5'-CCTGTAGAGGAAGCCGAGGAA-3'
Mafa reverse	5'-CCTCCCCAGTCGAGTATAGC-3'
Pdx1 forward	5'-CGGACATCTCCCCATACGAAG-3'
Pdx1 reverse	5'-CCCCAGTCTCGGTTCCATTC-3'
Xpb1s forward	5'-CTGAGTCCGAATCAGGTGCAG-3'
Xpb1s reverse	5'-GTCCATGGGAAGATGTTCTGG-3'
	1