

Supporting Information

Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO₂ in the Presence of Silylhalides

Tongtong Wang⁺, Maotong Xu⁺, Andrew R. Jupp, Zheng-Wang Qu,* Stefan Grimme, and Douglas W. Stephan*

anie_202112233_sm_miscellaneous_information.pdf

Contents

1. General Considerations	. 2
2. Stoichiometric reaction between [Lut-H][HCO ₂ B(C ₆ F ₅) ₃] and Et ₃ Si-I	. 2
3. Stoichiometric reaction between [Lut-H][I] and $B(C_6F_5)_3\dots$. 4
4. Attempts to reduce Et_3Si-I to Et_3Si-H by $B(C_6F_5)_3/2$,6-Lutidine FLP and H_2	. 6
5. B(C ₆ F ₅) ₃ /2,6-Lutidine FLP and halosilanes with H ₂ /CO ₂	. 6
General Procedure	. 7
Entry 1: $B(C_6F_5)_3/2,6$ -Lutidine/Me ₃ Si-Cl in C_6D_6	. 7
Entry 2: B(C ₆ F₅)₃/2,6-Lutidine/Me₃Si-Cl in CDCl₃	. 8
Entry 3: B(C ₆ F ₅) ₃ /2,6-Lutidine/Me ₃ Si-Br in C ₆ D ₆	. 9
Entry 4: $B(C_6F_5)_3/2$,6-Lutidine/Me ₃ Si-Br in CDCl ₃	11
Entry 5: $B(C_6F_5)_3/2,6$ -Lutidine/Me ₃ Si-I in C_6D_6	13
Entry 6: $B(C_6F_5)_3/2$,6-Lutidine/Me ₃ Si-I in CDCl ₃	16
Entry 7: B(C ₆ F ₅) ₃ /2,6-Lutidine/Et ₃ Si-I in C ₆ D ₆	20
Entry 8: B(C ₆ F ₅) ₃ /2,6-Lutidine/Et ₃ Si-I in CDCl ₃	21
6. B(C ₆ F ₅) ₃ /2,4,6-Collidine FLP and halosilanes with H_2/CO_2	23
Entry 9: $B(C_6F_5)_3/2,4,6$ -Collidine/Et ₃ Si-I in C_6D_6	24
Entry 10: B(C ₆ F ₅) ₃ /2,4,6-Collidine/Et ₃ Si-I in CDCl ₃	25
7. B(C ₆ F ₅) ₃ /2,6-Lutidine FLP and halosilanes with D_2/CO_2	27
Reaction for 24 hours	27
Reaction for 70 hours	30
8. Experimental References	32
9. DFT computational Details:	34
Computational References	63

1. General Considerations

Unless otherwise specified, all manipulations were performed under an inert atmosphere of dry, oxygen-free N₂ using Schlenk techniques or glovebox. 4 Å molecular sieves was purchased from Sigma Aldrich, activated by heating at 300°C under vacuum for 2 days. Solvents were dried by a Grubbs type Innovative Technologies solvent purification system, degassed on Schlenk line and stored over activated 4 Å molecular sieves prior to use. CDCl₃ was dried over calcium hydride, distilled and stored in activated 4 Å molecular sieves prior to use. C₆D₆ was degassed on Schlenk line and stored in activated 4 Å molecular sieves prior to use. All glassware was dried in a 180 °C oven overnight prior to use. B(C₆F₅)₃ was first purified by sublimination at 110°C under vacuum, the sublimed B(C₆F₅)₃ was dissolved in minimum amount of pentane at room temperature. Storing at a -25°C freezer afforded pure $B(C_6F_5)_3$ as white crystalline solids. Carbon ¹³C dioxide (99 atom % ¹³C, <3 atom % ¹⁸O) were purchased from Sigma Aldrich. [Lut-H][HCO₂B(C₆F₅)₃] was synthesized according to literature method.^[1] NMR spectra were obtained at room temperature on Bruker Advance III 400 MHz, Bruker Ultrashield 400 MHz, Agilent DD2 500 MHz and Agilent DD2 600 MHz spectrometer. NMR chemical shifts are reported in ppm. Multiplicity is reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad.

2. Stoichiometric reaction between [Lut-H][HCO₂B(C₆F₅)₃] and Et₃Si-I

[Lut-H][HCO₂B(C₆F₅)₃]^[1] (113 mg, 0.17 mmol) and Et₃Si-I (30 μ L, 0.17 mmol) were mixed in 0.5 mL CDCl₃. The reaction was completed within 10 minutes at room temperature, afforded 2,6-lutidinium iodide [Lut-H][I] and Et₃SiOCHO·B(C₆F₅)₃ adduct, which has NMR data agreed with the literature values.^[2]

[Lut-H][HCO₂B(C₆F₅)₃]: ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.18 (t, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 2H), 2.72 (s, 6H); ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -2.62; ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -134.59 (dd, *J* = 23.9, 8.4 Hz), -158.96 (t, *J* = 20.3 Hz), -164.90 (ddd, *J* = 23.6, 19.2, 8.5 Hz).

[Lut-H][I] and Et₃SiOCHO·B(C₆F₅)₃: ¹H NMR (400 MHz, CDCl₃) 8.22 (t, J = 8.0 Hz, 1H), 8.17 (s, 1H), 7.53 (d, J = 7.9 Hz, 2H), 2.98 (s, 6H), 1.12 – 0.73 (m, 15H, Et); ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -0.11; ¹⁹F NMR (377 MHz, CDCl₃) δ -133.89 (d, J = 22.4 Hz), -158.13 (t, J = 20.3 Hz), - 164.78 (m).

Figure S 1. ¹H NMR spectrum of [Lut-H][HCO₂B(C₆F₅)₃], CDCl₃

Figure S 2. ¹¹B{¹H} NMR spectrum of [Lut-H][HCO₂B(C₆F₅)₃], CDCl₃

Figure S 3. ¹⁹F{¹H} NMR spectrum of [Lut-H][HCO₂B(C₆F₅)₃], CDCl₃

Figure S 6. ¹⁹F{¹H} NMR spectrum of [Lut-H][I] and Et₃SiOCHO·B(C₆F₅)₃, CDCl₃

3. Stoichiometric reaction between [Lut-H][I] and $B(C_6F_5)_3$

[Lut-H][I] (2.3 mg, 0.01 mmol) and $B(C_6F_5)_3$ (5.0 mg, 0.01 mmol) were mixed in 0.5 mL CDCl₃. The reaction was completed within 10 minutes at room temperature, afforded the corresponding adduct [Lut-H][I·B(C_6F_5)_3].

¹H NMR (400 MHz, CDCl₃) δ 15.16 (t, *J* = 56.5 Hz, 1H), 8.20 (t, *J* = 7.9 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 3.04 (s, 6H); ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 43.33; ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -127.87 (bs), -146.13 (bs), -161.11 (bs).

Figure S 7. ¹H NMR spectrum of [Lut-H][I·B(C₆F₅)₃], CDCl₃

Figure S 8. ¹¹B{¹H} NMR spectrum of [Lut-H][I·B(C₆F₅)₃], CDCl₃

Figure S 9. ¹⁹F{¹H} NMR spectrum of [Lut-H][I·B(C₆F₅)₃], CDCl₃

4. Attempts to reduce Et₃Si-I to Et₃Si-H by B(C₆F₅)₃/2,6-Lutidine FLP and H₂

10 mol% B(C₆F₅)₃ (2.6 mg, 0.0051 mmol) in 0.4 mL C₆D₆ or 0.4 mL CDCl₃ was transferred to a J-young tube, followed by the addition of Et₃Si-I (8.9 μ L, 0.051 mmol, 10 eq), 2,6-lutidine (6.0 μ L, 0.051 mmol, 10 eq). After freeze-pump-thaw degassing, 4 atm. H₂ was added to the J-young tubes. No reaction was observed after overnight at room temperature. The J-young tubes were heated in a 100°C oil bath for 40 hours, no formation of Et₃Si-H was seen indicated by the absence of Si-H signal at 3.85 ppm in C₆D₆ or 3.61 ppm in CDCl₃.^[3]

5. $B(C_6F_5)_3/2$,6-Lutidine FLP and halosilanes with H_2/CO_2

General Procedure

10 mol% B(C₆F₅)₃ (2.6 mg, 0.0051 mmol) in 0.4 mL C₆D₆ was transferred to a J-young tube, followed by the addition of Me₃Si-I (7.3 μ L, 0.051 mmol, 10 eq), 2,6-lutidine (6.0 μ L, 0.051 mmol, 10 eq) and 10 μ L toluene (internal standard). After freeze-pump-thaw degassing, the solution was kept frozen in a liquid nitrogen bath, 2 atm. ¹³CO₂ and 4 atm. H₂ was added to the J-young tube. After warming up back to room temperature, the J-young tube was heated in a 100°C oil bath.

Note: hydrogenation of 2,6-lutidine or 2,4,6-collidine to the corresponding amines was also observed under elongated heating.^[4]

Entry 1: B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Cl in C₆D₆

$$10 \text{ mol}\% \text{ B}(\text{C}_6\text{F}_5)_3$$

$$13 \text{CO}_2 + \text{H}_2$$
2 atm. 4 atm.
$$2,6-\text{Lutidine / Me}_3\text{Si-Cl (1:1)}$$

$$C_6\text{D}_6, 100^\circ\text{C}, 20 \text{ h}$$

$$(\text{C}_6\text{F}_5)_3\text{B}_0 + \text{H}$$

¹H NMR (400 MHz, C₆D₆) δ 8.37 (d, J = 209.0 Hz, [C₅H₃Me₂NH][<u>H</u>¹³CO₂B(C₆F₅)₃]).

¹³C{¹H} NMR (101 MHz, C₆D₆) δ 169.5 ([C₅H₃Me₂NH][H¹³CO₂B(C₆F₅)₃]); ¹³C NMR (101 MHz, C₆D₆) δ 169.5 (d, *J* = 208.3 Hz, [C₅H₃Me₂NH][H¹³CO₂B(C₆F₅)₃]).

Figure S 10. ¹H NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Cl, 20 hours at 100°C, C₆D₆

Figure S 11. ¹³C{¹H} NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Cl, 20 hours at 100°C, C₆D₆

Figure S 12. ¹³C NMR of $B(C_6F_5)_3/2$,6-Lutidine/Me₃Si-Cl, 20 hours at 100°C, C_6D_6

Entry 2: B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Cl in CDCl₃

 $10 \text{ mol}\% \text{ B}(\text{C}_{6}\text{F}_{5})_{3}$ $13 \text{CO}_{2} + \text{H}_{2} = 2,6-\text{Lutidine} / \text{Me}_{3}\text{Si-Cl} (1:1)$ $2 \text{ atm. 4 atm.} \quad CDCl_{3}, 100^{\circ}\text{C}, 20 \text{ h} \quad (C_{6}\text{F}_{5})_{3}\text{B} \xrightarrow{O} \text{H} \quad (V_{1}^{\circ}\text{H}) \xrightarrow{H} \text{H}_{1}^{\circ}$

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 209.1 Hz, [C₅H₃Me₂NH][<u>H</u>¹³CO₂B(C₆F₅)₃]); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.4 ([C₅H₃Me₂NH][H¹³<u>C</u>O₂B(C₆F₅)₃]).

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S 13. ¹H NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Cl, 20 hours at 100°C, CDCl₃

Figure S 14. ¹³C{¹H} NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Cl, 20 hours at 100°C, CDCl₃

Entry 3: B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Br in C₆D₆

$$10 \text{ mol}\% \text{ B}(\text{C}_6\text{F}_5)_3$$

$$13 \text{CO}_2 + \text{H}_2$$
2 atm. 4 atm.
$$2,6-\text{Lutidine} / \text{Me}_3\text{Si-Br} (1:1)$$

$$C_6\text{D}_6, 100^\circ\text{C}, 40 \text{ h}$$

$$Me_3\text{Si} - \text{O} - \text{SiMe}_3$$

$$H + H + H$$

$$8\%$$

$$83\%$$

¹H NMR (400 MHz, C₆D₆) δ 5.02 (d, J = 162.3 Hz, (Me₃SiO)₂¹³C<u>H</u>₂), 3.25 (d, J = 141.0 Hz, Me₃SiO¹³C<u>H</u>₃).

¹³C{¹H} NMR (101 MHz, C₆D₆) δ 84.4 ((Me₃SiO)₂^{<u>13</u>CH₂), 49.9 (Me₃SiO^{<u>13</u>CH₃).}}

Overall yield = 91% at 40 hours, $(Me_3SiO)_2^{13}CH_2$: $Me_3SiO^{13}CH_3$ = 1:11

Figure S 15. ¹H NMR of $B(C_6F_5)_3/2$,6-Lutidine/Me₃Si-Br, 40 hours at 100°C, C_6D_6

Figure S 16. ¹³C{¹H} NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Br, 40 hours at 100°C, C_6D_6

Entry 4: B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Br in CDCl₃

$$10 \text{ mol}\% \text{ B}(\text{C}_6\text{F}_5)_3$$

$$13\text{CO}_2 + \text{H}_2 = 2,6-\text{Lutidine} / \text{Me}_3\text{Si-Br (1:1)} + \text{H}_1 + \text{H}_2$$

$$2 \text{ atm. 4 atm.} = \text{CDCl}_3, 100^\circ\text{C}, 60 \text{ hours} = 73\%$$

¹H NMR (400 MHz, CDCl₃) δ 3.43 (d, J = 141.5 Hz, Me₃SiO¹³C<u>H</u>₃).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 50.2 (Me₃SiO<u>¹³C</u>H₃); ¹³C NMR (101 MHz, CDCl₃) δ 50.2 (q, *J* = 141.5 Hz, Me₃SiO<u>¹³C</u>H₃).

Overall yield = 73% at 60 hours, Me₃SiO¹³CH₃ only

Figure S 18. ¹³C ${^{1}H}$ NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Br, 60 hours at 100°C, CDCl₃

Figure S 19. ¹³C NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-Br, 60 hours at 100°C, CDCl₃

Entry 5: B(C₆F₅)₃/2,6-Lutidine/Me₃Si-I in C₆D₆

 $10 \text{ mol}\% \text{ B}(\text{C}_6\text{F}_5)_3$ $13\text{CO}_2 + \text{H}_2 \qquad 2,6-\text{Lutidine} / \text{Me}_3\text{Si-I} (1:1)$ $2 \text{ atm. 4 atm.} \qquad C_6\text{D}_6, 100^\circ\text{C}, 60\text{h} \qquad 9\% \qquad 76\%$

¹H NMR (400 MHz, C₆D₆) δ 3.25 (d, J = 141.0 Hz, Me₃SiO¹³C<u>H</u>₃);

¹³C{¹H} NMR (101 MHz, C₆D₆) δ 49.8 (Me₃SiO $\frac{13}{C}$ H₃), -4.3 ($\frac{13}{C}$ H₄);

¹³C NMR (101 MHz, C₆D₆) δ 49.8 (q, J = 141.0 Hz, Me₃SiO^{<u>13</u>CH₃), -4.3 (p, J = 125.6 Hz, <u>¹³C</u>H₄).}

Overall yield = 85% at 60 hours. ${}^{13}CH_4$: Me₃SiO¹³CH₃= 8.4:1

The overall yield at 60 hours = yield of methoxy species + yield of ¹³CH₄.

(The yield of ${}^{13}CH_4$ was determined based on the method reported by Chen et al^[2], the solubility of methane is estimated to be 0.021 M/atm according to the reported value and Henry's law^[5])

- Number of methoxy species is determined from ¹H NMR spectrum, using 0.01 mL toluene as internal standard
- Number of protons in the methyl groups of 0.01 mL toluene: 0.01 mL * 0.867 (g/mL) / 92.14 (g/mol) * 3 * 1000 (mmol/mol) = 0.2823 mmol
- 3. Number of methoxy species = number of protons in the methyl groups of 0.01 mL toluene * (¹/₃ * integration of acetal species / integration of methyl group of toluene) = ¹/₃ * 0.2823 mmol * 0.017 = 0.0016 mmol
- 4. Yield of methoxy species = number of methoxy species / theoretical number of methoxy species = 0.0016 mmol / 0.017 mmol * 100% = 9 %
- The total number of methane = number of methane in solution (n_{solution}) + number of methane in gas phase(n_{gas})
- 6. Number of methane in solution (n_{solution}) is derived from the integration of methoxy species in ¹³C NMR spectrum
- Number of methane in solution (n_{solution}) = integration of methane / integration of methoxy species * number of methoxy species = (0.5261 / 1) * 0.0016 mmol = 0.00084 mmol
- Concentration of methane in solution = number of methane in solution / volume of solution = 0.00084 mmol / 0.4 mL = 0.0021 mmol/mL = 0.0021 M
- 9. Pressure of methane in gas phase (P) = concentration of methane in solution / $K_{\rm H}$ = 0.0021 M / 0.021 M/atm = 0.1 atm
- 10. Number of methane in gas phase(n_{gas}) is determined using ideal gas law: n_{gas} = PV/RT = 0.1 atm * 2.2 mL / 82.057 mL atm K⁻¹mol⁻¹ / 298.15 K * 1000 mmol/mol = 0.0090 mmol
- 11. The total number of methane = number of methane in solution $(n_{solution})$ + number of methane in gas phase (n_{gas}) = 0.00084 mmol + 0.0090 mmol = 0.0098 mmol
- 12. Yield of methane = total number of methane / theoretical number of methane = 0.0098 mmol / 0.01285 mmol * 100% = 76%
- 13. The overall yield = yield of methane + yield of methoxy species = 76% + 9% = 85%
- 14. The ratio of methane: methoxy species = 76% : 9% = 8.4 : 1

Figure S 20. ¹H NMR of $B(C_6F_5)_3/2$, 6-Lutidine/Me₃Si-I, 60 hours at 100°C, C_6D_6

Figure S 21. ${}^{13}C{}^{1}H$ NMR of $B(C_6F_5)_3/2,6$ -Lutidine/Me₃Si-I, 60 hours at 100°C, C_6D_6

Figure S 22. ¹³C NMR of $B(C_6F_5)_3/2$,6-Lutidine/Me₃Si-I, 60 hours at 100°C, C_6D_6

Figure S 23. HSQC spectrum of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-I, 60 hours at 100°C, C₆D₆

Entry 6: B(C₆F₅)₃/2,6-Lutidine/Me₃Si-I in CDCl₃

 $10 \text{ mol}\% \text{ B}(\text{C}_6\text{F}_5)_3$ $1^{13}\text{CO}_2 + \text{H}_2 \xrightarrow{2,6-\text{Lutidine} / \text{Me}_3\text{Si-I} (1:1)} \text{CDCI}_3, 100^{\circ}\text{C}, 20 \text{ h}} \xrightarrow{1^{13}\text{CH}_4 + 1^{13}\text{CH}_3\text{I}} \text{85\%} 13\%$

¹H NMR (400 MHz, CDCl₃) δ 2.15 (d, J = 151.2 Hz, ¹³C<u>H</u>₃I), 0.23 (d, J = 125.6 Hz, ¹³C<u>H</u>₄).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ -4.2 (¹³CH₄), -23.5 (¹³CH₃I); ¹³C NMR (101 MHz, CDCl₃) δ -4.2 (p, J = 125.6 Hz, ¹³CH₄, observed as a triplet due to low intensity), -23.5 (q, J = 151.3 Hz, ¹³CH₃I).

Overall yield = 98% at 20 hours, ¹³CH₄: ¹³CH₃I = 6.5:1

- ★ The yield of ¹³CH₃I at 20 hours:
- 1. The total number of ¹³CH₃I is calculated from the integration in ¹H NMR spectrum using 0.01 mL toluene as internal standard.
- Number of protons in the methyl groups of 0.01 mL toluene: 0.01 mL * 0.867 (g/mL) / 92.14 (g/mol) * 3 * 1000 (mmol/mol) = 0.2823 mmol
- 3. Number of ¹³CH₃I = number of protons in the methyl groups of 0.01 mL toluene * ($\frac{1}{3}$ * integration of ¹³C-H₃I / integration of methyl group of toluene) = $\frac{1}{3}$ * 0.2823 mmol * 0.0184 = 0.0017 mmol
- 4. Yield of ${}^{13}CH_3I$ = number of ${}^{13}CH_3I$ / theoretical number of ${}^{13}CH_3I$ = 0.0017 mmol / 0.01285 mmol * 100% = 13%
- ✤ The yield of ¹³CH₄ at 20 hours:
- The total number of methane = number of methane in solution (n_{solution}) + number of methane in gas phase(n_{gas}).
- 2. Number of methane in solution (n_{solution}) is derived from the integration in ¹H NMR spectrum using 0.01 mL toluene as internal standard.
- Number of protons in the methyl groups of 0.01 mL toluene: 0.01 mL * 0.867 (g/mL) / 92.14 (g/mol) * 3 * 1000 (mmol/mol) = 0.2823 mmol
- 4. Number of methane in solution = number of protons in the methyl groups of 0.01 mL toluene * ($\frac{1}{4}$ * integration of ¹³C-*H*₄ / integration of methyl group of toluene) = $\frac{1}{4}$ * 0.2823 mmol * 0.0132 = 0.00093 mmol
- 5. Concentration of methane in solution = number of methane in solution / volume of solution = 0. 00093 mmol / 0.4 mL = 0.0023 mmol/mL = 0. 0023 M
- 6. Pressure of methane in gas phase (P) = concentration of methane in solution / K_H = 0. 0023 M / 0.021 M/atm = 0.11 atm
- 7. Number of methane in gas phase(n_{gas}) is determined using ideal gas law: n_{gas} = PV/RT = 0.11 atm * 2.2 mL / 82.057 mL atm K⁻¹ mol⁻¹ / 298.15 K * 1000 mmol/mol = 0.010 mmol
- 8. The total number of methane = number of methane in solution $(n_{solution})$ + number of methane in gas phase (n_{gas}) = 0.00093 mmol + 0.010 mmol = 0.0109 mmol
- 9. Yield of methane = total number of methane / theoretical number of methane = 0.0109 mmol / 0.01285 mmol * 100% = 85%
- 10. The overall yield = yield of ${}^{13}CH_4$ + yield of ${}^{13}CH_3I$ = 85% + 13% = 98%
- 11. The ratio of ¹³CH₄: ¹³CH₃I = 85%: 13% = 6.5:1

Figure S 24. ¹H NMR of $B(C_6F_5)_3/2$, 6-Lutidine/Me₃Si-I, 20 hours at 100°C, CDCl₃

Figure S 25. ¹³C ^{1}H NMR of B(C₆F₅)₃/2,6-Lutidine/Me₃Si-I, 20 hours at 100°C, CDCl₃

Figure S 26. ¹³C NMR of $B(C_6F_5)_3/2$, 6-Lutidine/Me₃Si-I, 20 hours at 100°C, CDCl₃

Entry 7: B(C₆F₅)₃/2,6-Lutidine/Et₃Si-I in C₆D₆

¹H NMR (600 MHz, C₆D₆) δ 5.06 (d, J = 161.7 Hz, (Et₃SiO)₂¹³C<u>H</u>₂), 3.31 (d, J = 141.0 Hz, Et₃SiO¹³C<u>H</u>₃).

 $^{13}C{^{1}H} NMR (101 MHz, C_6D_6) \delta 84.5 ((Et_3SiO)_2 \frac{^{13}C}{^{13}C}H_2), 50.5 (Et_3SiO \frac{^{13}C}{^{13}C}H_3).$

Overall yield = 77% at 60 hours, $(Et_3SiO)_2^{13}CH_2$: $Et_3SiO^{13}CH_3$ = 19:1

Figure S 27. ¹H NMR of B(C₆F₅)₃/2,6-Lutidine/Et₃Si-I, 60 hours at 100°C, C₆D₆

Figure S 28. ¹³C{¹H} NMR of B(C₆F₅)₃/2,6-Lutidine/Et₃Si-I, 60 hours at 100°C, C₆D₆

Entry 8: $B(C_6F_5)_3/2,6$ -Lutidine/Et₃Si-I in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 3.47 (d, *J* = 141.5 Hz, Et₃SiO¹³C<u>H</u>₃), 2.14 (d, *J* = 151.2 Hz, ¹³C<u>H</u>₃I). ¹³C NMR (101 MHz, CDCl₃) δ 50.8 (q, *J* = 141.4 Hz, Et₃SiO^{1<u>13</u>C}H₃), -23.5 (q, *J* = 151.2 Hz, ^{<u>13</u>C}H₃I). Overall yield = 97% at 40 hours, ¹³CH₃I: Et₃SiO¹³CH₃= 5.5:1

Figure S 29. ¹H NMR of B(C₆F₅)₃/2,6-Lutidine/Et₃Si-I, 40 hours at 100°C, CDCl₃

Figure S 30. ¹³C NMR of $B(C_6F_5)_3/2$, 6-Lutidine/Et₃Si-I, 40 hours at 100°C, CDCl₃

Figure S 31. HSQC spectrum of B(C₆F₅)₃/2,6-Lutidine/Et₃Si-I, 40 hours at 100°C, CDCl₃

6. B(C₆F₅)₃/2,4,6-Collidine FLP and halosilanes with H_2/CO_2

Entry 9: B(C₆F₅)₃/2,4,6-Collidine/Et₃Si-I in C₆D₆

¹H NMR (500 MHz, C_6D_6) δ 5.06 (d, J = 161.7 Hz, (Et₃SiO)₂¹³C<u>H</u>₂),

¹³C{¹H} NMR (101 MHz, C₆D₆) δ 84.5 ((Et₃SiO)₂¹³<u>C</u>H₂).

Overall yield = 8% at 40 hours; $(Et_3SiO)_2^{13}CH_2$

Figure S 32. ¹H NMR of B(C₆F₅)₃/2,4,6-Collidine/Et₃Si-I, 40 hours at 100°C, C₆D₆

Figure S 33. ¹³C{¹H} NMR of $B(C_6F_5)_3/2,4,6$ -Collidine/ Et₃Si-I, 40 hours at 100°C, C_6D_6 Entry 10: $B(C_6F_5)_3/2,4,6$ -Collidine/Et₃Si-I in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 5.06 (d, J = 161.6 Hz, (Et₃SiO)₂¹³C<u>H</u>₂), 3.47 (d, J = 141.4 Hz, Et₃SiO¹³C^H₃).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 84.2 ((Et₃SiO)₂^{<u>13</u>C</sub>H₂), 50.6 (Et₃SiO<u>¹³C</u>H₃).}

Overall yield = 12% at 40 hours; Et₃SiO¹³CH₃: (Et₃SiO)₂¹³CH₂= 3.4:1.

Figure S 34. ¹H NMR of B(C₆F₅)₃/2,4,6-Collidine/Et₃Si-I, 40 hours at 100°C, CDCl₃

Figure S 35. ¹³C{¹H} NMR of B(C₆F₅)₃/2,4,6-Collidine/Et₃Si-I, 40 hours at 100°C, CDCl₃

7. $B(C_6F_5)_3/2$,6-Lutidine FLP and halosilanes with D_2/CO_2

Reaction for 24 hours

10 mol% B(C₆F₅)₃ (2.6 mg, 0.0051 mmol) in 0.4 mL CDCl₃ was transferred to a J-young tube, followed by the addition of Et₃Si-I (8.9 μ L, 0.051 mmol, 10 eq), 2,6-lutidine (6.0 μ L, 0.051 mmol, 10 eq) and 10 μ L toluene (internal standard). After freeze-pump-thaw degassing, the solution was kept frozen in a liquid nitrogen bath, 2 atm. ¹³CO₂ and 2 atm. D₂ was added to the J-young tube. After warming up back to room temperature, the J-young tube was heated in a 100°C oil bath for 24 hours. 0.8 mg [13C]Dipp-urea (¹³C enriched 1,3-bis(2,6-diisopropylphenyl)urea (MW = 381.28 g/mol)) was added from stock solution to the crude reaction mixture as internal standard for yield determination.

Note: H/D scramble at the methyl groups of 2,6-lutidine was observed.^[6]

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 84.3 (s, 0.68C, (Et₃SiO)₂¹³CH₂), 84.0 (t, 2.64C, *J* = 24.8 Hz, (Et₃SiO)₂¹³CHD), 83.6 (p, 0.72C, *J* = 24.7 Hz, (Et₃SiO)₂¹³CD₂), 50.8 (s, 0.14C, Et₃SiO¹³CH₃), 50.5 (t, 0.75C, *J* = 21.7 Hz, Et₃SiO¹³CH₂D), 50.2 (p, 1.11C, *J* = 21.7 Hz, Et₃SiO¹³CHD₂), 49.7 (sept, 0.54C, *J* = 21.6 Hz, Et₃SiO¹³CD₃).

Overall yield = 54% at 24 hours, acetal: methoxy = 1.6 : 1

Figure S 36. ¹³C¹H} NMR spectrum, acetal species region, 24 hours at 100°C, CDCl₃

f1 (ppm)

Figure S 37. ${}^{13}C{}^{1}H$ NMR (bottom) and ${}^{13}C$ NMR (top) spectra, acetal species region, 24 hours at 100°C, CDCl₃

Figure S 38. ¹³C¹H} NMR spectrum, methoxy species region, 24 hours at 100°C, CDCl₃

Figure S 39. ${}^{13}C{}^{1}H$ NMR (bottom) and ${}^{13}C$ NMR (top) spectra, methoxy species region, 24 hours at 100°C, CDCl₃

Figure S 40. ¹³C{¹H} NMR spectrum of $B(C_6F_5)_3/2$,6-Lutidine/Et₃Si-I, 20 hours at 100°C, internal standard added, CDCl₃

Reaction for 70 hours

10 mol% B(C₆F₅)₃ (2.6 mg, 0.0051 mmol) in 0.4 mL CDCl₃ was transferred to a J-young tube, followed by the addition of Et₃Si-I (8.9 μ L, 0.051 mmol, 10 eq), 2,6-lutidine (6.0 μ L, 0.051 mmol, 10 eq) and 10 μ L toluene (internal standard). After freeze-pump-thaw degassing, the solution was kept frozen in a liquid nitrogen bath, 2 atm. ¹³CO₂ and 2 atm. D₂ was added to the J-young tube. After warming up back to room temperature, the J-young tube was heated in a 100°C oil bath for 70 hours. 5.2 mg [13C]Dipp-urea (¹³C enriched 1,3-bis(2,6-diisopropylphenyl)urea (MW = 381.28 g/mol)) was added to the crude reaction mixture as internal standard for yield determination.

¹³C{¹H} NMR (126 MHz, CDCl₃) δ -23.39 (s, 1C, ¹³CH₃I), -23.41 (t, 4.74C, J = 23.4 Hz, ¹³CDH₂I), -23.44 (p, 4.65C, J = 23.2 Hz, ¹³CD₂HI), -23.47 (septet, 3.62C, J = 23.1 Hz, ¹³CD₃I).

Overall yield = 78% at 70 hours, iodomethane only

The total integration of each isotopologues is derived from the integration of their central resonance based on the 1:1:1 ratio of the triplet resonance of ¹³CDH₂I; 1:2:3:2:1 ratio of the pentet resonance of ¹³CD₂HI and the 1:3:6:7:6:3:1 ratio of the septet resonance of ¹³CD₃I.

Figure S 41. ¹³C{¹H} NMR spectrum, iodomethane region, 70 hours at 100°C, CDCl₃

Figure S 42. ¹³C{¹H} NMR (bottom) and ¹³C NMR (top) spectra, iodomethane region, 70 hours at 100°C, CDCl₃

Figure S 43. ¹³C{¹H} NMR spectrum of $B(C_6F_5)_3/2$,6-Lutidine/Et₃Si-I, 70 hours at 100°C, internal standard added, CDCl₃

8. Experimental References

- [1] S. D. Tran, T. A. Tronic, W. Kaminsky, D. Michael Heinekey, J. M. Mayer, *Inorganica Chimica Acta* **2011**, *369*, 126-132.
- [2] J. Chen, L. Falivene, L. Caporaso, L. Cavallo, E. Y. X. Chen, *Journal of the American Chemical Society* **2016**, *138*, 5321-5333.

- [3] aC. Altona, J. H. Ippel, A. J. A. W. Hoekzema, C. Erkelens, M. Groesbeek, L. A. Donders, Magnetic Resonance in Chemistry 1989, 27, 564-576; bJ. John, E. Gravel, A. Hagège, H. Li, T.
 Gacoin, E. Doris, Angewandte Chemie International Edition 2011, 50, 7533-7536; cM. Ahrens, G. Scholz, T. Braun, E. Kemnitz, Angewandte Chemie International Edition 2013, 52, 5328-5332.
- [4] T. Mahdi, J. N. del Castillo, D. W. Stephan, *Organometallics* **2013**, *32*, 1971-1978.
- [5] N. A. Darwish, K. A. M. Gasem, R. L. Robinson, Jr., *Journal of Chemical & Engineering Data* **1994**, *39*, 781-784.
- [6] X. Zhang, L. Wang, Q. Wang, F. Ge, X. Wang, *ChemistrySelect* **2019**, *4*, 8655-8660.

9. DFT computational Details:

The quantum chemical DFT calculations have been performed with the TURBOMOLE 7.4 suite of programs¹ The structures are fully optimized at the TPSS-D3/def2-TZVP + COSMO level of theory, which combines the TPSS meta-GGA density functional² with the BJ-damped DFT-D3 dispersion correction^{3, 4} and the def2-TZVP basis set,^{5, 6} using the Conductor-like Screening Model (COSMO) continuum solvation model⁷ for CHCl₃ solvent (dielectric constant $\varepsilon = 4.8$ and solvent diameter R_{solv} = 3.17 Å). The density-fitting RI-J approach^{5, 8, 9} is used to accelerate the geometry optimization and numerical harmonic frequency calculations¹⁰ in solution. The optimized structures are characterized by frequency analysis to identify the nature of located stationary points (no imaginary frequency for true minima and only one imaginary frequency for transition state) and to provide thermal corrections (at 298.15 K and 1 atm) according to the modified ideal gas–rigid rotor–harmonic oscillator model.¹¹ This choice of dispersion-corrected meta-GGA functional makes the efficient exploration of all potential reaction paths possible.

The final solvation free energies in CHCl₃ are computed with the COSMO-RS solvation model¹² (parameter file: BP_TZVP_C30_1601.ctd) using the COSMOtherm program package^{[13} on the above TPSS-D3 optimized structures, and corrected by +1.89 kcal mol⁻¹ to account for higher reference solute concentration of $1 \text{ mol} \cdot L^{-1}$ usually used in solution. To check the effects of the chosen DFT functional on the reaction energies and barriers, single-point calculations at the meta-GGA TPSS-D3² and hybrid-meta-GGA PW6B95-D314 levels are performed using a larger def2-QZVP basis set.6, 15 The final reaction Gibbs free energies (ΔG) are determined from the electronic single-point energies plus TPSS-D3 thermal corrections and COSMO-RS solvation free energies. The computed relative free energies from both DFT functionals are mostly in very good overall agreement of 0.1 ± 2.2 kcal/mol (average \pm standard deviations), while as can be expected, about 2.8 \pm 2.2 kcal/mol (average \pm standard deviations) higher reaction barriers are observed at the PW6B95-D3 level. In our discussion, higher-level PW6B95-D3 Gibbs free energies (in kcal/mol, at 298.15 K and 1 mol/L concentration) will be used in our discussion unless specified otherwise. The applied DFT methods in combination with the large AO basis set provide usually accurate electronic energies leading to errors for chemical energies (including barriers) on the order of typically 1-2 kcal/mol. This has been tested thoroughly for the huge data base GMTKN55¹⁶ which is the common standard in the field of DFT benchmarking.

Table S1. TPSS-D3/def2-TZVP + COSMO computed imaginary frequency (ImF), zero-point energies (ZPE), gas-phase enthalpic (Hc) and Gibbs free-energy (Gc) corrections; the COSMO-RS computed solvation enthalpic (Hsol) and Gibbs free-energy (Gsol) corrections in THF solution; TPSS-D3/def2-QZVP and PW6B95-D3/def2-QZVP single-point energies (TPSS-D3 and PW6B95-D3); the total PW6B95-D3 free energies GP; the relative electronic energies (Δ ET and Δ EP) and Gibbs free-energies (Δ GT and Δ GP) at the TPSS-D3 and PW6B95-D3 levels.

Reactions	Im	ZPE	Hc	Gc	Hsol	Gsol	TPSS-D3	PW6B95-D3	Gp	$\Delta E_{\rm T}$	ΔE_P	$\Delta G_{\rm P}$	$\Delta G_{\rm T}$
in CHCl ₃ solution	cm ⁻¹	kcal	kcal	kcal	kcal	kcal	E_h	$\mathbf{E}_{\mathbf{h}}$	E_h	kcal	kcal	kcal	kcal
Reaction of CO_2 with separated FLP of Lutidine (Lut) and $B(C_6F_5)_3$ is 11.5 kcal/mol endergonic, thus thermdynamically not favorable.													
$Lut + B(C_6F_5)_3 + CO_2$	0	191.46	217.36	126.20	-31.12	-19.87	-2725.46662	-2728.25847	-2728.07999	0.00	0.00	0.00	0.00
LutCOOB(C ₆ F ₅) ₃	0	194.14	219.60	154.11	-28.95	-22.89	-2725.47922	-2728.27381	-2728.06170	-7.91	-9.63	11.47	13.19
Nucleophilic replacement of Lutidine with SiMe3I is 5.1 kcal/mol endergonic to release iodide anion.													
$SiMe_3I + Lut$	0	159.64	170.43	120.40	-23.53	-13.58	-1034.18866	-1035.19635	-1035.02010	0.00	0.00	0.00	0.00
$LutSiMe_3^+ + I^-$	0	162.28	172.91	128.18	-140.66	-111.92	-1034.03690	-1035.04390	-1035.01197	95.23	95.66	5.11	4.68
H_2 activation with the Lut.B($C_6F_5)_3 a$	dduct is fa	acile to for	rm reduct	ive hydrob	orate salt	[LutH][HB(C ₆]	$F_{5}_{3}](\mathbf{A})$					
$H_2 + Lut.B(C_6F_5)_3$	0	192.29	217.85	146.91	-23.51	-17.21	-2537.96701	-2540.56719	-2540.35448	0.00	0.00	0.00	0.00
$Lut + H_2 + B(C_6F_5)_3$	0	190.63	216.37	131.15	-28.74	-18.09	-2537.94178	-2540.54054	-2540.35132	15.83	16.73	1.99	1.09
TS1	47i	193.52	218.62	152.58	-21.10	-16.52	-2537.94828	-2540.54577	-2540.32593	11.75	13.44	17.91	16.23
$HB(C_6F_5)_3$ + $LutH^+$	0	198.18	222.26	144.72	-95.92	-87.47	-2537.86104	-2540.46277	-2540.36550	-9.30	-9.65	-8.01	-7.65
Α	0	198.08	222.91	157.79	-29.89	-24.55	-2537.98183	-2540.58258	-2540.36724	66.49	65.53	-6.91	-5.95
forming salt [LutH][B(C ₆ F ₅	5)3 OCHC	0] (B) afte	er CO2 add	dition									
$\mathbf{A} + \mathbf{CO}_2$	0	205.24	232.31	151.96	-32.93	-25.26	-2726.68726	-2729.47646	-2729.26852	0.00	0.00	0.00	0.00
$A.CO_2$	0	204.92	232.92	160.75	-33.94	-28.28	-2726.68327	-2729.47488	-2729.26076	2.50	0.99	4.87	6.38
TS2	254i	202.93	230.40	159.14	-31.80	-25.64	-2726.67019	-2729.45413	-2729.23836	10.71	14.01	18.92	15.62
$B^- + LutH^+$	0	207.35	233.35	151.74	-106.97	-92.42	-2726.57938	-2729.37392	-2729.27336	67.70	64.34	-3.04	0.31
В	0	206.94	233.96	164.54	-31.69	-24.32	-2726.70895	-2729.50336	-2729.27688	-13.61	-16.88	-5.25	-1.98
With more basic 2,4,6-collidi	ine (Col)), H_2 activ	ation with	the Col.1	$B(C_6F_5)_3$ as	dduct is 1.0) kcal/mol more	e favorable to fo	rm [ColH][HB($(C_6F_5)_3]$ (c	A)		
$Col.B(C_6F_5)_3+H_2\\$	0	208.82	235.76	161.97	-24.59	-18.02	-2577.31441	-2579.95651	-2579.72109	0.00	0.00	0.00	0.00
$B(C_6F_5)_3+Col+H_2$	0	208.13	234.67	147.34	-30.12	-18.99	-2577.28672	-2579.92716	-2579.71358	17.37	18.42	4.71	3.66
cTS1	80i	208.89	235.34	166.83	-21.90	-17.02	-2577.29670	-2579.93590	-2579.69414	11.11	12.93	16.91	15.08
cA	0	215.15	241.02	173.79	-30.77	-25.19	-2577.32989	-2579.97247	-2579.73265	-9.71	-10.01	-7.25	-6.95
$ColH^+ + A^-$	0	215.65	240.55	160.87	-95.09	-86.41	-2577.21183	-2579.85540	-2579.73072	64.37	63.45	-6.04	-5.12

	followed by kinetically less fa	ivorable	e CO2 red	uction with	th hydrob	orate cA .								
	$\mathbf{cA} + \mathbf{CO}_2$	0	222.31	250.42	167.97	-33.81	-25.90	-2766.03531	-2768.86634	-2768.63392	0.00	0.00	0.00	0.00
	cTS2	0	220.74	249.45	176.02	-32.92	-26.03	-2766.01840	-2768.84434	-2768.60231	10.62	13.81	19.84	16.65
	сВ	0	224.19	252.12	181.07	-32.44	-24.81	-2766.05679	-2768.89293	-2768.64090	-13.48	-16.68	-4.38	-1.17
-	$ColH^+ + B^-$	0	224.82	251.63	167.89	-106.14	-91.37	-2765.93016	-2768.76655	-2768.63858	65.98	62.62	-2.92	0.44
	Silane SiMe3H formation via the reduction of SiMe ₃ I with [LutH][HB(C_6F5) ₃] salt is 10.1 kcal/mol endergonic thus unlikely.													
	$\mathbf{A} + \mathbf{SiMe_3I}$	0	267.96	298.63	207.26	-40.06	-30.45	-3245.03164	-3248.28837	-3248.00057	0.00	0.00	0.00	0.00
	LutH ⁺ .ISiMe ₃ .A ⁻	0	269.57	300.64	223.33	-42.20	-34.40	-3245.02633	-3248.28414	-3247.98005	3.33	2.65	12.87	13.55
	LutHI.SiMe ₃ H.B(C_6F_5) ₃	0	268.32	299.51	221.14	-45.67	-32.71	-3245.02178	-3248.27615	-3247.97286	6.18	7.67	17.39	15.91
-	$LutHI + SiMe_3H + B(C_6F_5)_3$	0	267.92	297.67	195.00	-59.89	-40.43	-3244.98693	-3248.23989	-3247.98453	28.05	30.42	10.07	7.70
	Facile nucleophilic replaceme	nt of Bf	⁴ 3OCHO-	anion with	h SiMe ₃ I t	o form add	duct C and	salt LutHI						
	$\mathbf{B} + SiMe_3I$	0	276.82	309.68	214.02	-41.86	-30.22	-3433.75876	-3437.20915	-3436.91021	0.00	0.00	0.00	0.00
	$B^{-}.SiMe_{3}I + LutH^{+}$	0	277.78	310.54	214.59	-107.33	-92.82	-3433.64372	-3437.09493	-3436.89486	72.19	71.67	9.64	10.15
	TS3 ⁻	46i	277.57	310.01	214.57	-104.32	-91.32	-3433.64093	-3437.08991	-3436.88748	73.94	74.82	14.27	13.39
	$\mathbf{C} + LutHI$	0	279.41	311.07	216.88	-61.16	-42.85	-3433.74778	-3437.19619	-3436.91283	6.89	8.13	-1.64	-2.89
	with SiMe ₃ OCHO (D) being .	3.9 kcal	l/mol bou	nd to $B(C_{0})$	$_{6}F_{5}$)3 with	in adduct (С							
	$D + B(C_6F_5)_3$	0	178.96	204.39	124.48	-25.33	-16.76	-2808.35525	-2811.15657	-2810.97889	0.00	0.00	0.00	0.00
-	С	0	180.26	205.82	139.46	-20.58	-15.84	-2808.38096	-2811.18512	-2810.98511	-16.13	-17.91	-3.90	-2.12
	$D/B(C_6F_5)_3$ as FLP for H_2 -act	tivation	encounte	er a sizeał	ole barriei	r of 23.6 ka	cal/mol (vie	a TS4a)						
	$\mathbf{C} + \mathbf{H}_2$	0	186.60	214.23	138.59	-21.24	-14.77	-2809.56155	-2812.36106	-2812.15772	0.00	0.00	0.00	0.00
	TS4a	89i	187.41	214.35	144.41	-20.61	-15.66	-2809.53359	-2812.32827	-2812.12008	17.55	20.58	23.62	20.59
-	DH ⁺ A ⁻	0	190.55	217.50	147.61	-26.94	-21.45	-2809.53212	-2812.33005	-2812.12599	18.47	19.46	19.91	18.92
	Further reaction of D with SiM	1e ₃ I and	d then HB	$(C_6F_5)_3^- i$	s kinectia	lly very fac	cile and -1.	3.3 kcal/mol exe	ergonic					
	$\mathbf{D} + SiMe_3I$	0	154.31	166.86	112.86	-20.78	-11.18	-1305.78272	-1306.98833	-1306.82028	0.00	0.00	0.00	0.00
	D. SiMe ₃ I	0	154.76	168.14	125.20	-20.33	-12.23	-1305.78429	-1306.98947	-1306.80643	-0.99	-0.72	8.69	8.42
	TS4	23i	153.90	167.46	123.74	-23.95	-15.81	-1305.77246	-1306.97635	-1306.80136	6.44	7.52	11.88	10.80
	$\mathbf{E}^+ + \mathbf{I}^-$	0	156.36	168.90	120.15	-139.36	-110.34	-1305.62266	-1306.82965	-1306.80801	100.44	99.57	7.70	8.57
	$\mathbf{D} + SiMe_3I + \mathbf{A} - LutHI$	0	253.24	284.53	193.22	-10.09	-8.72	-3218.39773	-3221.55984	-3221.25980	0.00	0.00	0.00	0.00
	TS5	48i	253.34	284.76	206.86	-22.95	-17.47	-3218.38988	-3221.54910	-3221.24428	4.92	6.74	9.74	7.92
	$E + B(C_6F_5)_3$	0	256.37	286.82	196.95	-27.53	-17.69	-3218.39468	-3221.55668	-3221.26498	1.91	1.98	-3.25	-3.32
	$\mathbf{E} + \mathbf{A} - \mathbf{H}_2 - \mathbf{Lut}$	0	263.82	293.36	223.59	-28.68	-24.15	-3218.43473	-3221.59873	-3221.28091	-23.22	-24.40	-13.25	-12.06

Once formed, acetal SimOCH	2OSim (E) can be	e slowly d	estroyed b	y SiMe ₃ + t	ransfer fro	om SiMe ₃ I and s	ubsequent H ⁻ tr	ansfer from A .				
$\mathbf{E} + \mathrm{SiMe}_{3}\mathrm{I}$	0	231.72	249.29	185.33	-22.98	-12.12	-1715.82216	-1717.38844	-1717.10638	0.00	0.00	0.00	0.00
TS6	72i	232.36	250.40	198.56	-29.96	-18.92	-1715.79873	-1717.36337	-1717.07409	14.70	15.73	20.26	19.22
$\mathbf{F}^+ + \mathbf{I}^-$	0	234.38	251.66	193.94	-137.35	-107.76	-1715.66580	-1717.23203	-1717.08868	98.12	98.15	11.10	11.07
$\mathbf{E} + \mathbf{A}$ - LutHI	0	330.65	366.96	265.70	-12.29	-9.66	-3628.43716	-3631.95995	-3631.54589	0.00	0.00	0.00	0.00
$\mathbf{F}^+ + \mathbf{A}^-$	0	333.38	368.39	268.79	-88.78	-78.68	-3628.31569	-3631.83639	-3631.52741	76.22	77.53	11.59	10.29
TS7	207i	330.66	367.50	279.25	-29.19	-22.40	-3628.41973	-3631.93806	-3631.52574	10.94	13.73	12.64	9.85
$\mathbf{F} + B(C_6F_5)_3 + O(SiMe_3)_2$	0	331.86	367.31	253.66	-32.90	-20.26	-3628.45194	-3631.97465	-3631.59366	-9.27	-9.23	-29.98	-30.02
Further SiMe3 ⁺ transfer to CH	Further SiMe ₃ ⁺ transfer to CH ₃ OSiMe ₃ (\mathbf{F}) followed by hydride transfer from \mathbf{A} is still possible but over sizeable barrier of 24.4 kcal/mol (via TS9 ⁺)												
$\mathbf{F} + SiMe_3I$	0	165.29	177.86	124.08	-20.03	-10.34	-1231.69790	-1232.82780	-1232.64052	0.00	0.00	0.00	0.00
F.SiMe ₃ I	0	166.16	179.34	137.05	-15.73	-9.47	-1231.70529	-1232.83528	-1232.62895	-4.64	-4.69	7.26	7.32
TS8	0	166.70	179.79	137.87	-32.11	-20.33	-1231.67620	-1232.80456	-1232.61423	13.61	14.59	16.50	15.52
$G^+ + I^-$	0	168.14	180.40	132.66	-138.89	-110.15	-1231.53487	-1232.66565	-1232.62375	102.30	101.75	10.52	11.07
$G^+ + LutHI$	0	267.29	284.16	220.64	-86.80	-68.28	-1559.21547	-1560.69326	-1560.44443	0.00	0.00	10.52	11.07
TS9 ⁺	399i	262.63	281.88	226.69	-56.25	-46.36	-1559.24352	-1560.71272	-1560.42234	-17.60	-12.21	24.39	19.55
$CH_3I + O(SiMe_3)_2 + LutH^+$	0	263.93	281.38	205.72	-68.16	-56.67	-1559.24822	-1560.72884	-1560.48228	-20.55	-22.33	-13.23	-10.90
competitive hydride transfer	from A	to G +											
$\mathbf{F} + \mathbf{A} + SiMe_3I$ - LutHI	0	264.22	295.53	204.45	-9.34	-7.88	-3144.31290	-3147.39931	-3147.08004	0.00	0.00	0.00	0.00
$G^+ + A^-$	0	267.13	297.13	207.51	-90.32	-81.07	-3144.18477	-3147.27001	-3147.06249	80.41	81.14	11.01	10.28
TS10	534i	264.50	295.87	217.62	-27.62	-21.35	-3144.28036	-3147.35634	-3147.04055	20.42	26.97	24.78	18.23
$CH_4 + O(SiMe_3)_2 + B(C_6F_5)_3$	0	264.27	295.37	196.01	-24.43	-15.90	-3144.34975	-3147.43743	-3147.14136	-23.12	-23.92	-38.48	-37.69
2,4,6-Collidine (Col) is 1.9 kc	al/mol n	nore basi	c than 2,6	-lutidine ((Lut)								
$Col + LutH^+$	0	206.44	217.06	167.56	-66.56	-56.27	-694.00872	-694.75213	-694.56875	0.00	0.00	0.00	0.00
$Lut + ColH^+$	0	206.41	217.05	167.51	-64.34	-54.31	-694.01457	-694.75814	-694.57171	-3.67	-3.77	-1.86	-1.75
Potential trapping of $B(C_6F_5)_3$ with Lewis bases in CHCl ₃ solution													
$Lut + B(C_6F_5)_3$	0	184.29	207.96	132.02	-28.08	-19.16	-2536.76119	-2539.36459	-2539.17871	0.00	0.00	0.00	0.00
Lut.B(C_6F_5) ₃	0	185.95	209.44	147.77	-22.85	-18.28	-2536.78641	-2539.39125	-2539.18187	-15.83	-16.73	-1.99	-1.09
with 2.7 kcal/mol higher affi	nity of (Col than I	Lut that m	ay reduce	the H_2 -ac	tivation re	activity.						
$\operatorname{Col} + B(C_6F_5)_3$	0	201.79	226.26	148.21	-29.46	-20.06	-2576.10613	-2578.75122	-2578.54097	0.00	0.00	0.00	0.00
$Col.B(C_6F_5)_3$	0	202.48	227.34	162.84	-23.94	-19.09	-2576.13381	-2578.78056	-2578.54848	-17.37	-18.42	-4.71	-3.66
Halida anion E ⁻ Cl ⁻ and Br ⁻	is hour	d to R(C	(\mathbf{F}_{-})										

...Halide anion F^- , Cl^- and Br^- is bound to $B(C_6F_5)_3$

$B(C_6F_5)_3 + F^-$	0	94.53	114.73	52.22	-136.01	-102.49	-2309.51513	-2311.86513	-2311.93922	0.00	0.00	0.00	0.00
$FB(C_6F_5)_3^-$	0	94.66	114.46	59.44	-48.73	-41.85	-2309.68320	-2312.03662	-2312.00557	-105.47	-107.61	-41.64	-39.49
$B(C_6F_5)_3+Cl^-$	0	94.53	114.73	51.67	-122.03	-90.10	-2669.93294	-2672.52066	-2672.57589	0.00	0.00	0.00	0.00
$ClB(C_6F_5)_3^-$	0	94.16	114.07	59.13	-48.17	-42.15	-2670.02438	-2672.61507	-2672.58500	-57.38	-59.24	-5.71	-3.85
$B(C_6F_5)_3 + Br^-$	0	94.53	114.73	50.94	-115.78	-85.67	-4783.81610	-4787.29162	-4787.34094	0.00	0.00	0.00	0.00
$BrB(C_6F_5)_3Br^-$	0	93.78	113.94	58.17	-48.60	-42.55	-4783.89261	-4787.37090	-4787.34299	-48.01	-49.74	-1.29	0.44
$B(C_6F_5)_3+I^-$	0	94.53	114.73	50.53	-107.40	-80.35	-2507.30856	-2509.85749	-2509.89898	0.00	0.00	0.00	0.00
$IB(C_6F_5)_3^-$	0	93.75	113.97	58.05	-49.86	-43.55	-2507.37094	-2509.92203	-2509.89592	-39.14	-40.50	1.92	3.28
Halide anions are bound to Lut	H^+ can	tion											
$LutH^+ + Cl^-$	0	99.19	105.53	71.01	-159.13	-126.31	-787.83554	-788.52158	-788.60368	0.00	0.00	0.00	0.00
LutHCl	0	98.62	104.74	77.82	-40.18	-24.40	-788.01333	-788.69628	-788.60813	-111.57	-109.63	-2.80	-4.74
$LutH^+ + I^-$	0	99.19	105.53	69.88	-144.50	-116.55	-625.21115	-625.85841	-625.92677	0.00	0.00	0.00	0.00
LutHI	0	99.15	105.25	77.42	-40.58	-27.01	-625.36682	-626.01107	-625.92773	-97.69	-95.80	-0.60	-2.49
Salt LutHCl is also bound to B($C_{6}F_{5})_{3}$	1											
$LutHCl + B(C_6F_5)_3$	0	193.16	217.99	138.92	-54.90	-35.87	-2997.63566	-3000.57031	-3000.40007	0.00	0.00	0.00	0.00
$LutH^+ + ClB(C_6F_5)_3^-$	0	193.35	218.12	139.57	-99.99	-89.83	-2997.54931	-3000.49001	-3000.40472	54.19	50.39	-2.92	0.88
LutHClB(C ₆ F ₅) ₃	0	193.06	218.65	152.37	-30.55	-24.90	-2997.67479	-3000.61507	-3000.40892	-24.55	-28.09	-5.56	-2.02

Table S2. TPSS-D3/def2-TZVP + COSMO optimized Cartesian coordinates (in Å) in CHCl3 solution. Each structure is labeled by the specific name (See Table S1), followed by the number of atoms, the total energy (in hartrees), and the detailed atomic coordinates (in double-column text list).

A.	CO_2 : complete	x of [LutH][H	$IB(C_6F_5)_3$ and CO	D_2 C	4.6634520	1.8657727	1.1616016
56	<u>2</u> · · · · · · · · · · · · · · · · · · ·			H	5.4512271	1.3518402	1.7128974
En	ergy = -2726.	566212141		Н	4.9221016	2.9290628	1.0966312
В	-0.3013620	0.3551583	0.6199155	Н	3.7254635	1.7835558	1.7162831
С	-1.2843824	-0.1293539	1.8401267	С	1.8849510	1.5516523	-2.8252182
С	-1.1985964	0.4568739	-0.7439572	Н	1.6441894	2.5971685	-2.6152972
С	1.0699925	-0.5357771	0.5176905	Н	1.9308096	1.4002098	-3.9039684
С	-1.3025272	-1.3824459	2.4505417	Н	1.0756205	0.9319913	-2.4230163
С	-2.2342683	0.7666785	2.3357193	Н	2.7022453	2.1393436	-0.4686222
С	-1.3371623	1.6410945	-1.4655006	0	1.8421990	3.6065295	0.6064344
С	-1.9703055	-0.6028090	-1.2239451	С	0.8946472	3.8669551	1.2484692
С	1.9513660	-0.5006079	1.6037615	0	-0.0232070	4.1660186	1.8958050
С	1.5217012	-1.3132588	-0.5475855				
С	-2.1717693	-1.7276745	3.4835186	A	- : anion HB(C	$C_{6}F_{5})_{3}^{-}$	
F	-0.4485884	-2.3615238	2.0479186	35	5	/ -	
С	-3.1253714	0.4685085	3.3618231	Eı	hergy = -2210	260699305	
F	-2.3280485	2.0106799	1.7994056	В	-0.0149056	-0.0067681	0.6432442
С	-2.1554146	1.7782503	-2.5853727	С	0.9195088	-1.2744247	0.1936152
F	-0.6442858	2.7588219	-1.1057141	С	-1.5783824	-0.1699714	0.1857561
С	-2.8048406	-0.5176537	-2.3327664	С	0.6302561	1.4314031	0.1992463
F	-1.9149741	-1.8051295	-0.5988641	С	1.8189725	-1.2977193	-0.8711092
С	3.1639648	-1.1780200	1.6561215	С	0.8737712	-2.4598237	0.9293312
F	1.6340649	0.2405595	2.6981037	С	-2.5703849	0.5153108	0.8897350
С	2.7368246	-1.9984669	-0.5520227	С	-2.0612972	-0.9662340	-0.8513465
F	0.7869412	-1.4383214	-1.6859736	C	0.1923303	2.2520499	-0.8387498
С	-3.0922426	-0.7941353	3.9450791	C	1.7158048	1.9420963	0.9130643
F	-2.1366434	-2.9603352	4.0370076	C	2.6278045	-2.3885075	-1.1813904
F	-4.0198013	1.3829589	3.7980975	F	1.9352663	-0.2255741	-1.7002665
С	-2.8974858	0.6879799	-3.0232879	C	1.6561544	-3.5781214	0.6571793
F	-2.2333826	2.9527430	-3.2495222	F	0.0173634	-2.5726208	1.9792921
F	-3.5198246	-1.5825706	-2.7534053	C	-3.9306402	0.4233152	0.6121210
C	3.5664761	-1.9348980	0.5599309	F	-2.2236029	1.3439093	1.9105532
F	3.9689726	-1.0894754	2.7374693	C	-3.4124062	-1.0961840	-1.1659114
F	3.1250170	-2.7122760	-1.6308405	F	-1.2042687	-1.6607348	-1.6478165
F	-3.9443908	-1.1088462	4.9406783	C	0.7616683	3.4859094	-1.1459133
F	-3.6953928	0.7949570	-4.1028296	F	-0.8317559	1.8612193	-1.6446116
F	4.7527362	-2.5729573	0.5665637	C	2.3214218	3.1654881	0.6438790
H	0.0665428	1.4740800	0.8985507	F	2.2512749	1.2225832	1.9350541
C	4.5414017	1.2900935	-0.2118468	C	2.5471861	-3.5415585	-0.4097422
C	5.5153568	0.5138221	-0.8254909	F	3.4828252	-2.3463246	-2.2302731
C	5.3218023	0.0650423	-2.1300824	F	1.5647856	-4.6975258	1.4130473
C	4.1560/82	0.3914036	-2.8199368	C -	-4.3581681	-0.3952909	-0.4275703
C	3.1818133	1.1611404	-2.1999028	F	-4.8423849	1.1144085	1.3358993
N	5.4206188	1.5/116/8	-0.9259123	F	-3.81/0558	-1.88/0563	-2.18/4913
H	6.08240/1	-0.5409615	-2.010/051	<u>C</u>	1.8362420	3.9497/122	-0.3968660
H	6.4159278	0.2695981	-0.2/53//5	F	0.2908060	4.2350951	-2.1/05235
Н	3.98993/3	0.0520651	-3.8349800	F	3.3709460	3.6044347	1.3776040

F 3.3194089 -4.6121291 -0.6944029 F -5.6724777 -0.5033383 -0.7181542 F 2.4045317 5.1418106 -0.6784725 Η -0.0209564 -0.0090533 1.8535777 **A** : contact ion pair $[LutH][HB(C_6F_5)_3]$ 53 Energy = -2537.867428391 В -0.2444229 -0.2130921 0.2018416 С -1.6302008 -0.7899428 -0.4432109 С -0.4167026 0.0590939 1.7992857 С 0.4124813 1.0091098 -0.6632618 С -2.5174328 -0.0778959 -1.2491349 С -2.0019171 -2.1129425 -0.2009450 С 0.4959055 -0.4266452 2.7321794 С -1.5057404 0.7324331 2.3528167 С 0.8382122 0.7556702 -1.9693190 С 0.6598543 2.3110099 -0.2273186 С -3.6753719 -0.6281380 -1.7939484 F -2.2865901 1.2279878 -1.5390328 С -3.1465903 -2.7080990 -0.7216074 F -1.2206146 -2.8984793 0.5899041 С 0.3577583 -0.2760352 4.1092981 F 1.6166778 -1.0918020 2.3173382 С -1.6927497 0.9094455 3.7197618 F -2.4434541 1.2764175 1.5377867 С 1.4668552 1.6858107 -2.7893047 F 0.6449011 -0.4828545 -2.5064865 С 1.2830323 3.2829368 -1.0102019 F 0.3012022 2.7062944 1.0188983 С -3.9931326 -1.9559826 -1.5297354 F -4.4959387 0.1118977 -2.5694563 F -3.4450377 -3.9980776 -0.4551286 С -0.7511037 0.3979876 4.6085053 F 1.2802309 -0.7732363 4.9610196 F -2.7653535 1.5754185 4.1955541 С 1.6919805 2.9703509 -2.3022918 F 1.8586107 1.3622615 -4.0391094 F 1.4956371 4.5240803 -0.5283873 F -5.1080901 -2.5061738 -2.0465912 F -0.9096306 0.5586145 5.9354647 F 2.2932659 3.8954303 -3.0714679 Η 0.5339591 -1.1486182 0.1171919 С 2.8776009 -2.7401894 -1.3145521 С 4.0553040 -3.1503518 -1.9243944 С 5.1920080 -2.3481207 -1.8387811 С 5.1500470 -1.1417365 -1.1436298 С 3.9662321 -0.7364786 -0.5397203 Ν 2.8900698 -1.5539431 -0.6531701 Η 6.1149080 -2.6663679 -2.3127233 Η 4.0718284 -4.0935539 -2.4572345

С	1.5991909	-3.5143877	-1.3295961
Η	1.7331671	-4.4414446	-1.8874739
Η	1.2813584	-3.7524066	-0.3095173
Н	0.8012026	-2.9260640	-1.7927287
С	3.8018836	0.5493139	0.2037835
H	3 1362982	0 4278944	1 0607720
Н	4 7730181	0.9106226	0 5448321
н	3 3669466	1 3079357	-0.4574611
н	1 9892720	-1 2567310	-0.4374011 -0.2214255
11	1.9692720	-1.2307310	-0.2214233
Brl 35	$B(C_6F_5)_3^-: br$	omide bindin	g to $B(C_6F_5)_3$
Ene	ergv = -4783.	767073362	
B	-0.0032902	0.0028545	0 5783313
C	0.9355715	-1.2714125	0.1842105
C	-1 5752095	-0.1745727	0.1807270
C	0.6333085	1 4520676	0.1848000
C	0.0333983	1.4320070	0.1040990
C	2.0526990	-1.2191073	-0.0780008
C	0.6883184	-2.5482070	0.7070279
C	-2.5586184	0.6/81/1/	0./00/065
C	-2.07/3304	-1.1544903	-0.6/91634
С	0.0390287	2.3820825	-0.6712854
С	1.8680593	1.8685740	0.7017175
С	2.8571636	-2.3087317	-0.9580885
F	2.3577632	-0.0760490	-1.3373118
С	1.4825110	-3.6603554	0.4566257
F	-0.4026166	-2.7696882	1.4760984
С	-3.9186025	0.5443402	0.4502955
F	-2.2061795	1.7350511	1.4684416
С	-3.4329163	-1.3259300	-0.9583582
F	-1.2492012	-2.0095777	-1.3342287
С	0.5770916	3.6376101	-0.9526637
F	-1.1203699	2.1011395	-1.3214539
С	2.4408074	3.1088025	0.4490385
F	2.6044230	1.0295232	1.4663913
C	2.5869643	-3.5406702	-0.3803124
F	3 9108122	-2 1779157	-1 7944360
F	1 1835122	-4 8616211	0.9985146
C	-1 3658166	-0.4752593	-0 383/295
E	4 8103452	1 4048373	0.0800005
Г Г	2 9452011	2 2067500	1 7010750
Г С	-3.0433911	-2.3007390	-1./910/30
U F	1./830143	4.0100304	-0.3828042
Г Г	-0.0623787	4.4901116	-1./840300
F	3.6365930	3.441/259	0.9831892
F	3.3692148	-4.607/0626	-0.6384802
F	-5.6802489	-0.6222828	-0.6410818
F	2.3247211	5.2177484	-0.6435011
Br	-0.0062340	0.0043191	2.7520456

6.0263630 -0.5097937 -1.0621147

 $ClB(C_6F_5)_3^-$: chloride binding to $B(C_6F_5)_3$

Η

35			
Ene	ergy = -2669.	938586442	
В	-0.0029853	0.0031902	0.6303640
С	0.9349870	-1.2710914	0.2046361
С	-1.5741921	-0.1737526	0.2005454
С	0.6340814	1.4514232	0.2044687
С	2.0095418	-1.2209233	-0.6847065
С	0.7044704	-2.5434322	0.7426884
Ċ	-2.5622267	0.6638228	0.7332197
Ċ	-2.0664002	-1.1355302	-0.6832883
Č	0.0513990	2.3638388	-0.6764506
Ċ	1 8576915	1 8791591	0 7350808
C	2 8256180	-2 3116018	-0.9832040
F	2.0250100	-0.0781714	-1 3527420
C	1 / 90 9723	-3 6575144	0 4747220
F	0.3656718	2 7616853	1 5/31006
Г С	3 0200525	-2.7010855	0.4660257
C E	-3.9200323	1 7045060	0.4000237
Г С	-2.21/35/6	1.7043909	1.32/9/43
C E	-3.4188902	-1.3011334	-0.9804500
Г	-1.2304723	-1.9//8180	-1.3403233
C	0.5929729	3.6140837	-0.9741227
F	-1.0998/50	2.0698317	-1.3365060
C	2.4339048	3.1153289	0.4683514
F	2.5833712	1.0542000	1.526/184
C	2.5715198	-3.5411857	-0.3929414
F	3.8573348	-2.1846294	-1.8477433
F	1.2073592	-4.8569816	1.0297832
С	-4.3579998	-0.4641957	-0.3952954
F	-4.8183318	1.3834042	1.0156986
F	-3.8233956	-2.2644398	-1.8386317
С	1.7918785	3.9993840	-0.3919591
F	-0.0344436	4.4514519	-1.8303367
F	3.6199857	3.4612406	1.0168223
F	3.3481363	-4.6083989	-0.6668955
F	-5.6703317	-0.6070918	-0.6681744
F	2.3335044	5.2028490	-0.6665061
Cl	-0.0051709	0.0056059	2.5921157
IB(C ₆ E ₅) ₂ ⁻ · iodi	de binding to	$B(C_{\epsilon}F_{5})_{2}$
35	C(1)); 1001	ac officing to	
Ene	rgv = -2507	297119770	
B	-0.0029089	0.0024247	0 5144872
C	0.0025005	-1.2725348	0.1591/78
c	-1 5752205	-0 17578//	0 1563382
C	0 6336776	1 /510261	0.1501005
C	2 0514405	1.4519001	0.1371003
C	2.0314403	-1.2220077	-0.0622762
C	0.0743011	-2.3309308	0.0139132
C	-2.333/9/1	0.0900033	0.003/000
U	-2.08/85/9	-1.1/109//	-0.0813287

 $\begin{array}{ccccc} C & 0.0277740 & 2.4022941 & -0.6690135 \\ C & 1.8793834 & 1.8559356 & 0.6622743 \end{array}$

С	2.8820200	-2.3126065	-0.9399643
F	2.3863639	-0.0834156	-1.3408788
С	1.4753654	-3.6623329	0.4452008
F	-0.4320137	-2.7700554	1.4197172
С	-3.9159714	0.5519454	0.4334361
F	-2.1925632	1.7599705	1.4103228
С	-3.4462102	-1.3463196	-0.9432230
F	-1.2672286	-2.0359302	-1.3322803
С	0.5624020	3.6635593	-0.9290426
F	-1.1369621	2.1344063	-1.3135821
С	2.4474196	3.1019204	0.4310907
F	2.6242899	1.0007565	1.3988221
С	2.5995148	-3.5435088	-0.3656024
F	3.9515480	-2.1836716	-1.7553861
F	1.1643732	-4.8619028	0.9825733
С	-4.3725735	-0.4836202	-0.3755125
F	-4.8008255	1.4226122	0.9654670
F	-3.8672912	-2.3405754	-1.7553933
С	1.7794489	4.0234445	-0.3688068
F	-0.0879584	4.5333563	-1.7328107
F	3.6502639	3.4222237	0.9554334
F	3.3873146	-4.6097056	-0.6037575
F	-5.6888623	-0.6326719	-0.6187176
F	2.3151064	5.2354108	-0.6102015
Ι	0.0001047	0.0070651	2.9807874

$B(C_6F_5)_3$: Lewis acidic borane 34

51			
En	ergy = -2209.	515840507	
В	-0.0004361	0.0008220	0.0000543
С	-0.0001375	1.5634454	-0.0002793
С	1.3521791	-0.7825738	-0.0031074
С	-1.3528031	-0.7827121	0.0035198
С	-0.9390036	2.3140885	0.7245587
С	0.9392734	2.3133266	-0.7252105
С	2.4652097	-0.3612640	0.7399196
С	1.5356251	-1.9552537	-0.7512925
С	-1.5353823	-1.9564497	0.7503967
С	-2.4665976	-0.3609467	-0.7382299
С	-0.9469478	3.7025439	0.7462974
С	0.9481473	3.7017790	-0.7471988
С	3.6706593	-1.0503174	0.7571007
С	2.7338610	-2.6567057	-0.7805290
С	-2.7333768	-2.6583050	0.7796963
С	-3.6717743	-1.0504731	-0.7554297
С	0.0008195	4.3999087	-0.0005284
С	3.8062528	-2.2026396	-0.0150480
С	-3.8064447	-2.2038069	0.0153923
F	-1.8694110	1.6894036	1.4759324
F	1.8693611	1.6879369	-1.4764017
F	2.3824433	0.7414539	1.5134575

F	0.5329502	-2.4301995	-1.5195149
F	-0.5321104	-2.4321007	1.5173460
F	-2.3849326	0.7427168	-1.5104101
F	-1.8509490	4.3779748	1.4728263
F	1.8525908	4.3764718	-1.4738463
F	4.7016982	-0.6229578	1.5024375
F	2.8715403	-3.7599952	-1.5322918
F	-2.8701370	-3.7624867	1.5302886
F	-4.7034421	-0.6226112	-1.4996020
F	0.0012505	5.7359161	-0.0006620
F	4.9631586	-2.8711082	-0.0210587
F	-4.9630654	-2.8726708	0.0213904

Br⁻ : bromide

1 Energy = -2574.218173369

	0 000000	0 0000000	0 0000000
Br	0.0000000	0.0000000	0.0000000

B⁻.SiMe₃I : loose complex of **B**⁻ and SiMe₃I 52 Energy = -3106.012474801 0 0.3866301 0.1398805 -1.9317045 С -0.9208464 0.2689675 -1.9639326 Η -1.3838904 0.4914587 -0.9842973 0 -1.5953721 0.1540515 -2.9763636 Si -4.8723767 -0.4316370 -1.3943360 С -3.7724965 -1.7036347 -0.5705158 С -4.3659635 1.3336396 -1.0354424 С -5.0916848 -0.7543311 -3.2222323 Η -2.7717121 -1.6709756 -1.0155350 Η -3.6833819 -1.5111845 0.5031796 Η -4.1739091 -2.7131771 -0.7051455 Η -3.4423359 1.5585019 -1.5815367 Η -5.1390631 2.0339608 -1.3680950 Η -4.1948714 1.4932053 0.0341752 Η -4.1189268 -0.6256386 -3.7127008 Η -5.4479838 -1.7730434 -3.4067207 Η -5.8034975 -0.0513608 -3.6671912 Ι -7.1391381 -0.7247056 -0.3289535 В 1.1065012 0.1807516 -0.5874572 С 1.1741897 1.6999939 0.0559441 С 0.3312361 -0.9208170 0.3643837 С 2.6704964 -0.2049829 -0.9361656 С 1.9059267 1.9014271 1.2289715 С 0.6528450 2.8689575 -0.4975485 С 0.2953056 -2.2576815 -0.0469998 С -0.4212190 -0.6571514 1.5085366 С 3.3223895 0.4851033 -1.9633372 С 3.4758290 -1.1218671 -0.2602694 С 2.1115098 3.1390105 1.8245553 C 0.8303049 4.1341727 0.0633532

С	-0.3898698	-3.2637363	0.6236211
С	-1.1237808	-1.6326537	2.2156764
С	4.6486349	0.2688111	-2.3260553
С	4.8078367	-1.3691177	-0.5868249
С	1.5656592	4.2736422	1.2326514
С	-1.1055891	-2.9485516	1.7739845
С	5.4003404	-0.6723660	-1.6321656
F	2.4524591	0.8313701	1.8630613
F	-0.0829005	2.8445193	-1.6393052
F	0.9647125	-2.6354079	-1.1637565
F	-0.5413632	0.6047528	1.9966663
F	2.6709223	1.4515520	-2.6543383
F	2,9958269	-1 8383659	0.7875221
F	2.8236167	3 2544015	2,9666201
F	0.2959618	5 2280153	-0 5221901
F	-0.3726065	-4 5368264	0.1748069
F	1 8442281	1 3055000	3 310/105
F	5 2172/28	0.0686324	3 3324513
Г Б	5 5200870	0.9080324	0.1020112
Г Г	1 7 4 7 2 0 2 2	-2.2701920	0.1039112
Г Г	1.7472055	2 0012822	1.7800222
Г Г	-1./0913/1	-3.9012822	2.4349267
Г	0.08/2199	-0.8983932	-1.9022833
B-	: anion OCH	$OB(C_6F_5)_3^-$	
38		02(001))	
En	ergv = -2398	973786046	
B	-1 5961085	-0 7316217	-0 4069755
C	-0.8440161	-1 4654977	0.8672074
\hat{c}	-1 8081015	0.8336505	0.0773639
C	-2 9821204	-1 4794659	-0.8964134
C	-1 4018497	-2 3931123	1 7473831
C	0.4674402	-1.0935/01	1 1810124
C	1 2122516	1 0668658	0.4740152
C	-1.2122510	1.9008058	1 21/10036
C	-2.5777521	2 8225401	1.2149030
C	-2.9201744	-2.8333491	-1.2440747
C	-4.2240932	-0.8803393	-1.11013/1
	-0.7174195	-2.9405228	2.0312301
Г	-2.001/204	-2.8190101	1.3993497
C E	1.1900580	-1.0151/40	2.2502795
F C	1.1029613	-0.1496834	0.4444585
	-1.3659952	3.2518284	0.04/3022
F	-0.4331/92	1.8865782	-1.5840026
C	-2.7608036	2.349/315	1.7/18845
F	-3.21/0/28	0.0629939	1.8322619
C	-4.0045293	-3.5595896	-1.7359245
F	-1.7653126	-3.5187714	-1.0971267
С			
-	-5.3352781	-1.5724280	-1.6082987
F	-5.3352781 -4.4258858	-1.5724280 0.4361369	-1.6082987 -0.8785517
F C	-5.3352781 -4.4258858 0.5923075	-1.5724280 0.4361369 -2.5531468	-1.6082987 -0.8785517 3.0841185
F C F	-5.3352781 -4.4258858 0.5923075 -1.3148351	-1.5724280 0.4361369 -2.5531468 -3.8420440	-1.6082987 -0.8785517 3.0841185 3.6419196

С	-2.1445500	3.4478426	1.1798646
F	-0.7624780	4.3098691	-0.5378119
F	-3.5295364	2.5230451	2.8695190
С	-5.2271655	-2.9211950	-1.9187500
F	-3.8843280	-4.8709973	-2.0348545
F	-6.5104643	-0.9345212	-1.8019858
F	1.2698854	-3.0716307	4.1275118
F	-2.3036984	4.6821859	1.6970214
F	-6.2874303	-3.6007569	-2.3964141
0	-0.6132664	-0.8620775	-1.5601882
C	-0.9662848	-0.5324698	-2.7864814
0	-0.2341811	-0.6585226	-3.7551114
H	-1 9918175	-0 1292771	-2.8828956
	1.9910175	0.12/2//1	2.0020950
В·	contact ion n	air [LutH][O	CHOR(C _c E _c) ₂]
Б . 56	contact ion p		
50 End	-2726	585036755	
R	-1.69/7811	-0 7904473	-0 3096197
D C	-0.0600078	-0.790+473	0.8235700
C	1 7033530	0.7607080	0.8233790
C	2 1120051	0.7097989	0.1018/75
C	-5.1169051	-1.4148340	-0.9272933
C	-1.5108220	-2.0090490	1.5772010
C	0.3343015	-1.2852910	1.1898032
C	-1.2608551	1.8890663	-0.5329544
C	-2.4108988	1.0442504	1.3246980
C	-3.16813/3	-2.7345739	-1.3892/12
C	-4.3304488	-0.7292856	-1.0432/31
C	-0.814811/	-3.35/5249	2.5661670
F	-2.7980210	-3.0644196	1.3945883
C	1.0787517	-1.9469772	2.160/686
F	0.9543423	-0.2330/46	0.58/6/66
C	-1.3090022	3.1767006	-0.0012073
F	-0.6555943	1.7867605	-1.7493322
С	-2.4890045	2.3083444	1.8954216
F	-3.0054632	0.0335282	2.0105197
С	-4.3039091	-3.3481387	-1.9009519
F	-2.0490916	-3.5048520	-1.3424564
С	-5.4985570	-1.3023661	-1.5468469
F	-4.4427165	0.5707140	-0.6763075
С	0.4983841	-3.0033827	2.8547521
F	-1.3977714	-4.3616106	3.2495563
F	2.3464946	-1.5751670	2.4358563
С	-1.9261241	3.3904637	1.2248524
F	-0.7649992	4.2164444	-0.6668939
F	-3.1059469	2.5008702	3.0785025
С	-5.4887490	-2.6222324	-1.9780875
F	-4.2741295	-4.6299700	-2.3154276
F	-6.6343796	-0.5820869	-1.6297084
F	1.1910917	-3.6599260	3.8009515
F	-1.9860917	4.6257002	1.7529460
F	-6.6029890	-3.1881886	-2.4701441

0	-0.6755489	-0.9492777	-1.5549137			
С	-0.9816108	-0.7362943	-2.8283834			
0	-0.1610319	-0.8971624	-3.7159217			
Η	-2.0169320	-0.4130580	-3.0152986			
С	2.3708965	-3.0442441	-1.2513076			
С	3.6959205	-3.4119971	-1.0561727			
С	4.7034409	-2.4618081	-1.2066267			
С	4.3853616	-1.1503481	-1.5506856			
Ċ	3.0566043	-0.7914809	-1.7404277			
N	2.1153519	-1.7550439	-1.5852230			
Н	5.7399578	-2.7442817	-1.0531964			
Н	3.9259819	-4.4368454	-0.7892837			
Н	5.1569191	-0.3985850	-1.6695649			
C	1 2105662	-3 9773867	-1 1155023			
Н	1 3263079	-4 8188621	-1 8054276			
н	1.1754163	-4 3862068	-0.1005517			
н	0.2677254	-4.3002000	-0.1003317 -1.3222451			
C	2 6028724	0 5885495	-2 0925498			
с ц	1 5201702	0.5885475	2 1003201			
н Ц	2 0160218	1 2806556	1 3128/00			
п ц	2.9109218	0.0042011	-1.3120490			
н ц	1 1 2 2 1 1 7 0	1 4740400	-3.0313177			
п	1.1231170	-1.4/40499	-1.0980433			
CH 5	3I : product n	nethyl iodide				
Ene	ergy = -337.5	394900037				
С	-0.0000070	-0.0000004	-1.8384228			
Η	0.0000065	1.0409015	-2.1511480			
Η	-0.9014352	-0.5204604	-2.1511799			
Η	0.9014304	-0.5204502	-2.1511679			
Ι	0.0000053	0.0000106	0.3257044			
CH 5	4 : product m	ethane				
Ene	ergy = -40.54	212270591				
С	-0.0000043	0.0000020	-0.0003787			
Η	0.0000019	1.0306080	-0.3647528			
Η	-0.8925246	-0.5153126	-0.3647740			
Η	0.8925212	-0.5153084	-0.3647666			
Η	0.0000056	0.0000119	1.0927443			
Cl [−] : chloride anion						
I Fne	-460.3	767818432				
C^1	0.00000000000000000000000000000000000	0 0000000	0.0000000			
CI	0.0000000	0.0000000	0.0000000			
CO 3	P_2 : carbon dic	oxide				
Ene	ergy = -188.6	978139777				
С	-0.0000054	0.0000001	0.0000003			
0	1.1686606	0.0000398	0.0000686			

 $\begin{array}{l} Col.B(C_6F_5)_3: adduct \ of \ 2,4,6\mbox{-collidine} \\ 54 \end{array}$

En	ergy = -2576.	011449777	
В	-0.1333268	-0.1062963	0.4295074
С	0.4826585	1.3960283	0.1230354
С	1.0523988	-1.0277223	-0.2794518
С	-1.6513944	-0.3394630	-0.1770572
С	-0.0770407	2.3649813	-0.7135639
С	1.7874890	1.6943180	0.5361160
С	2.0116755	-1.8290782	0.3434026
С	1.2663694	-0.8633590	-1.6544921
С	-2.7137535	0.4014086	0.3512761
С	-2.0498289	-1.2552335	-1.1558167
С	0.5815606	3.5367363	-1.0884465
F	-1.3159224	2.2179470	-1.2379081
С	2.4812673	2.8462769	0.1928236
F	2.4382219	0.8353581	1.3659326
С	3.0602454	-2.4548975	-0.3284999
F	1.9818911	-2.0444836	1.6841578
С	2.2943181	-1.4671873	-2.3678311
F	0.4414671	-0.0610157	-2.3720434
С	-4.0396822	0.2870872	-0.0467604
F	-2.4700032	1.3313507	1.3109145
C	-3.3648939	-1.4046097	-1.5944385
F	-1.1692320	-2.1173691	-1.7219494
С	1.8691953	3.7851944	-0.6326757
F	-0.0205902	4.4258203	-1.9008683
F	3.7259458	3.0692753	0.6576517
С	3.2046850	-2.2783400	-1.6980250
F	3.9415099	-3.2212080	0.3448608
F	2.4205647	-1.2710737	-3.6946322
С	-4.3726722	-0.6270570	-1.0399644
F	-4.9961151	1.0570906	0.5073539
F	-3.6687515	-2.3183691	-2.5364459
F	2.5140188	4.9095736	-0.9814898
F	4.2078846	-2.8742860	-2.3632708
F	-5.6443418	-0.7610578	-1.4481763
С	-0.1863906	0.4476854	3.0748779
С	-0.2583669	0.0240221	4.3976630
Ċ	-0.4861451	-1.3029703	4.7474640
Ċ	-0.6906190	-2.1783535	3.6883912
C	-0.6150107	-1.7596346	2.3662691
N	-0.3055420	-0.4568876	2.0409402
Н	-0.1433880	0.7784778	5.1691231
Н	-0.9146266	-3.2234991	3.8743934
C	-0.0207437	1.9345563	2.8950876
Н	-0.4125230	2.4147040	3.7944165
Н	1.0335685	2.2112776	2.8146039
H	-0.5512626	2.3271312	2.0342885
	-		

С	-0.9323593	-2.7978399	1.3284955
Η	-0.3724492	-2.6949409	0.4032540
Н	-0.7313149	-3.7838836	1.7514270
Н	-1.9990954	-2.7503511	1.0827134
С	-0 5504788	-1 7458176	6 1798025
н	0.3241009	-1 3888658	6 7332143
н	-1 4372941	-1 3221160	6 6658536
н	-0.6012100	-2 83/0570	6 2569596
11	-0.0012100	-2.03+0370	0.2307370
[Co	olH][HB(C ₆ F	$[5)_3]$: contact i	on pair cA
56			1
En	ergy = -2577.	212382218	
В	-0.2553583	-0.2162724	0.1968714
C	-1.6474975	-0.7806619	-0.4465814
Ċ	-0 4181444	0.0521295	1 7967537
C	0 4041393	1 0068680	-0 6646829
C	-2 5316347	-0.0604967	-1 2484415
C	-2 0270477	-2 1023160	-0 2084950
C	0 50/3068	-0.4316427	2 7208406
C	1 5045723	0.7206305	2.7200400
C	-1.50+5725	0.7200303	2.3014017
C	0.6303732	0.7330173	-1.906/662
C	0.0481002	2.3089823	-0.22/5212
	-3.0938397	-0.0014415	-1.7935200
F	-2.2934279	1.2452520	-1.5338597
C	-3.1/660/1	-2.6881434	-0.7289012
F	-1.2495886	-2.8958247	0.5780149
С	0.3781899	-0.2840913	4.0994078
F	1.6236705	-1.0923167	2.2950391
С	-1.6801219	0.8940530	3.7304245
F	-2.4509738	1.2647441	1.5564795
С	1.4707164	1.6840578	-2.7843653
F	0.6448921	-0.4836770	-2.5080903
С	1.2763695	3.2809830	-1.0061432
F	0.2795008	2.7047519	1.0158351
С	-4.0195308	-1.9281073	-1.5334358
F	-4.5110158	0.1466335	-2.5651275
F	-3.4837164	-3.9768745	-0.4654850
С	-0.7285969	0.3848428	4.6098263
F	1.3100100	-0.7799341	4.9419107
F	-2.7508921	1 5552334	4 2172801
C	1 6942727	2.9680932	-2.2952955
F	1 8696985	1 3610275	-4 0321028
F	1.0070703	4 5225867	-0 5233313
F	-5 1386052	-2 /698275	-2 0507282
г Г	-5.1580052	-2.4030213	5 0385712
r F	-0.0737004 2 2020002	2 202/025	2 0507220
Г U	2.3029003	J.072482J	-3.037/329
п	0.3149230	-1.13044//	0.1044556
C C	2.8820101	-2.1333398	-1.3125104
C C	4.054/441	-3.1424233	-1.9200291
C	5.2123605	-2.3554848	-1.85/42/2
C	5.1509696	-1.145/195	-1.1548431

С	3.9754814	-0.7383843	-0.5436932				
Ν	2.8930736	-1.5493823	-0.6466528				
Η	4.0602015	-4.0855947	-2.4614003				
Η	6.0244277	-0.5072659	-1.0800976				
С	1.6038038	-3.5080683	-1.3310101				
Η	1.7493441	-4.4540935	-1.8531775				
Η	1.2585798	-3.7083464	-0.3120556				
Η	0.8192956	-2.9355327	-1.8357602				
С	3.8239324	0.5480331	0.2024412				
Η	3.2499363	0.4029838	1.1207346				
Η	4.8049470	0.9560014	0.4479986				
Η	3.2884218	1.2784209	-0.4146182				
Η	1.9963993	-1.2513481	-0.2128981				
С	6.4905113	-2.8116060	-2.4974778				
Η	7.0288305	-3.4723624	-1.8060780				
Н	6.2927974	-3.3799732	-3.4099566				
Н	7.1424984	-1.9660172	-2.7283975				
Col	H ⁺ : N-protor	nated 2,4,6-co	ollidine				
21	· · · ·	····· , ,					
Ene	ergy = -366.9	096052395					
Ν	0.0000261	-0.8542024	0.0055878				
Η	0.0000611	-1.8721910	0.0131510				
С	1.2044519	-0.2251694	-0.0017745				
С	1.2036099	1.1594377	-0.0145891				
С	2.4384823	-1.0700841	0.0018177				
С	-0.0000779	1.8773546	-0.0183620				
Η	2.1548465	1.6805174	-0.0248055				
С	-1.2044420	-0.2252442	-0.0014636				
Η	3.0443167	-0.8516342	-0.8828701				
Η	3.0445568	-0.8437837	0.8844123				
Η	2.1959706	-2.1353561	0.0066732				
С	-1.2037080	1.1593375	-0.0147779				
С	-0.0001625	3.3767489	-0.0033631				
С	-2.4383957	-1.0702549	0.0030755				
Η	-2.1549824	1.6803302	-0.0249430				
Η	-0.8923344	3.7776518	-0.4901012				
Η	-0.0012937	3.7290314	1.0362135				
Η	0.8929337	3.7777639	-0.4882965				
Η	-2.1958146	-2.1354214	0.0175358				
Η	-3.0487214	-0.8369432	0.8808349				
Н	-3.0399868	-0.8590265	-0.8863076				
Col	l : Lewis base	2,4,6-collidi	ne				
20	20						
Ene	ergy = -366.4	654118029					
Ν	0.0000534	-0.9367324	0.0075364				
С	1.1582162	-0.2474601	0.0003620				
С	1.1928562	1.1496777	-0.0119146				
С	2.4302367	-1.0573894	0.0024117				
С	-0 0000744	1.8770029	-0.0152018				

Η	2.1493715	1.6674158	-0.0229072			
С	-1.1581944	-0.2475680	0.0008348			
Η	3.0392996	-0.8336760	-0.8811625			
Η	3.0401618	-0.8277778	0.8839240			
Η	2.1894134	-2.1222843	0.0062207			
С	-1.1929502	1.1495567	-0.0119452			
С	-0.0001564	3.3834798	-0.0000071			
С	-2.4301578	-1.0576012	0.0037498			
Η	-2.1495270	1.6671939	-0.0227800			
Η	-0.8893883	3.7848219	-0.4949797			
Η	-0.0019345	3.7530862	1.0332785			
Η	0.8906739	3.7848881	-0.4920222			
Η	-2.1893182	-2.1224163	0.0171865			
Η	-3.0442546	-0.8207576	0.8803945			
Η	-3.0350605	-0.8412248	-0.8845498			
$[ColH][OCHOB(C_6F_5)_3]$: contact ion pair cB						
59			*			

5)								
En	Energy = -2765.929766110							
В	-1.6983446	-0.7962836	-0.4130804					
С	-0.9631871	-1.6458879	0.7976613					
С	-1.7792250	0.7665964	0.0841190					
С	-3.1338876	-1.4105169	-0.9225449					
С	-1.4921315	-2.7092705	1.5298935					
С	0.3385403	-1.2926759	1.1649979					
С	-1.2913438	1.8823891	-0.5917845					
С	-2.3317870	1.0514301	1.3353091					
С	-3.1902128	-2.7150588	-1.4255079					
С	-4.3538026	-0.7320026	-0.9737878					
С	-0.7760354	-3.4105579	2.4995782					
F	-2.7693509	-3.1173549	1.3450409					
С	1.0967294	-1.9662812	2.1170120					
F	0.9416184	-0.2197583	0.5833080					
С	-1.3179638	3.1755251	-0.0723114					
F	-0.7515415	1.7698157	-1.8376620					
С	-2.3856336	2.3215368	1.8957901					
F	-2.8838980	0.0467941	2.0643332					
С	-4.3366141	-3.3183064	-1.9251553					
F	-2.0667015	-3.4811259	-1.4339941					
С	-5.5330149	-1.2957685	-1.4622330					
F	-4.4652711	0.5514766	-0.5529395					
С	0.5336222	-3.0452062	2.7901981					
F	-1.3424562	-4.4368166	3.1638250					
F	2.3611255	-1.5845604	2.3938629					
С	-1.8674927	3.3993696	1.1837516					
F	-0.8204826	4.2112042	-0.7794110					
F	-2.9403028	2.5240387	3.1078107					
С	-5.5276232	-2.5986547	-1.9421301					
F	-4.3114337	-4.5851548	-2.3838431					
F	-6.6759861	-0.5824591	-1.4827950					
F	1.2402144	-3.7146608	3.7170628					

F	-1.9046719	4.6398608	1.7016548
F	-6.6524606	-3.1550408	-2.4206367
0	-0.6903562	-0.9584709	-1.5767554
С	-1.0051262	-0.7660983	-2.8513789
0	-0.1859595	-0.9242015	-3.7405674
Η	-2.0467890	-0.4634924	-3.0376688
С	2.3629882	-3.0372143	-1.2510039
С	3.6837824	-3.3920180	-1.0274675
С	4.7083813	-2.4448237	-1.1442672
С	4.3633853	-1.1357253	-1.5006283
С	3.0404418	-0.7856912	-1.7209107
Ν	2.0979534	-1.7511433	-1.5883515
Η	3.9104844	-4.4189876	-0.7614812
Η	5.1288652	-0.3743541	-1.6070650
С	1.2103437	-3.9849457	-1.1431862
Η	1.3483000	-4.8212550	-1.8351201
Η	1.1580981	-4.3990349	-0.1312518
Η	0.2666311	-3.4887419	-1.3668367
С	2.5888055	0.5927515	-2.0868264
Η	1.5098766	0.6329816	-2.2328748
Η	2.8671125	1.2951793	-1.2949269
Η	3.0839988	0.9147095	-3.0079132
Η	1.1071754	-1.4755133	-1.7173157
С	6.1364763	-2.8174984	-0.8696113
Η	6.8252202	-2.1955504	-1.4466433
Η	6.3576139	-2.6608306	0.1938707
Η	6.3206638	-3.8707237	-1.0953446

cTS1 : TS for	H ₂ -cleavage	with Col.B(C ₆ F ₅)	3
56			

Ener	·gy	=	 -2	5	7	7.1	168	37	59	1	1	8	

В	-0.3191856	0.7691643	-0.1023412
С	-0.2462922	1.1204138	1.4382533
С	0.0376129	1.9150591	-1.1323746
С	-1.0604009	-0.5435414	-0.5666138
С	-1.3033013	0.8726990	2.3202782
С	0.8770571	1.7299217	2.0085736
С	0.6621844	1.6686673	-2.3619137
С	-0.2506223	3.2615334	-0.8730401
С	-0.9904503	-1.7279370	0.1836505
С	-1.8077201	-0.6377801	-1.7488834
С	-1.2560076	1.1880919	3.6733870
F	-2.4522091	0.3241712	1.8650890
С	0.9740924	2.0391948	3.3601053
F	1.9478267	2.0259923	1.2379863
С	1.0021264	2.6696025	-3.2622578
F	0.9804009	0.4045794	-2.7110738
С	0.0559311	4.2910789	-1.7570001
F	-0.8885922	3.6193181	0.2638292
С	-1.5692757	-2.9253236	-0.2160505
F	-0.3241137	-1.7485429	1.3556569

С	-2.4137634	-1.8147585	-2.1769858
F	-1.9940323	0.4454634	-2.5321126
С	-0.1047314	1.7693317	4.1984764
F	-2.3041170	0.9393632	4.4771672
F	2.0875008	2.6005829	3.8622656
С	0.6927085	3.9933052	-2.9578617
F	1.6156624	2.3769013	-4.4215631
F	-0.2590750	5.5647711	-1.4657826
С	-2.2851503	-2.9691763	-1.4098513
F	-1.4505794	-4.0335931	0.5327610
F	-3.1209072	-1.8483916	-3.3191018
F	-0.0378990	2.0737903	5.5010075
F	1.0006078	4.9713462	-3.8186203
F	-2.8522623	-4.1126743	-1.8126732
Η	1.4445110	0.1484437	-0.1904038
Η	1.6495910	-0.6084160	-0.2034677
Ν	2.2309676	-2.4432710	-0.1899748
С	1.8562713	-3.3671424	-1.0957647
С	2.6200484	-2.8386732	1.0367575
С	1.8526444	-4.7287246	-0.7901686
С	1.4441922	-2.8640000	-2.4526607
С	2.6467804	-4.1872133	1.3958436
С	3.0035604	-1.7552597	2.0098414
С	2.2526302	-5.1631517	0.4768627
Η	1.5328268	-5.4463040	-1.5412366
Η	2.2808592	-2.3499691	-2.9377731
Η	1.1167253	-3.6853090	-3.0943382
Η	0.6321612	-2.1368561	-2.3621757
Η	2.9645623	-4.4706490	2.3957733
Η	2.1180544	-1.1770274	2.2977266
Η	3.4479261	-2.1776750	2.9139730
Η	3.7144407	-1.0611535	1.5514497
С	2.2787995	-6.6266487	0.8283717
Η	1.4962770	-7.1746005	0.2955211
Η	3.2427715	-7.0667750	0.5434412
Η	2.1502169	-6.7777980	1.9037929

cTS2 : CO_2 -reduction with [ColH][HB(C₆F₅)₃] 59 Energy = -2765 892615632

En	Energy = -2765.892615632					
В	-0.9362211	-0.0666883	-0.1698801			
С	-1.5318352	0.0339779	1.3206082			
С	-1.9653793	-0.0649151	-1.3884921			
С	0.3998092	-0.9608281	-0.2541852			
С	-1.6382823	-1.1037249	2.1241525			
С	-1.9800710	1.2142763	1.9132085			
С	-1.5208170	0.1641067	-2.6956666			
С	-3.3523409	-0.1890317	-1.2596043			
С	1.4385622	-0.7501885	0.6596623			
С	0.6200910	-2.0142271	-1.1480567			
С	-2.1307775	-1.0852460	3.4246975			

F	-1.2764483	-2.3162645	1.6320042	
С	-2.4699679	1.2823108	3.2142678	
F	-1.9534695	2.3761090	1.2186701	
С	-2.3598341	0.2655088	-3.7955419	
F	-0.1933761	0.3086953	-2.9334171	
С	-4.2316066	-0.1021737	-2.3363229	
F	-3.9194045	-0.4312829	-0.0543014	
С	2.6186397	-1.4839499	0.6776640	
F	1.3293439	0.2296000	1.5919837	
С	1.7933484	-2.7657141	-1.1747446	
F	-0.3333074	-2.3816513	-2.0314649	
С	-2.5457809	0.1221585	3.9778043	
F	-2.2154814	-2.2178882	4.1495145	
F	-2.8765391	2.4549957	3.7381927	
C	-3.7333086	0.1304531	-3.6132751	
F	-1 8661642	0 4950476	-5 0274634	
F	-5 5585466	-0 2461296	-2 1541939	
C	2 8052944	-2 4948557	-0.2596765	
F	3 5847500	-1 2196698	1 5796660	
F	1 9539124	-3 7587450	-2.0686154	
F	-3 0218793	0 1656554	5 2334918	
F	-4 5674086	0 2196445	-4 6612034	
F	3 9475897	-3 2002071	-0 2764791	
Н	-0.3679651	1 2445302	-0 4074927	
C	4 1907606	2.0352191	1 0239592	
C	5 4859020	1 5660166	1.0237372	
C	6 0748553	0.7670111	0 1841751	
C	5 3234275	0.4651465	-0.9583232	
C	4 0321425	0.9471143	-1 1031586	
N	3 5149902	1 7065291	-0.1057621	
н	6.0315528	1 8170992	2 0754268	
н	5 7405183	-0.1550380	-1 7443509	
C	3 4773045	2 8749542	2 0350884	
н	4 1415939	3 1039009	2.0550004	
н	3 1302176	3.8093217	1 5826218	
н	2 5970387	2 3457000	2 4137400	
$\hat{\mathbf{C}}$	3 1691663	0.6882356	-2 2969737	
н	3 0967774	1 5915728	-2.2907737	
н	3 5954435	-0 1114741	-2.9131374	
н	2 1557569	0 / 102266	-1.9965070	
н Ц	2.1337507	0.4102200	0.2040053	
\cap	1.0510406	2.0520807	0.3426736	
C	0.0301077	2.7354403	-0.3420730	
	-0.0301077	2.4338827	1 58823/1	
C	7 1701005	0.2617783	0.3382280	
с µ	8 1825626	1 0152/20	-0.0370021	
п U	0.1000000	0.0705264	1 200010521	
п Ц	7 6356060	0.0793204	0.2350140	
п	/.0550008	-0.0551498	-0.2330149	
C: adduct SiMe ₃ OCHOB(C ₆ F ₅) ₃				

51

R	0 1203310	0 1202221	0 1417427
D C	1.0676302	1 2150207	-0.141/42/
C C	0.021/223	1 32/2650	-0.9091872
C C	0.0214233	0.0276338	-0.8741800
C	0.3696339	-0.0270338	1.4044429
C	2.0060578	-2.3701407	-0.3032160
C	2.0000378	-0.9094033	-1.09/2439
C	-0.0033987	1.4603304	-2.0611300
C	0.5027001	2.3000044	-0.3032023
C	-0.3301932	0.0219288	2.2870490
C	1.3013393	-0.3343493	2.1400557
C E	0.1527002	-3.3379820	-1.1423008
Г С	0.1327092	-2.9746042	0.4092277
C E	2.0221009	-1.6045475	-2.3023037
Г С	2.1955000	0.3034424	2.3100049
C E	-0.8327137	2.0977007	-2.7238213
Г С	-1.1/44900	0.3677440	-2./192018
C E	0.4003924	3.7492904	-0.9702920
Г С	0.4127064	2.4909217	2 6671042
C E	-0.4127004	0.7293439	3.00/1942
Г С	-1.0229040	0.4452840	2 5206106
C E	2 5125281	-0.4432649	3.3200190
Г С	2.3133361	-1.130/20/	1.4069550
C E	2.7103094	-3.1964320	-2.1201201
Г Г	1.0939720	-4.8430307	-0.7003039
Г С	0.3110342	-1.3003407	-3.4408721
C E	-0.5119542	3.0490040	-2.1012329
Г Г	-1.3333924	2.7700123	-3.0022310
Г С	0.9310400	4.8333029	4 2038672
C E	1 3504400	1 2627567	4.2938072
г Б	-1.3304409	0.0637010	4.3974037
г F	2.7042930	-0.9037910	4.1113391
Г Г	0.4714740	-4.1209491	2.7023073
Г Г	0.8/18/211	0.2770618	5 6251871
Γ	-1.305/322	-0.6576012	-0.1000116
C C	-1.3734322	-0.0370012	-0.1900110
н	-1.0002223	-2.0585914	-1 6801889
$\hat{0}$	-3.1135284	-1 7733083	-1.0001007
Si	-4 3935752	-0.9321584	-0.1381949
C	-4 2675489	0.8646261	-0.1301747
н	-5 1451058	1 402201	-0.0137054
н	-3 3736292	1 3348901	-0.2949700
H	-4 2520150	0.9818896	-0.1757004
C	-5.9049909	-1 7704793	-0.8238709
н	-6 8058809	-1 3533530	-0.3583388
н Н	-5.98/8//0	-1.5555555	-0.5565566
Н	-5 8881546	-2 8471530	-0 6219462
C	-4 1041428	-1 2935697	1 6648196
й	-3 9864911	-2 3694610	1 8353741
Н	-3 2188757	-0 7768429	2 0438062
	5.2100757	0.1100127	2.0.00002

Energy = -2808.248859059

Н -4.9701560 -0.9560658 2.2471566

 $\textbf{D}.SiMe_{3}I$: loose complex of D and $SiMe_{3}I$ 31

Ene	ergy = -1305.	740022902	
0	-2.8198050	0.9721130	-0.0846617
Si	-3.9521574	-0.3139387	0.0576269
С	-3.0693199	2.2811014	-0.2196922
С	-4.1666163	-0.6295508	1.8863718
С	-5.5619664	0.1812105	-0.7587044
С	-3.1284251	-1.7403851	-0.8171495
Н	-4.1381024	2.5351649	-0.3172339
0	-2.1921263	3.1160189	-0.2393976
H	-4 8541251	-1 4678799	2.0528907
Н	-3 2111182	-0.8793986	2 3613070
Н	-4 5800804	0 2497365	2.3942496
н	-6 2468786	-0.6760353	-0 7549987
н	-6.0632634	1.0020437	-0.2333826
н	-5.0052054	0.4805770	-0.2333820
и П	2 05/6103	1 5130744	1.8747661
и П	2.9540195	1 0821252	-1.8747001
п П	-2.1042201	-1.9631333	-0.3373729
п с;	-3./01308/	-2.0344102	-0.7024964
SI C	1.1219376	0.3391000	1 4244766
C	0.1955500	-0.3083723	1.4544/00
C	0.3771121	-0.1525500	-1.0004348
C II	1.3218129	2.2111686	0.1297822
H	-0.81411/1	0.0628252	1.4621688
H	0.1061014	-1.4569104	1.349/4/1
H	0.6964603	-0.1359/19	2.3/8/630
Н	-0.6315537	0.2918909	-1./413842
H	0.9773706	0.2512218	-2.49/9/37
Н	0.3044326	-1.2203260	-1.7662437
Н	1.7702105	2.4875863	1.0897991
Η	1.9528178	2.6065380	-0.6732498
Η	0.3303921	2.6765359	0.0556517
Ι	3.4267775	-0.6431706	0.0444365
п .	noutrol SiMo		
ע. 17	neutral Shvie	300110	
17 En/	-508.7	060022200	
	21gy396.7	0.7413448	0 5518487
C	-2.1143777	0.7413448	0.3318487
	-1.9384520	-0.3800070	0.1080330
Н	-2.7844392	-1.0836358	-0.0/30816
O O	-0./82//61	-0.9232553	-0.2228867
S1	0./2155//	-0.0/59198	-0.0586141
C	0.9945525	0.3309059	1./450187
H	1.9948696	0.7595828	1.8846362
H	0.2578841	1.0555591	2.1051377
Н	0.9270994	-0.5700081	2.3659618
С	1.9454792	-1.3456372	-0.6758721
Η	2.9660620	-0.9465961	-0.6300660

Η	1.9126124	-2.2563799	-0.0669215
Η	1.7387070	-1.6225682	-1.7159868
С	0.6868034	1.4413938	-1.1493420
Н	0.4425513	1.1764288	-2.1846560
Н	-0.0499202	2.1688545	-0.7951189
Н	1.6725206	1.9233864	-1.1510373
eC	: adduct SiEt	3OCHOB(C ₆]	F5)3
60		5 (0	0,0
En	ergy = -2926.	249880280	
В	0.1862214	-0.0467077	-0.1363734
С	1.0426466	-1.1616884	-0.9620984
С	0.2954706	1.4615994	-0.7418750
С	0.3580040	-0.1206096	1.4832820
С	0.8037226	-2.5292578	-0.7921171
С	2.0892908	-0.8693157	-1.8406220
С	-0.2760977	1.7912905	-1.9714939
Ċ	0.9467664	2.5223229	-0.1095204
Č	-0.5090665	0.6084866	2.3037145
Č	1 3020638	-0.8796223	2 1760531
Č	1 5042176	-3 5372322	-1 4409050
F	-0.1710902	-2 9339585	0.0703617
Ċ	2 8267147	-1 8454492	-2 5097729
F	2.6207147	0.4081627	-2 0759366
C	-0.26/8921	3 0652799	-2.0759300
F	-0.2040721	0.8212316	-2.5250555
C	0.99/8566	3 81/398/	-2.722+077 -0.6280470
С F	1 6016663	2 3350672	1 0614459
C	-0.4942641	0 5607111	3 6018000
С F	1 /18/682	1 //000/111	1 7466237
Г С	1 2611724	0.0518884	3 5671027
C E	2 2484554	1 5022211	1 5176410
Г С	2.2464334	-1.3922311	2 2125676
C E	2.3314130	-3.1691007	1 2209246
Г Б	2 8227100	-4.0331/40	-1.2290340
Г С	0.2774665	-1.4970908	-3.3431603
E	0.5774005	4.092/198	-1.0424140
Г Б	-0.6310302	3.3090733	-3./129/44
Г	1.0303941	4.7933412	0.0555485
C E	0.430/140	-0.2344003 1 2917702	4.3332208
Г	-1.3099107	1.201//93	4.4188100
Г	2.2947023	-1./080448	4.1740923
Г	5.2280802	-4.1392822	-2.9550917
Г	0.4122380	5.5524799	-2.3333318
Г	0.490/3/0	-0.2931198	J.0/J/190
C	-1.3883431	-0.4008/29	-0.2814910
	-1.8892210	-1.13/8028	-1.1000089
H	-1.2/3045/	-1.5800281	-1.9403330
U C:	-3.1383038	-1.4100193	-1.213/000
51 C	-4.4903494	-0.9312/4/	-0.1091055
U	-5.0466/13	0./301/84	-0.8250185
н	-3.8099/38	1.0493632	-0.1084903

Η	-5.4953317	0.5818834	-1.8158087
С	-5.6974042	-2.3147869	-0.5205143
Η	-6.5917244	-2.1224771	0.0897222
Η	-5.2697645	-3.2501859	-0.1344476
С	-3.9341101	-0.8921937	1.6147731
Η	-3.3301337	0.0051814	1.7802740
Η	-4.8575593	-0.7448788	2.1957624
С	-3.1932273	-2.1414730	2.1293908
Н	-2.9719568	-2.0456698	3.1974801
Н	-3.7906474	-3.0489772	1.9945484
Н	-2.2419141	-2.2841954	1.6089401
C	-6 0944348	-2.4872878	-1 9997729
Н	-6 5782405	-1 5862770	-2 3909102
н	-5 2183809	-2 6933906	-2 6229932
н	-6 7950624	-3 3200620	-2 1204237
C	3 0732606	1 83303/7	0.80/7155
с u	-3.9732000	1.0559547	-0.8947155
п	-3.4010203	1.9634030	1 6269255
Н	-3.2003059	1.3828842	-1.0208255
Н	-4.4185519	2.7861145	-1.2005739
- 17		`	
eE	$: CH_2(OS1Et_3)$	3)2	
49 5	1044	704041040	
En	ergy = -1244.	/24041849	0.0001001
0	0.9490115	0.5110186	0.9221001
Sı	2.1727289	-0.1199181	-0.0407287
C	-0.0333927	-0.2227083	1.6207702
С	2.8594603	1.3982095	-0.9125323
С	3.4592487	-0.9290224	1.0768716
С	1.5599519	-1.3600362	-1.3242206
Η	-0.4971966	0.4728296	2.3314279
Η	0.4175983	-1.0643116	2.1615613
0	-0.9997372	-0.7731719	0.7526590
Η	3.6876202	1.0834215	-1.5634552
Η	2.0776229	1.7792663	-1.5851722
Η	3.7759017	-0.1933945	1.8290624
Η	2.9813167	-1.7446684	1.6383691
Η	2.3610799	-1.4574226	-2.0731766
Η	0.7096238	-0.9130205	-1.8570112
Si	-2.1999492	0.0666889	-0.0696202
С	-1.5385791	1.4823639	-1.1278004
С	-2.9530224	-1.2491934	-1.1819398
С	-3.4463104	0.7236700	1.1849063
Н	-2.3238497	1.7206547	-1.8615802
Н	-0.6902623	1.1044726	-1.7146561
Н	-3.7665723	-0.7927441	-1.7637655
Н	-2.1887742	-1.5439373	-1.9154476
Н	-3 7846551	-0 1143258	1 8098112
н	-2.9347300	1 4185015	1 8663632
C	-3 4703762	-2 4960328	-0 4400063
й	-2 6657722	-2 9691400	0 1323116
н	-4 2687760	_2 2360800	0.2645140
11	-+.200//09	-2.2500009	0.2040149

Η	-3.8728739	-3.2406812	-1.1366744
С	4.6901528	-1.4720159	0.3232093
Н	4.4039842	-2.2304349	-0.4143260
Н	5.2106915	-0.6716495	-0.2150022
Η	5.4108069	-1.9328578	1.0085254
С	-1.1267696	2.7642621	-0.3794498
Н	-1.9683723	3.1825354	0.1842875
Н	-0.3148569	2.5586176	0.3241812
Н	-0.7797716	3.5369648	-1.0757403
C	-4.6613795	1.4270583	0.5468241
Ĥ	-5.2188427	0.7434020	-0.1034991
Н	-5.3561183	1.8000669	1.3080935
Н	-4.3516403	2.2817190	-0.0652856
C	1.1724186	-2.7558431	-0.8005631
H	2.0118359	-3 2338955	-0.2830562
Н	0 3345347	-2 6879238	-0.1005477
н	0.8702941	-3 4181069	-1 6206161
C	3 3276731	2 5234186	0.0296178
н	4 1406931	2.3234100	0.6813131
н	3 6938670	3 3912005	-0 5314311
н	2 5071455	2 8587339	0.6722658
11	2.3071433	2.0307337	0.0722030
eF	: CH ₃ OSiEt ₃		
27			
Ene	$ergv = -642.6^{\circ}$	215821375	
0	1.2261842	0.2079176	-0.1364848
Si	1.7319466	-0.1775965	-1.6823042
C	-0.1321778	0.2169528	0.3098084
Н	-0.1671485	0.7531858	1.2626920
Н	-0.5027563	-0.8039678	0.4650257
Н	-0.7867657	0.7275426	-0.4076167
C	1.7371119	-2.0435835	-1.9700930
Č	0.3538374	-2.7192913	-2.0475982
H	2.3352857	-2.5081415	-1.1729570
Н	2.2892225	-2.2329429	-2.9030212
Н	0.4419085	-3.7928668	-2.2520760
Н	-0.1982444	-2.6079653	-1.1080754
Н	-0.2598277	-2.2810249	-2.8429412
C	3.4941014	0.4738446	-1.7683659
Č	3.6148092	2.0001056	-1.5963778
H	3.9361428	0.1672889	-2.7272838
Н	4.0810665	-0.0369443	-0.9914741
Н	4.6613855	2.3263828	-1.6138097
Н	3 0888020	2 5322487	-2.3974222
Н	3.1774017	2.3207549	-0.6447998
C	0.6190853	0.6680686	-2.9515319
Č		0.4540250	1 1007551
\sim	1.0775453	0.4549359	-4.4087.0.04
Н	1.0775453 0.5826242	0.4549359	-4.4087334
H H	1.0775453 0.5826242 -0.4107889	0.4549359 1.7431546 0.3019483	-4.4087334 -2.7260053 -2.8362151
H H H	1.0775453 0.5826242 -0.4107889 0.4116667	0.4549359 1.7431546 0.3019483 0.9601123	-4.4087334 -2.7260053 -2.8362151 -5.1178976

Н 1.0921168 -0.6095260 -4.6695855

eG ⁺ : aa				
49				
Ene	ergy = -1169.3	853933546		
0	-0.0030976	-0.3329396	-0.7571960	
Si	-1.6124461	0.3459598	-0.2727975	
Si	1.6225169	-0.4320552	0.0309257	
С	-0.0596334	-1.0026758	-2.0904991	
С	-1.7520988	1.9532194	-1.2135923	
С	-1.6379044	0.5520352	1.5820045	
С	-2.8659352	-0.9250244	-0.8297449	
С	2.8526573	0.0615521	-1.2900143	
С	1.7874847	-2.2181630	0.5464052	
С	1.6344542	0.7761697	1.4540449	
Η	0.9616783	-1.1194920	-2.4437752	
Η	-0.6185400	-0.3541478	-2.7633444	
Η	-0.5439150	-1.9686488	-1.9660581	
Η	-2.8062126	2.2576163	-1.1393552	
Η	-1.5846980	1.7616871	-2.2821922	
С	-0.8429355	3.0972695	-0.7258074	
Η	-0.9686595	1.3601263	1.8897723	
Η	-1.2891209	-0.3588260	2.0824820	
С	-3.0790730	0.8829232	2.0433557	
Η	-3.8387851	-0.4572327	-0.6164624	
Н	-2.8436096	-1.0421681	-1.9197486	
С	-2.7932714	-2.2966526	-0.1311855	
Η	3.8218907	0.0740438	-0.7694836	
Н	2.9557308	-0.7244910	-2.0481140	
С	2.6053835	1.4298154	-1.9533205	
Н	1.6419812	-2.8554001	-0.3367073	
Н	2.8388276	-2.3622716	0.8347555	
С	0.8625031	-2.6680431	1.6934451	
Н	1.2478035	1.7534657	1.1423994	
Н	0.9861549	0.4196893	2.2599499	
С	3.0765983	0.9367597	1.9951997	
Н	-1.0148318	4.0049123	-1.3119402	
Н	-1.0339002	3.3389957	0.3245654	
Н	0.2154162	2.8380801	-0.8246546	
Н	-3.7699930	0.0620827	1.8296947	
Н	-3.0952441	1.0622813	3.1221530	
Н	-3.4626111	1.7834340	1.5517338	
Н	-2.8634975	-2.1957036	0.9565680	
Н	-3 6131959	-2.9421098	-0.4592601	
н	-1 8561291	-2 8180449	-0 3541895	
н	3 4027220	1 6660856	-2 6639226	
н	1 6578268	1.00000050	-2 5025010	
H	2 5746866	2 2328011	-1 2098634	
н	1 0306170	-3 7212386	1 9371791	
н	1.0200170	-2 0835979	2 6015969	
Н	-0 1930535	-2 55730/15	1 4250062	
11	0.1750555	2.5515745	1.7230002	

I	Η	3.7368652	1.3927432	1.2517761
I	Η	3.0752390	1.5785601	2.8808458
I	Η	3.5091122	-0.0269832	2.2852141
(O(S	iEt ₃) ₂ : by-pr	oduct	
2	45			
]	Ene	rgy = -1130.	142339587	
(0	0.0003007	-0.0031113	-0.0876056
ŝ	Si	1.6318633	0.1847553	-0.0839185
(С	2.2494237	-0.0064855	1.6870867
(С	2.3838663	-1.1410674	-1.1933431
(С	2.0344603	1.9046443	-0.7428299
]	H	3.3489722	0.0236492	1.6771642
1	Н	1.9310165	0.8715871	2.2668241
1	H	3.4660942	-0.9593789	-1.2691506
l	н	2 2776339	-2 1156907	-0.6961599
ĺ	н	1 8147350	1 9279381	-1 8197352
1	н	3 1100138	2.0656365	-0.65/6832
L (Ci	-1 6318035	-0.1853825	-0.03+0052 -0.08/1669
		2 2/02327	0.0075036	1 6867300
		-2.2492327	1 1421500	1.0807500
		-2.3606172	1.1421309	-1.1930032
1		-2.0385213	-1.9043133	-0.7452090
נ ו		-1.9551940	-0.8/14140	2.2004/33
L r		-3.3488537	-0.019/2/0	1.0/00011
1	H	-3.4633900	0.9624259	-1.2694025
1	H	-2.2729019	2.1166224	-0.6965626
1	H	-3.1231/39	-2.0633226	-0.655268/
l	H	-1.8183742	-1.9279054	-1.8200714
(C	-1./590348	1.2104424	-2.601/542
I	H	-0.6841461	1.4112091	-2.5444365
]	H	-1.8867800	0.2647353	-3.1406064
]	H	-2.2159262	2.0015414	-3.2077274
(С	1.7620612	-1.2105915	-2.6013748
I	Η	0.6874844	-1.4130162	-2.5439204
I	Η	1.8882966	-0.2647802	-3.1404075
1	Η	2.2201416	-2.0010727	-3.2072594
(С	-1.7610384	1.2896897	2.3879324
I	Η	-2.1335864	1.3548586	3.4168741
I	Η	-0.6671621	1.3216794	2.4252751
I	Η	-2.0964136	2.1876383	1.8565979
(С	-1.2800911	-3.0450451	-0.0376833
I	Н	-1.5121761	-3.0762985	1.0329025
I	Н	-1.5360127	-4.0233161	-0.4610919
I	Н	-0.1974383	-2.9115737	-0.1334389
(С	1.2741107	3.0439555	-0.0373277
1	Н	1.5056810	3.0752940	1.0333635
1	H	1.5286434	4.0227473	-0.4603619
1	H	0.1917148	2.9088912	-0.1335580
(Ċ	1.7644525	-1.2899813	2.3881401
ĩ	H	2 1364909	-1 3539262	3 4173429
l	H	0.6706486	-1.3252010	2.4246866
-				

 $SiEt_3I$: electrophilic silane 23

23			
En	ergy = -825.0	340619176	
I	-0.0011121	-0.0014854	1.3179177
Si	-0.0005620	-0.0000963	-1.1938974
С	0.0513489	1.8007071	-1.7352649
С	1.5326727	-0.9452630	-1.7366546
С	-1.5856133	-0.8548280	-1.7375907
Н	-0.0453412	1.7964975	-2.8321762
Н	-0.8459331	2.3025570	-1.3513178
Н	1.5734424	-0.8642421	-2.8340867
Н	2.4164756	-0.4162484	-1.3579605
Н	-1.5706913	-1.8844143	-1.3579762
Н	-1.5343979	-0.9318080	-2.8348521
С	1.3121593	2.5780746	-1.3186519
H	1.2642271	3.6176131	-1.6611027
Н	1.4229080	2.5864741	-0.2288617
Н	2.2161747	2.1279669	-1.7422685
C	1 5790575	-2.4240333	-1 3138347
Н	2 5015410	-2.9032133	-1 6597389
Н	1 5375033	-2.5192700	-0 2233624
н	0.7351268	-2 9844702	-1 7299288
C	-2 8894110	-0 1542425	-1 3172093
н	-3 7656011	-0 7126388	-1 6647021
н	-2 9529755	-0.0704728	-0.2269186
н	-2 9509990	0.8568362	-1 7336468
11	-2.9509990	0.0500502	-1.7550400
E :	CH ₂ (OSiMe	3)2	
31	0112(021110	572	
En	ergv = -1008.	723462219	
0	0.7148240	0 3692961	0 8462215
Si	2 1515984	0 1041140	0.0120774
C	-0.0727421	-0.6872228	1 3695713
\hat{c}	2 6152393	1 7865122	-0 6634808
C	3 4506440	-0.5261095	1 2148132
c	1 9017709	-1 1508950	-1 3606874
н	-0 5662799	-0 2977565	2 2678047
н	0.5465329	-1.55/1886/	1 6298234
$\hat{0}$	-1.03405527	-1.33+660+	0.4396825
н	3 57101/0	1 7/029/1	-1 1080601
и П	1 8564060	2 15/0666	1 3630603
п п	2 7157152	2.1340000	-1.3039093
п п	<i>2.7137133</i> <i>4.4106337</i>	2.3208044	0.1441304
п п	3 6000028	-0.0704858 0.1861/17	0.7051094
п u	3.0099028	1 4972401	2.0329710
п U	3.1309///	-1.40/2491	1.0339030
п U	1.3210299	-2.099/0/0	-0.9030319
п п	1.1040130	1 2565220	1 872022
с:	2.000098/	-1.3303220	-1.0720200
21	-2.2002331	-0.1203077	-0.2273044

С	-3.5842892	-1.2868014	-0.7327413
С	-2.7720854	1.1168041	1.0554394
С	-1.5315856	0.7692823	-1.7364287
Н	-3.2207678	-2.0481983	-1.4332252
Н	-4.0077045	-1.8019760	0.1372733
Н	-4.3933319	-0.7358649	-1.2279897
Н	-1.9528708	1.7801557	1.3568137
Н	-3 5734084	1 7439832	0.6453604
н	-3 1613054	0.6227621	1 9536701
н	-2 3210366	1 3680473	-2 2085391
н	-0.7135364	1.3000473	-1.4594280
ц	1 1551576	0.0630034	2 / 85 / 803
11	-1.1331370	0.0030034	-2.4034093
F +	· action UC(\mathbf{N}	
20		JSIIVIC 3)2	
50 En/	argy = 1007	036208311	
	0.5722660	0 1164292	0.0624155
0	0.3722000	-0.1104363	0.0024133
SI	2.3310073	0.2145804	-0.0270534
C	-0.06/5469	-0.9082342	0.8247857
C	2.4023032	2.0283404	0.3565900
C	3.1327268	-0.8804180	1.2434122
C	2./1263/8	-0.2300603	-1.7872298
Н	0.4529665	-1.5273215	1.5595730
0	-1.3276829	-1.0195117	0.7713131
Н	3.4404546	2.3760687	0.2941635
Η	1.8104917	2.6109370	-0.3578058
Η	2.0384085	2.2379337	1.3683472
Н	4.2159469	-0.7084950	1.2130223
Η	2.7967347	-0.6549939	2.2617707
Η	2.9669201	-1.9443680	1.0396959
Η	2.5603798	-1.2986742	-1.9733163
Η	2.0900587	0.3408394	-2.4847240
Н	3.7615802	0.0037416	-2.0055680
Si	-2.4726025	-0.1386420	-0.3088094
С	-4.0900326	-0.7984910	0.3123679
С	-2.2027188	1.6688608	0.0365718
С	-2.0256912	-0.6841291	-2.0291277
Н	-4.1435357	-1.8871324	0.2035153
Н	-4.2457431	-0.5449973	1.3665283
Н	-4 9126960	-0 3605707	-0.2655622
н	-1 2365589	2.0235140	-0 3344963
Н	-2.9876224	2,2448668	-0.4692901
н	-2 2729380	1 8830713	1 1085243
н	_2.2727500	-0 2778625	_2 7338002
ч	-2.7017009	-0.2776023	-2.7330002
и П	2 0469410	1 7756074	2.3323177
п	-2.0408410	-1.//309/4	-2.1183007
T		1 67	1 1 0 1 4 1

F.SiMe₃I : loose complex of **F** and SiMe₃I 32

Energy = -1231.659538256

O 2.7421157 0.5379029 0.7096414

С	3.1218373	0.2776518	2.0639947
Η	3.1728204	-0.8012857	2.2583172
Η	4.0935688	0.7282527	2.3035503
Η	2.3633155	0.7199199	2.7158446
Si	3.7662643	0.2388713	-0.5814787
С	2.7734143	0.7037260	-2.0982144
С	4.2532917	-1.5764352	-0.6169635
С	5.3098298	1.3005593	-0.4327974
Н	3.3742887	0.5673828	-3.0056807
Н	1 8764366	0.0821871	-2 1932721
Н	2.4570825	1.7521964	-2.0578915
Н	4 7979776	-1 8661695	0 2898868
н	3 3756978	-2 2273881	-0.7065121
н	4 9088924	-1 7797880	-1 4730133
н	5 8880715	1 0539526	0 4652703
ц	5.0662508	1.0557520	1 2085756
и П	5.0544428	2 3650703	-1.2983730
	0.07944428	2.3039703	-0.3673747
C	-0.9784401	-0.5155085	2.3088317
C	-0.3273333	1.5952999	-0.1842474
	-0.02/020/	-1.080/904	-0.244/323
H	0.0518604	-0.1645835	2.7159100
H	-1.6013354	0.4802909	2.7939336
H	-1.3333248	-1.2/52054	2.7529398
H	-0.6151022	1.4216843	-1.2/52080
H	-1.1542477	2.1901/23	0.2331368
H	0.5187706	1.5846875	0.0854714
Н	-0.3/5/3/1	-2.6496884	0.1273275
Н	-0.0948874	-1.6853030	-1.3373618
Н	1.0241144	-1.5529755	0.0381981
Si	-1.0174353	-0.2755527	0.4961885
Ι	-3.4103913	-0.6595008	-0.1682398
F :	product CH ₃	OSiMe ₃	
Fn	ergy – -524 6	226891580	
0	13030419	-1 1342065	-1 1048727
Si	2 5226214	-2 0448298	-0.4105516
C	-0.0365482	-1 1295752	-0 5979839
c	2 0811956	-3 8716795	-0.4692175
C	4 03/3898	-1.6809663	-1.4530500
C	2 7881/00	-1.519/3/2	1 3753584
ц	0.0660551	0.7737600	0 / 308867
п п	-0.0009331	-0.7737000	0.4398807
П Ц	-0.4013730	-2.1319249	-0.0442830
п Ц	-0.0202030	-0.4520105	-1.2213010
п U	2.07030/1 1 1007776	-4.4/7/039	-0.0373908 0.1177200
п	1.100///0	-4.09020/1	0.11//209
п	1.9020801	-4.202/339	-1.4991/00
п	4.904/940	-2.255401/	-1.001210/
H	3.8/20/21	-1.9/00191	-2.49/8210
H II	4.2809/01	-0.0130230	-1.4308008
п	3.0289803	-0.431/290	1.4422208

Η	1.8987050	-1.7045837	1.9899328
Η	3.6183695	-2.0801014	1.8230649
\mathbf{F}^+	: cation SiMe	3OCH2O(SiM	$[e_3)_2^+$
44		5 2 (572
Ene	ergv = -1417.	953343650	
0	1.6243761	0.4653321	-1.0879704
Ċ	3 0690538	0 8533055	-0 6646248
н	3 0037339	0.9564838	0.4183453
$\hat{0}$	3 9248655	-0.0898533	-1 1087020
Si	4 6482293	-1 3653393	-0.2112040
C	5 2083137	0.6596447	1 1267/05
с u	1 2756772	0.3368258	2 0622360
П Ц	4.3730772	-0.3308238 1 4278510	2.0022309
П Ц	5 9909071	-1.4278319	1.7047303
п	2 4102712	0.1934694	1.2020037
	3.4103/13	-2.7490827	0.0199201
H	3.8939978	-3.5/9461/	0.5493027
H	2.5438668	-2.44/9946	0.61/8/86
H	3.0482690	-3.134559/	-0.9386921
C	6.0604636	-1.8/82905	-1.3094614
Н	5.6982838	-2.2036/56	-2.2914840
H	6.7639422	-1.0522209	-1.460/460
Н	6.6098845	-2.7146585	-0.861/003
Н	3.2279995	1.8077098	-1.1638628
Si	1.4198264	0.2572442	-2.8687243
С	1.6946708	-1.5415753	-3.2451574
С	2.6740129	1.3805069	-3.6599579
С	-0.3066151	0.8329393	-3.2627976
Η	1.4645899	-1.7164492	-4.3035855
Η	2.7362506	-1.8282823	-3.0757984
Η	1.0482405	-2.1967682	-2.6538207
Η	2.5287617	2.4293177	-3.3790602
Η	3.7056223	1.0878671	-3.4457520
Η	2.5272983	1.3122303	-4.7457052
Η	-0.4436601	1.8937939	-3.0318534
Η	-0.4319599	0.7135679	-4.3473353
Η	-1.1031571	0.2584772	-2.7832881
С	1.1836751	0.1500054	1.8008618
С	-0.7271000	1.7877582	0.0552989
С	-0.5239780	-1.3271327	-0.2787118
Η	1.9253788	-0.6516843	1.8640362
Η	1.6423573	1.0899544	2.1243485
Η	0.3956347	-0.0871625	2.5281151
Η	-1.3425434	1.8326670	-0.8463282
Н	-1.4013159	1.7898711	0.9209491
Н	-0.1179206	2.6971828	0.1085676
Н	-1.3165401	-1.4846546	0.4640177
Н	-0.9982264	-1.3286503	-1.2636281
Н	0 1593938	-2.1803556	-0.2187353
Si	0.3380434	0.2668020	0.1439853
~ *			

31			
Ene	ergy = -933.8	513426050	
0	1.1868794	-0.3095876	-1.0251552
С	2.4874511	-0.1478842	-0.3123320
Si	1.2789590	0.1365535	-2.7693034
Si	-0.2866529	-0.4493726	0.0133887
Η	2.6380373	-1.0321524	0.3011842
Η	2.4439318	0.7622236	0.2841092
Н	3.2651024	-0.0759837	-1.0702966
С	-0.4089387	-0.1384971	-3.4918442
Ċ	2.5343616	-1.0315007	-3.4887480
Ċ	1.7860774	1.9252943	-2.7644902
Ċ	0 3484160	-0 9342881	1 6926788
C	-1 3225413	-1 8009600	-0 7304900
C	-1 0415364	1 2499511	-0.0026653
н	-0 3545185	0.2254118	-4 5268907
н	-0.6815137	-1 1965023	-3 5315097
н	-0.0015157	0.4222660	-2 007/103
и П	3 5501133	0.8307721	3 1566735
н Ц	2 2804641	2 0727301	3 2616613
п п	2.2804041	-2.0727301	-5.2010013
п п	2.3180931	-0.9101343	-4.3733043
П Ц	2.7000087	2.0077300	-2.2927302
П Ц	1.0004443	2.2700469	-3.8010803
п ц	1.0443393	2.3494039	-2.2343077
п	0.0701002	-1.0909901	1.0650105
н	0.9954080	-0.1810//1	2.152/459
H H	-0.551/942	-1.04/3395	2.3391348
п	-2.0200552	-2.145590/	0.0443997
п	-1.9144552	-1.4805940	-1.5900570
H	-0.7088123	-2.6605618	-1.0212886
H	-1.3/65495	1.5598636	-0.99/2881
H	-1.9186128	1.254/160	0.6562/4/
Н	-0.3384/12	1.9995988	0.3772355
H_2	: dihydrogen		
Ene		052220925	
Н	0.0279549	0.0000000	0.0000000
н	0.0279349	0.0000000	0.0000000
11	0.7720431	0.0000000	0.0000000
I ⁻ : 1	anion iodide		
Ene	Prov = -297.7	563068331	
I	0.0000000	0.0000000	0.0000000
Lut	$t.B(C_{6}F_{5})_{3}:ac$	lduct of 2,6-1	utidine
51			
Ene	ergy = -2536.	666799414	
В	-0.1545118	-0.1063172	0.4286344
С	0.4711989	1.3926875	0.1298294

 G^+ : cation CH₃O(SiMe₃)₂⁺

С	1.0378626	-1.0335033	-0.2605125
С	-1.6654215	-0.3347050	-0.1948901
С	-0.0727155	2.3615665	-0.7172839
С	1.7699393	1.6879764	0.5636998
С	1.9862915	-1.8363156	0.3768611
С	1.2712178	-0.8720463	-1.6328568
С	-2.7314197	0.4115314	0.3182602
С	-2.0541257	-1.2489230	-1.1792486
С	0.5952874	3.5306457	-1.0837472
F	-1.3033727	2.2165017	-1.2609269
С	2.4722786	2.8374967	0.2297704
F	2.4039022	0.8285723	1.4058896
С	3.0426628	-2.4658517	-0.2791459
F	1.9374724	-2.0485618	1.7176889
С	2.3076687	-1.4795749	-2.3306343
F	0.4586263	-0.0688120	-2.3630682
С	-4.0521870	0.3033480	-0.0982699
F	-2.4964426	1.3402576	1.2812974
С	-3.3636258	-1.3921913	-1.6360762
F	-1.1696067	-2.1151376	-1.7325103
С	1.8760958	3.7764090	-0.6074540
F	0.0090799	4.4194760	-1.9076805
F	3.7095969	3.0580689	0.7144155
С	3.2065193	-2.2920567	-1.6469001
F	3.9123040	-3.2328535	0.4079225
F	2.4528849	-1.2857985	-3.6556648
С	-4.3754177	-0.6096227	-1.0958309
F	-5.0124251	1.0778885	0.4421861
F	-3.6584932	-2.3042970	-2.5822363
F	2.5293726	4.8983073	-0.9476690
F	4.2171488	-2.8915577	-2.2971209
F	-5.6416630	-0.7379774	-1.5214983
С	-0.2349810	0.4547495	3.0709357
С	-0.3143997	0.0338003	4.3985180
С	-0.5485725	-1.2899148	4.7247226
С	-0.7520690	-2.1792684	3.6837091
С	-0.6642107	-1.7593111	2.3610931
Ν	-0.3483759	-0.4547867	2.0427888
Η	-0.5993954	-1.6127336	5.7594743
Η	-0.2029328	0.7848397	5.1720583
Η	-0.9824299	-3.2213520	3.8725366
С	-0.0716008	1.9409313	2.8886792
Η	-0.4878195	2.4219279	3.7766837
Η	0.9840133	2.2206175	2.8356372
Η	-0.5806530	2.3293547	2.0136030
С	-0.9761223	-2.7932228	1.3182780
Η	-0.4028817	-2.6950993	0.4006416
Н	-0.7898048	-3.7810165	1.7438200
Η	-2.0389963	-2.7360600	1.0580751

 $[LutH][ClB(C_6F_5)_3]: contact \ ion \ pair$

53			
En	ergy = -2997.	549193120	
В	-0.2418707	-0.7212248	0.2294848
С	-1.7803330	-1.0543314	-0.2100579
С	-0.3159526	-0.0843539	1.7360448
Ċ	0.6442624	0.1417149	-0.8391634
Č	-2.5101916	-0.3906391	-1.1991142
C	-2 5145183	-2.0117816	0 4998624
C	0 1817581	-0 5827007	2 9411166
C	-1 0434246	1 1044907	1 8703860
C	0 7153095	-0.2561057	-2 1813948
C	1 4869889	1 2084790	-0 5197025
C	-3 8396326	-0.6771184	-0.5177025
F	-1.9552369	0.6126078	-1.9013042
C	3 8405171	2 3335740	0.2285403
C E	-5.8405171	2.5555749	1 53/6223
Г С	-1.9437010	-2.0743990	1.3340223
	-0.0260649	0.0572446	4.1742003
Г С	0.9243732	-1./13100/	2.9903783
	-1.2/91398	1./545/54	3.0/4182/
Г С	-1.5426523	1.7028191	0.7582055
C	1.5477056	0.3304188	-3.1266164
F	-0.03/3602	-1.2916610	-2.6212064
C	2.3465311	1.8208305	-1.4334627
F	1.5505101	1./0/10/9	0.7400280
C	-4.5109189	-1.6624557	-0.7880531
F	-4.4848406	-0.0001539	-2.4/364/1
F	-4.4839829	-3.2773347	0.9456312
C	-0.7653316	1.2109585	4.2472330
F	0.4859950	-0.4976898	5.3012507
F	-1.9846072	2.9026094	3.1175365
С	2.3826214	1.3780123	-2.7478937
F	1.5784836	-0.1185259	-4.3980474
F	3.1601912	2.8223992	-1.0429262
F	-5.7932225	-1.9544260	-1.0684404
F	-0.9746695	1.8157902	5.4297590
F	3.2194178	1.9390916	-3.6372918
С	3.8515353	-1.8703231	-2.1290425
С	4.9360358	-1.2373622	-2.7219599
С	5.6881174	-0.3237209	-1.9852511
С	5.3621852	-0.0518964	-0.6587386
С	4.2747090	-0.6904486	-0.0746706
Ν	3.5689843	-1.5609892	-0.8379966
Η	6.5310891	0.1787389	-2.4480599
Η	5.1761223	-1.4589101	-3.7550043
Η	5.9364125	0.6556198	-0.0724851
С	2.9908854	-2.8881393	-2.8052811
Η	2.9541151	-2.6993555	-3.8793553
Η	3.4161680	-3.8868067	-2.6493500
Η	1.9775790	-2.8870155	-2.3967536
С	3.8470370	-0.5051846	1.3454091
Η	2.8162277	-0.8306651	1.4953715

Н	4.4921796	-1.1032778	1.9995636
Η	3.9476497	0.5413209	1.6390725
Η	2.7047017	-1.9698033	-0.4235794
Cl	0.7187915	-2.4568612	0.2058384
Lut	tHCl : H-bond	ded chloride	
19			
Ene	ergy = -788.0	006558902	
С	0.6271125	-1.1977183	-0.0000718
С	2.0179947	-1.2075884	-0.0004740
С	2.7129600	-0.0003718	-0.0008050
С	2.0183861	1.2070710	-0.0008432
С	0.6274996	1.1976512	-0.0003021
Ν	-0.0031334	0.0000667	-0.0001859
Η	3.7984189	-0.0005478	-0.0011072
Η	2.5421541	-2.1565800	-0.0005596
Η	2.5428621	2.1558901	-0.0016949
С	-0.2205846	-2.4330364	0.0006477
Η	0.0039949	-3.0384998	-0.8834315
Η	0.0061952	-3.0389055	0.8838773
Н	-1.2825481	-2.1770244	0.0020609
С	-0.2198086	2.4332377	0.0006840
Н	-1.2818546	2.1775661	0.0022423
Н	0.0074012	3.0391154	0.8838004
Н	0.0047252	3.0385435	-0.8835141
Н	-1.0853972	0.0002403	-0.0003602
Cl	-2.9878277	0.0005983	0.0000728
Lut	tHI : H-bonde	ed iodide	
19			
Ene	ergy = -625.3	682660026	
С	0.6495439	-1.2019220	0.0000705
С	2.0396296	-1.2082219	0.0009810
С	2.7336131	-0.0003750	0.0017225
С	2.0400226	1.2076997	0.0015823
С	0.6499330	1.2018503	0.0008783
Ν	0.0232237	0.0000646	0.0001893
Η	3.8190264	-0.0005513	0.0021329
Η	2.5640737	-2.1569400	0.0011783
Η	2.5647794	2.1562482	0.0018236
С	-0.1974793	-2.4359127	-0.0008445
Н	0.0227797	-3.0365415	-0.8892174
Н	0.0325280	-3.0447294	0.8793363
Н	-1.2609366	-2.1834404	0.0056417
С	-0.1966959	2.4361126	-0.0005205
Н	-1.2602209	2.1839884	0.0082550
Н	0.0351837	3.0464070	0.8781257
Н	0.0220580	3.0350871	-0.8904017
Н	-1.0335362	0.0002294	0.0004073
T	-3.4189760	0.0006550	-0.0013049

```
LutH<sup>+</sup> : N-protonated 2,6-lutidine
18
Energy = -327.5641472182
С
    1.2082953 -0.2231259 -0.0004049
С
   1.2098840 1.1650835 -0.0001935
С
   -0.0000980 1.8566067 -0.0002082
С
   -1.2100224 1.1649811 -0.0000247
С
   -1.2083078 -0.2232298 -0.0000901
Ν
   0.0000202 -0.8446362 -0.0004350
Η
   -0.0001414 2.9416855 -0.0004962
              1.6919262 0.0000902
   2.1567799
Η
Η
   -2.1569672 1.6917423
                          0.0003640
С
   2.4372873 -1.0734474 -0.0001050
Η
   3.0454536 -0.8510379 -0.8823461
Η
   3.0428496 -0.8540970 0.8847137
Η
   2.1904720 -2.1376680 -0.0022882
С
   -2.4372141 -1.0736782
                           0.0004479
Η
   -2.1902870 -2.1378744
                           0.0020942
Η
   -3.0445880 -0.8515963
                           0.8833185
Η
   -3.0436098 -0.8541397 -0.8837521
Η
   0.0000698 -1.8633725 -0.0007814
LutSiMe<sub>3</sub><sup>+</sup> : silylium binding to Lut
30
Energy = -736.3614736019
Si 0.2562103 0.8609364 4.7916675
С
   0.5507837
               2.6854870 5.0905912
С
   1.6602234 -0.0025825
                          3.9219606
С
              0.7965884
   -1.3703926
                          3.8669104
Η
   0.2374754
              3.1817051
                          4.1634300
              3.0857265
Η
   -0.0763799
                          5.8943752
Η
   1.5888966
              2.9619048
                          5.2786429
Η
   1.4472343 -1.0625111
                          3.7487216
Η
    1.8166512 0.4725980
                          2.9459475
Η
   2.5974536 0.0685365
                          4.4836202
Η
   -2.2323237
               0.9634141
                          4.5217504
   -1.3343188
Η
              1.6389365
                          3.1646890
Η
   -1.5364024 -0.1111174
                          3.2855235
С
   0.7515342
               0.4124358
                          7.5751512
С
   0.4400443 -0.0832273
                          8.8352632
С
   -0.5242413 -1.0697997
                          8.9873757
С
   -1.1054156 -1.6060056
                          7.8467527
С
   -0.7886001 -1.1053221
                           6.5899687
Ν
   0.0763618 -0.0415566
                           6.4644983
Η
   -0.7793220 -1.4495547
                           9.9711705
Η
   0.9846312
              0.3038435
                          9.6888785
   -1.7980009 -2.4375628
Η
                          7.9091484
С
   1.8773839
              1.3947501
                          7.4461728
Η
   2.5665337
               1.2335029
                          8.2777593
Η
   2.4319506
               1.2662023
                          6.5149636
Η
   1.5243908 2.4277612 7.5045598
```

U	-1.3522205	-1./88/433	5.5/98401
Η	-2.2958502	-1.3380630	5.0610787
Н	-0.6569215	-1 7775278	4 5386263
ц	1 5544367	2 8207218	5 6403425
11	-1.5544507	-2.8297218	5.0405425
Lu	t : 2,6-lutidine	e	
17			
En	ergy = -327.12	230377033	
Ν	-0.0000129	0.9540216	-0.0001969
С	-1.1620199	0.2711684	-0.0001191
С	-1.1998407	-1.1278645	-0.0002487
Ċ	-0.0000009	-1 8339237	-0.0000068
C	1 1008203	-1 1278/187	0.0002347
C	1.1770275	0.0711000	0.0002347
	1.1020083	0.2/11009	-0.0000814
н	0.0000010	-2.9205808	-0.0000970
H	-2.1532889	-1.6486/84	-0.0008041
Η	2.1532786	-1.6486602	0.0009639
С	-2.4295466	1.0871858	-0.0001735
Η	-3.0411209	0.8608796	-0.8813723
Η	-3.0386415	0.8646235	0.8837135
Н	-2.1841711	2.1509836	-0.0026978
С	2,4295473	1 0872012	0.0002156
н	2 1842150	2 1510123	0.0026629
и П	2.1042130	0.8608851	0.8815427
п	3.0409412	0.00000001	0.0013427
н	3.0388223	0.8645832	-0.8835348
O(\$	SiMe ₃) ₂ : by-p	product	
O(3 27	SiMe ₃) ₂ : by-p	product	
O(3 27 En	SiMe ₃) ₂ : by-p ergy = -894.1	oroduct 373340381	
O(S 27 Ene O	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432	oroduct 373340381 0.0216192	-0.0218264
O(S 27 Ene O Si	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256	oroduct 373340381 0.0216192 0.0057545	-0.0218264 -0.0047195
O(S 27 Enc O Si Si	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352	oroduct 373340381 0.0216192 0.0057545 0.0047135	-0.0218264 -0.0047195 -0.0060280
O(S 27 End O Si Si C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285	oroduct 373340381 0.0216192 0.0057545 0.0047135 1 7423417	-0.0218264 -0.0047195 -0.0060280 -0.3660105
O(Si 27 O Si Si C C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 2.2401669	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 1.1890302	-0.0218264 -0.0047195 -0.0060280 -0.3660105 1.3238337
O(Si 27 O Si C C C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 2.2159690	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 0.5525160	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6037153
O(27 End O Si C C C C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153
O(2 27 End O Si Si C C C C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444
O(\$ 27 End O Si Si C C C C C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026
O(3 27 End O Si Si C C C C C C C C	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522
O(27 End O Si C C C C C C H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722
O(27 End O Si C C C C C C H H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965
O(27 End O Si Si C C C C C H H H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056
O(27 Enco Si CCCCCHHHHHH	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877
O(3 27 O Si C C C C C H H H H H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783
O(S 27 En O Si Si C C C C C C H H H H H H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066
O(S 27 En O Si Si C C C C C C H H H H H H H H H H H H H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 1.8424116	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 1.5577710	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491
O(27 EO Si SC C C C C C H H H H H H H H H H H H H	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 -1.8424116	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 -1.5577719 0.1274550	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491
O(27 EO Si CCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 -1.8424116 -1.8524914	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 -1.5577719 0.1274550	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491 2.4738056
O(27 EO Si SI C C C C C C H H H H H H H H H H H H H	$SiMe_3)_2$: by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 -1.8424116 -1.8524914 -3.3111529	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 -1.5577719 0.1274550 -0.5789589	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491 2.4738056 1.7546905
O(27 EO Si SC C C C C C H H H H H H H H H H H H H	$SiMe_{3}_{2}$: by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 -1.8424116 -1.8524914 -3.3111529 1.9072556	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 -1.5577719 0.1274550 -0.5789589 2.0914644	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491 2.4738056 1.7546905 -1.3389056
O(27 EO Si SICCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	SiMe ₃) ₂ : by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 -1.8424116 -1.8524914 -3.3111529 1.9072556 1.8968734	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 -1.5577719 0.1274550 -0.5789589 2.0914644 2.4490772	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491 2.4738056 1.7546905 -1.3389056 0.3974339
O(27 EO Si SICCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	$SiMe_3)_2$: by-p ergy = -894.1 -0.0001432 -1.6398256 1.6395352 -2.2574285 -2.2401669 -2.2159690 2.2578337 2.2166316 2.2382593 -3.3538740 -1.8944568 -1.9085159 -3.3360911 -1.8899637 -1.8679552 -1.8424116 -1.8524914 -3.3111529 1.9072556 1.8968734 3.3543099	oroduct 373340381 0.0216192 0.0057545 0.0047135 1.7423417 -1.1890302 -0.5525169 1.7425659 -0.5616417 -1.1844500 1.7837060 2.4523781 2.0860510 -1.2333548 -0.8843715 -2.2029520 -1.5577719 0.1274550 -0.5789589 2.0914644 2.4490772 1.7830996	-0.0218264 -0.0047195 -0.0060280 -0.3660105 -1.3238337 1.6937153 -0.3599444 1.6894026 -1.3309522 -0.3657722 0.3870965 -1.3474056 -1.3527877 -2.3175783 -1.1328066 1.9237491 2.4738056 1.7546905 -1.3389056 0.3974339 -0.3617507

1 7007452

2522202

F 0700461

```
Η
   3.3118487 -0.5880848 1.7497403
Η
   1.8534015 0.1143227 2.4730790
Η
   3.3341217 -1.2301716 -1.3600278
Η
   1.8646882 -2.1988160 -1.1450217
Η
    1.8885303 -0.8743604 -2.3231857
SiMe<sub>3</sub>Cl : chlorosilane
14
Energy = -869.6776581895
Si 0.0000132 -0.0000201 -0.3454961
С
   -0.0000569 1.7902628 -0.8874499
С
   1.5504196 -0.8951041 -0.8874130
С
  -1.5503545 -0.8951853 -0.8874092
Η
  -0.0008051 1.8501256 -1.9832543
Η
   -0.8876821 2.3146844 -0.5171584
Η
   0.8882092 2.3144469 -0.5183675
Η
   1.6028186 -0.9242624 -1.9832045
   2.4483095 -0.3887080 -0.5168554
Η
Η
   1.5600019 -1.9264953 -0.5184664
Η
  -1.5605507 -1.9261216 -0.5172199
H -2.4483300 -0.3880333 -0.5180971
H -1.6020030 -0.9256740 -1.9831991
Cl 0.0000104 0.0000855 1.7637789
SiMe<sub>3</sub>H : silane
14
Energy = -409.9782748062
Si 2.5155841 -2.0176785 -0.4461132
С
   2.0518300 -3.8428785 -0.4674555
С
   4.0774087 -1.7221617 -1.4561692
С
   2.7512352 -1.4178312 1.3234897
Η
   2.8478845 -4.4510034 -0.0200322
Η
   1.1312779 -4.0244089 0.0998341
Η
    1.8923478 -4.1992455 -1.4920524
Η
   4.9233675 -2.2793591 -1.0347858
Η
   3.9450321 -2.0471589 -2.4949495
   4.3470349 -0.6594321 -1.4671107
Η
Η
   3.0003937 -0.3503856 1.3503049
Η
    1.8412670 -1.5665861
                         1.9168351
Η
   3.5655835 -1.9656009
                         1.8138614
Η
   1.3998424 -1.2398441 -1.0635129
SimI : iodosilane
14
Energy = -707.0311227089
Si 0.0000112 -0.0000277 -1.2676981
С
  -0.0000359 1.7924136 -1.8095310
С
   1.5522687 -0.8961914 -1.8095264
С
  -1.5522192 -0.8962410 -1.8095356
Η
  -0.0004442 1.8427542 -2.9063970
H -0.8878276 2.3173857 -1.4422690
```

Н	0.8881179	2.31/2291	-1.4429267
Η	1.5961777	-0.9210077	-2.9063758
Н	2.4507175	-0.3898346	-1.4421249
Н	1.5625126	-1.9277614	-1.4429503
н	-1 5627902	-1 9276021	-1 4423854
н	-2 4506884	-0.389/981	-1 4427162
и П	1 5057700	-0.3394981	2 0063835
T	-1.3937799	-0.9210879	-2.9003833
1	-0.0000204	0.0000075	1.2403782
TS 53	51 : TS for H ₂ -	cleavage with	h Lut.B(C_6F_5) ₃
En	ergv = -2537.	822947856	
В	-0.0332434	0 3977256	-0.0392261
Ĉ	-0.2806106	0.8396335	1 4862393
č	0.2484169	1 6472981	-1 0161299
C	-0.86/5133	-0.8/95711	-0.6155007
C	1 511106/	0.7533505	2 138/871
C	-1.5111904	1 4110857	2.1304071
C	1 2700640	1.4119037	2.2332070
C	0.6970245	2 6708562	1.0974027
C	-0.06/9243	2.0796302	-1.06/402/
C	-1.0/13490	-1.9992318	0.15/00/8
C	-1.41/5494	-0.8962323	-1.9002364
C	-1./059/16	1.182/14/	3.4481779
F	-2.5884461	0.2462505	1.4990087
C	0.6066188	1.8389528	3.5478579
F	1.9766102	1.5578711	1.6647728
С	1.5864057	2.9225185	-2.6261549
F	2.3474085	0.8590027	-1.8210177
С	-0.5257988	3.8044973	-1.8882208
F	-1.8351345	2.5881539	-0.3734928
С	-1.7610368	-3.1179205	-0.2925717
F	-0.5865416	-2.0582261	1.4171215
С	-2.1295133	-1.9921850	-2.3836535
F	-1.2849495	0.1403011	-2.7549429
С	-0.6386490	1.7238882	4.1597154
F	-2.9124679	1.0806566	4.0323804
F	1.6440151	2.3615025	4.2249584
С	0.6245966	3.9272299	-2.6633022
F	2.7000640	3.0329739	-3.3714174
F	-1.4646287	4.7657867	-1.9268089
С	-2.2991794	-3.1124957	-1.5768525
F	-1.9158488	-4.1956676	0.4944296
F	-2 6440246	-1 9801692	-3 6249665
F	-0.8095821	2 1369931	5 4235568
F	0.8025190	5.0045191	-3.4418422
F	-2.9740531	-4 1762527	-2.0304890
ч	1 4548327	0 1248848	0.0952623
C	2 7017022	-7 83/86/18	1 2751055
C	2.7017022	-2.03+0040	1.2731033
C	3.303/043	4 0522240	0.2666071
	3.3701211 2021016	-4.9322340	0.30009/4 0.8647701
U	2.0024840	-4.3491133	-0.804//01

0 0001170

0.0170001

1 1 1 2 0 2 6 5

С	2.2881592	-3.2885439	-0.9742579
Ν	2.1990244	-2.4576349	0.0825962
Η	3.8547400	-5.9280317	0.4783314
Η	3.6989871	-4.3613934	2.4233480
Η	2.9425356	-5.1964812	-1.7340355
С	2.5985152	-1.8474644	2.4066816
Η	1.5498048	-1.6406617	2.6426935
Η	3.0876497	-2.2297584	3.3053256
Η	3.0710744	-0.8995296	2.1294247
С	1.7174418	-2.8010130	-2.2780447
Η	2.0889276	-1.7983935	-2.5098552
Η	1.9757914	-3.4751093	-3.0976803
Η	0.6256616	-2.7400973	-2.2160020
Η	1.2331036	-0.6305934	0.0215199

TS2: TS for hydride transfer from A to \textbf{CO}_2 56

Energy = -2726.548000605

	usj 1,10.	2 10000000	
В	-0.7059682	0.1847510	0.2489573
С	-1.2300275	-0.1544528	1.7386240
С	-1.8402461	0.3874654	-0.8720625
С	0.6446069	-0.6171050	-0.1288862
С	-1.2385198	-1.4617074	2.2297776
С	-1.7137448	0.8055886	2.6260042
С	-1.5544316	1.0467829	-2.0705367
С	-3.1759464	-0.0020141	-0.7351066
С	1.7076322	-0.6450528	0.7819901
С	0.8611093	-1.3646504	-1.2894849
С	-1.6729030	-1.8033493	3.5058852
F	-0.8358467	-2.4880265	1.4363322
С	-2.1537861	0.5121346	3.9138508
F	-1.7679218	2.1057769	2.2513035
С	-2.4909776	1.3235763	-3.0561737
F	-0.2807893	1.4480720	-2.3218503
С	-4.1507616	0.2466147	-1.6995698
F	-3.5956927	-0.6783745	0.3606196
С	2.8867379	-1.3529624	0.5808542
F	1.6177408	0.0432637	1.9472318
С	2.0368975	-2.0695208	-1.5427615
F	-0.0969436	-1.4651158	-2.2385086
С	-2.1323446	-0.8049874	4.3591897
F	-1.6625253	-3.0860459	3.9210922
F	-2.6000585	1.4876479	4.7301323
С	-3.8092315	0.9194731	-2.8667219
F	-2.1413389	1.9680334	-4.1866676
F	-5.4209217	-0.1622901	-1.5136722
С	3.0601017	-2.0651547	-0.6013411
F	3.8676784	-1.3431003	1.5074779
F	2.1942418	-2.7558412	-2.6916800
F	-2.5553020	-1.1117341	5.5978257
F	-4.7371476	1.1688175	-3.8049000

F	4.2029443	-2.7329870	-0.8325754
Η	-0.2176246	1.4703627	0.3424854
С	4.7488883	1.6410660	0.5775188
С	5.9773973	1.0422864	0.3373240
С	6.2427575	0.4868327	-0.9135489
С	5.2874869	0.5475136	-1.9240700
С	4.0647385	1.1598163	-1.6766156
Ν	3.8472343	1.6676526	-0.4388384
Η	7.1986873	0.0087351	-1.1005707
Η	6.7115146	1.0075453	1.1331687
Η	5.4785373	0.1269585	-2.9042255
С	4.3403908	2.2377207	1.8856332
Η	5.2083283	2.3324883	2.5387280
Η	3.8839476	3.2206841	1.7401197
Η	3.5988211	1.5981566	2.3761024
С	2.9858972	1.3181044	-2.6985504
Η	3.2574951	2.1191516	-3.3954167
Η	2.8728459	0.3995758	-3.2786473
Η	2.0331058	1.5713098	-2.2356517
Η	2.9113769	2.0837880	-0.2384588
0	1.4471640	2.7418778	0.2533669
С	0.2323443	2.7574105	0.1211068
0	-0.7050666	3.4637174	-0.1214683

TS3⁻ : silylium transfer from SiMe₃I to anion **B**⁻ 52

En	ergy = -3106.	008417658	
0	0.4006200	0.1356640	-1.1696549
С	-0.8600676	0.1749337	-0.8602512
Η	-1.0959366	0.1402798	0.2144244
0	-1.7566897	0.2417380	-1.7043038
Si	-4.1463483	0.1355169	-0.8856237
С	-3.6072514	-1.4980924	-0.1218738
С	-3.7008452	1.7516968	-0.0331128
С	-4.4809962	0.1663053	-2.7291880
Η	-2.6316620	-1.8353977	-0.4781308
Η	-3.5751740	-1.4102469	0.9701433
Η	-4.3495073	-2.2652687	-0.3647743
Η	-2.7236105	2.1346406	-0.3337966
Η	-4.4607240	2.5018571	-0.2758258
Η	-3.7117236	1.6158698	1.0542113
Η	-3.5469873	0.1805568	-3.2959018
Η	-5.0629629	-0.7164781	-3.0148132
Η	-5.0717672	1.0523170	-2.9854754
Ι	-6.6449791	0.0473315	-0.0563042
В	1.5506922	0.0203472	-0.1499625
С	2.1655681	1.5337531	0.0649529
С	0.9923733	-0.6550340	1.2438530
С	2.6296742	-0.9361837	-0.9446421
С	3.5303754	1.8153532	0.1521058
С	1.3478555	2.6608278	0.1658319

С	0.2527286	-1.8419218	1.1963857
С	1.1813840	-0.1547968	2.5323888
С	2.9870143	-0.6128595	-2.2576545
С	3.2556733	-2.0772077	-0.4451761
С	4.0529914	3.0998488	0.2806677
С	1.8205622	3.9632973	0.2917428
С	-0.2876304	-2.4762969	2.3072128
C	0.6673530	-0.7600160	3.6796267
C	3.8590706	-1.3692118	-3.0343064
Ċ	4.1342262	-2.8657917	-1.1857247
Č	3.1911812	4.1876696	0.3443491
C	-0.0761322	-1.9275378	3.5688014
Ċ	4.4366679	-2.5127717	-2.4943939
F	4.4490888	0.8145379	0.1456873
F	-0.0064186	2.5278097	0.1870930
F	0.0308805	-2.4435129	-0.0017661
F	1 9018435	0.9736403	2 7510986
F	2 5069292	0 5144045	-2 8368511
F	3 0586230	-2 4821172	0.8371515
F	5 3865717	3 2994268	0.3531496
F	0.9679380	5.0057882	0.3805712
F	-1.0007666	-3 6138259	2 18199/19
F	0.8861269	-0.2221396	<i>2</i> .1017747 <i>4</i> 8074850
F	1 1626738	-0.2221370 -1.0004249	-1 2977312
F	4.1020738	3 965/19/1	0.6424033
F	3 6750449	5 /378129	0.0424735
F	0.5825455	2 5216183	4 6630501
Г Г	5 2827060	2.5210185	4.0039301
1.	5.2657909	-3.2010120	-3.2203437
тs	$4 \cdot \operatorname{silvlium} \operatorname{tr}$	ansfer from §	SiMe ₂ L to D
31	+ . siryirum u		
51 En	ergy = -1305	737668379	
	$c_{1}g_{y} = -1303.$	1 2060881	0 3281000
Si	1 6700100	0.2022751	0.0281090
C	4.0799199	1 1873706	0.0055558
C	2.3711337	-1.16/3/00	0.2630414
C	4.3804280	1 5128010	1 2527627
C	4.2310279	0.4079229	1.2337037
С U	1 0095229	-0.4978338	0.2783808
П	1.9063236	-2.1303007	0.02/4912
U U	1./115555	-0.1850451	-0.0049202
п	3.0840733	1.3033302	-2.0410381
П	4.55/6290	-0.1293340	-2.4481072
H	3.3648964	1.092/8/1	-1.90653/1
H	4.9402802	2.34/8606	1.1/83898
H	3.2247380	1.906/2//	1.0848439
H	4.2862880	1.1212919	2.2755195
H	6.5029659	-0.8628582	1.3046580
H	6.58/2546	-1.32/3103	-0.4080659
H	/.1414384	0.2762905	0.1058919
Si	-0.4603308	-0.0578033	-0.07/41055
C	-0.3643657	-1.3769439	-1.4192793

С	-0.4634723	-0.5217907	1.7540721
С	-0.2268745	1.7410175	-0.5563115
Η	0.5561812	-1.2837663	-2.0051857
Η	-0.3878660	-2.3772850	-0.9697083
Η	-1.2194345	-1.2992813	-2.0938623
Η	0.5189779	-0.4191864	2.2256116
Η	-1.1730588	0.1172524	2.2867391
Η	-0.8059912	-1.5559460	1.8747129
Η	-0.6855771	1.9214337	-1.5340451
Η	-0.7360941	2.3859934	0.1669588
Η	0.8297152	2.0211077	-0.6026282
Ι	-3.1998053	0.0828337	-0.1488637

TS5 : hydride transfer from A^- to E^+ 65

65			
Ene	ergy = -3218.	237915100	
0	2.3193961	-1.2232243	-1.5178069
Si	2.2442675	-2.9179341	-1.9205853
С	1.6026990	-0.2268576	-1.9583979
С	1.0536229	-3.7504590	-0.7612903
С	1.7405350	-3.0302929	-3.7129872
С	4.0042811	-3.4440875	-1.6180193
Η	0.8368708	-0.3973694	-2.7106468
0	2.0885618	0.9732022	-1.9157375
Η	1.0388293	-4.8259954	-0.9767963
Η	1.3608902	-3.6234715	0.2815229
Η	0.0352521	-3.3699573	-0.8753549
Η	1.8125398	-4.0748674	-4.0391076
Η	0.7086361	-2.7057756	-3.8807246
Η	2.4016722	-2.4362228	-4.3545395
Η	4.6993927	-2.9332169	-2.2928804
Η	4.3062453	-3.2302196	-0.5866134
Η	4.1063383	-4.5236298	-1.7803700
Si	3.6114964	1.6938861	-1.4614825
С	4.1716566	2.4231700	-3.0854107
С	3.1750160	3.0093921	-0.2186611
С	4.8214508	0.4319823	-0.8175124
Η	4.3562853	1.6420972	-3.8316948
Η	3.4223814	3.1134939	-3.4879432
Η	5.1053316	2.9811516	-2.9447152
Η	2.7345618	2.5870832	0.6882073
Η	4.0843106	3.5544355	0.0637890
Η	2.4703143	3.7317952	-0.6421747
Η	5.7552048	0.9531945	-0.5693477
Η	4.4590342	-0.0678565	0.0841294
Η	5.0535048	-0.3274960	-1.5703930
В	-0.4771037	0.0167940	0.0613380
С	0.0925492	-0.9531122	1.2258180
С	-0.3786147	1.6159996	0.3136170
С	-1.9360160	-0.3655026	-0.5398095
С	-0.5915106	-2.0112730	1.8282568

С	1.4166881	-0.8142353	1.6487110
С	-0.5113918	2.4782158	-0.7774852
С	-0.2076875	2.2534210	1.5426367
С	-3.1057865	0.0571558	0.0952250
С	-2.1439350	-1.0895043	-1.7084273
С	-0.0159664	-2.8631908	2.7702432
F	-1.8828197	-2.2763226	1.5149951
С	2.0388051	-1.6415874	2.5743025
F	2.1688810	0.1984241	1.1448645
С	-0.4630661	3.8643814	-0.6819636
F	-0.7060919	1.9625711	-2.0190776
С	-0.1535219	3.6376083	1.6879704
F	-0.1056449	1.5312751	2.6850536
C	-4.3841728	-0.2055707	-0.3855078
F	-3.0236741	0.7385775	1.2653115
C	-3 3999283	-1 3799675	-2.2336641
F	-1 0779929	-1 5691820	-2.4156033
C	1 3108242	-2.6824608	3 1447036
F	-0.7290967	-3 8687959	3 3138800
F	3 3268747	-1 4500715	2,9248269
C	-0 2794230	4 4508078	0 5665249
F	-0 5807393	4 6419579	-1 7778122
F	0.0163386	4.1986456	2.9021189
C	-4.5334571	-0.9303477	-1.5653079
F	-5 4768906	0 2229687	0 2770743
F	-3.5280486	-2.0856500	-3.3758806
F	1.8832513	-3.5004042	4.0438263
F	-0.2189084	5.7885634	0.6864407
F	-5.7592233	-1.1957739	-2.0498568
Н	0.3673729	-0.1602364	-0.8819147
TS	6 : silylium tr	ansfer from S	SiMe ₃ I to E
45	5		0
En	ergy = -1715.	739072524	
0	0.9435513	-0.2780725	-0.3171676
С	1.8657774	-0.2618767	0.8042982
Н	1.6217179	-1.1217158	1.4307855
0	3.1545885	-0.3642168	0.2927957
Si	4.5660671	0.0133743	1.1510223
Ĉ	4.5313945	1.8280879	1.6155921
Η	3.6602034	2.0716096	2.2354733
Н	5.4255862	2.0873414	2.1956718
Н	4.5074990	2.4704455	0.7286187
С	4.6333922	-1.0598449	2.6845017
H	5.5672570	-0.8865292	3.2331652
Н	3.8056822	-0.8389317	3.3695659
Н	4.5872079	-2.1244194	2.4270833
Ċ	5.9319872	-0.3858187	-0.0567629
Н	5.9136695	-1.4449792	-0.3371971
Н	5.8435962	0.2116593	-0.9712423
H	6.9110061	-0.1722524	0.3886728

Η	1.7141540	0.6788800	1.3505526
Si	1.6251838	0.0808360	-1.8948888
С	0.1847210	0.3509955	-3.0601710
С	2.5922610	-1.3939688	-2.5143281
С	2.6037531	1.6802208	-1.8055318
Η	0.6395852	0.6556884	-4.0131781
Η	-0.4014714	-0.5497766	-3.2538793
Η	-0.4916316	1.1529735	-2.7551431
Н	3.5304080	-1.5342309	-1.9736396
Η	1.9982062	-2.3108103	-2.4193546
Η	2.8167313	-1.2569469	-3.5799270
Η	3.6749811	1.4980171	-1.6869951
Η	2.4523307	2.2590602	-2.7243096
Η	2.2744873	2.3049962	-0.9673114
С	-0.8287703	-0.7754124	1.9300195
С	-1.2077703	1.5700967	-0.2148930
С	-1.3945332	-1.7002584	-1.0576842
Н	-0.3540202	-1.7606949	1.9955352
Η	-0.2136612	-0.0491185	2.4715726
Η	-1.7960588	-0.8350152	2.4319400
Η	-1.8714406	1.7804913	-1.0574756
Н	-1.6422343	2.0576496	0.6638290
Η	-0.2252864	2.0117505	-0.4119983
Η	-1.9175810	-2.4876327	-0.5051035
Η	-2.0383562	-1.4087901	-1.8908095
Η	-0.4563996	-2.1103606	-1.4441886
H Si	-0.4563996 -1.1270123	-2.1103606 -0.2768523	-1.4441886 0.1394870
H Si I	-0.4563996 -1.1270123 -3.9833742	-2.1103606 -0.2768523 -0.2028419	-1.4441886 0.1394870 0.5121304
H Si I TS	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra	-2.1103606 -0.2768523 -0.2028419 ansfer from A	-1.4441886 0.1394870 0.5121304
Н Si I TS 79	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra	-2.1103606 -0.2768523 -0.2028419 ansfer from A	-1.4441886 0.1394870 0.5121304
H Si I TS 79 End	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628.	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697	-1.4441886 0.1394870 0.5121304
H Si I TS 79 End O	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912
H Si I TS 79 End O C	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912 0.3175016
H Si I TS 79 End O C H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912 0.3175016 1.2542954
H Si I TS 79 End O C H O	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797
H Si I TS 79 End O C H O Si	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814
H Si I TS 79 Enc O C H O Si C	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512
H Si I TS 79 End O C H O Si C H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092	-1.4441886 0.1394870 0.5121304 - to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894
H Si I TS 79 End O C H O Si C H H H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022	-1.4441886 0.1394870 0.5121304 T to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352
H Si I TS 79 Enc O C H O Si C H H H H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533	-1.4441886 0.1394870 0.5121304 T to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903
H Si I TS 79 En O O C H O Si C H H H H C	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163	-1.4441886 0.1394870 0.5121304 T to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790
H Si I TS 79 En O O C H O Si C H H H C H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908 1.1378778	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163 3.0634676	-1.4441886 0.1394870 0.5121304 T to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790 3.6262237
H Si I TS 79 End O C H O Si C H H H C H H H C H H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908 1.1378778 0.1732168	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163 3.0634676 2.4331813 1.2006550	-1.4441886 0.1394870 0.5121304 T to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790 3.6262237 2.2754575 2.245975
H Si I TS 79 End O C H O Si C H H H C H H H H C H H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908 1.1378778 0.1732168 1.1723073 4.2246125	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163 3.0634676 2.4331813 1.3380650	-1.4441886 0.1394870 0.5121304 T to F ⁺ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790 3.6262237 2.2754575 3.2430877 2.4312021
H Si I TS 79 En O O C H O Si C H H H C H H H C H H C H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908 1.1378778 0.1732168 1.1723073 4.2246105	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163 3.0634676 2.4331813 1.3380650 2.3732363 2.0990226	-1.4441886 0.1394870 0.5121304 $-$ to F^+ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790 3.6262237 2.2754575 3.2430877 2.4312034 2.2472124
H Si I TS 79 End O C H O Si C H H H C H H H C H H H C H H C H C H	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908 1.1378778 0.1732168 1.1723073 4.2246105 4.3862498 5.0240154	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163 3.0634676 2.4331813 1.3380650 2.3732363 3.0880026	-1.4441886 0.1394870 0.5121304 $-$ to F^+ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790 3.6262237 2.2754575 3.2430877 2.4312034 3.2473124 1.7069491
H Si I TS 79 End O C H O Si C H H H C H H H C H H H U	-0.4563996 -1.1270123 -3.9833742 7 : hydride tra ergy = -3628. 3.6519642 2.0809969 1.8401693 2.3862487 2.5553134 2.4568310 3.2382427 1.4865281 2.5922385 1.1286908 1.1378778 0.1732168 1.1723073 4.2246105 4.3862498 5.0349154 4.2022228	-2.1103606 -0.2768523 -0.2028419 ansfer from A 251465697 -0.6190410 0.3317471 -0.1576788 1.5925438 2.6869636 4.3376270 4.4337092 4.4755022 5.1486533 2.3395163 3.0634676 2.4331813 1.3380650 2.3732363 3.0880026 2.5041611 1.2681676	-1.4441886 0.1394870 0.5121304 $-$ to F^+ 0.0212912 0.3175016 1.2542954 0.3076797 1.6568814 0.8070512 0.0447894 0.3192352 1.5319903 2.8023790 3.6262237 2.2754575 3.2430877 2.4312034 3.2473124 1.7068481 2.8576220

H 1.6062538 -0.0383404 -0.5816536 Si 4.3984886 -0.1990505 -1.4940892

C	5 2550025	1 7102066	0.1(120(2
Č	5.2550855	-1./192800	-2.1013803
C	5.5954250	1.1924056	-1.1573834
С	3.0378933	0.3190831	-2.6630759
Η	5.7494884	-1.4373457	-3.1000498
Н	6.0249587	-2.1231958	-1.4971405
Н	4 5386118	-2 5149644	-2 3904853
н	6 33/6/51	0.0212222	-0.3963338
11 11	5.0605920	0.0212222	-0.3703330
п	5.0095820	2.0928871	-0.8254519
Н	6.1380514	1.4448207	-2.0/64556
Η	2.5176450	1.2277933	-2.3465158
Η	3.4962211	0.5249588	-3.6386561
Η	2.2973230	-0.4745711	-2.8141662
С	3.1252819	-1.5701416	2.7284074
С	3.8491700	-3.5074508	0.4831166
С	5.9588311	-1.4759643	1.5460243
Н	3 1444279	-0 5488920	3 1223012
н	2 0814890	-1 8758343	2 5992535
п П	2.0014070	2 2162605	2.5772555
П	5.5571240	-2.2103003	0.2200919
п	4.3333829	-5.7040095	-0.5299818
H	3.986/864	-4.24/94/1	1.2813464
Η	2.8219175	-3.6002310	0.1156541
Η	6.3140885	-2.2054467	2.2846137
Η	6.5949480	-1.5712735	0.6602069
Η	6.1062418	-0.4755697	1.9679488
Si	4.1546432	-1.8071490	1.1850989
В	-1.2244451	0.0749581	0.2430309
С	-1.7367283	1.6095463	0.0230179
С	-0.9552775	-0.7791294	-1.1323261
Ċ	-2.1240575	-0.8527111	1 2363147
c	-2 7772423	2 2416340	0 7044435
c	1 0110378	2.2410340	0.7044455
C	-1.0110378	2.4011982	1 0950272
C	-0.0946020	-1.8///910	-1.0859272
C	-1.50198/5	-0.5365337	-2.3924572
С	-3.3760944	-1.3433226	0.8682356
С	-1.6715408	-1.2852373	2.4801916
С	-3.0835671	3.5965229	0.5706975
F	-3.5639784	1.5523931	1.5710274
С	-1.2743355	3.8149008	-0.9816685
F	0.0373430	1.9654848	-1.5285017
C	0.2454441	-2.6580611	-2.1861525
F	0 4802869	-2 2336614	0.1012828
C	-1.1972024	-1 2895516	-3 5251389
C E	-1.1972024	-1.2893510	-3.3231309
Г	-2.3799212	0.4/89329	-2.3/0/082
С Г	-4.139/332	-2.1929349	1.0002088
F	-3.911/226	-0.9/11659	-0.3231646
C	-2.3956930	-2.1390099	3.3098760
F	-0.4602224	-0.8823957	2.9554114
С	-2.3270946	4.3933606	-0.2790769
F	-4.1060492	4.1434333	1.2622829
F	-0.5202467	4.5755070	-1.8064587
С	-0.3112997	-2.3573226	-3.4250993

_			
F	1.1071880	-3.6936480	-2.0696677
F	-1.7518371	-0.9974392	-4.7195765
С	-3.6420173	-2.5958573	2.8966461
F	-5.3522132	-2.6278371	1.2546785
F	-1.9040297	-2.5295734	4.5066667
F	-2.6033785	5.7042643	-0.4189393
F	-0.0003360	-3.0932294	-4.5087744
F	-4.3609666	-3.4200349	3.6836101
Η	-0.1419769	0.2064010	0.7784779

TS8 : silylium transfer from SiMe₃I to **F** 32

En	ergy = -1231.	643751783	
0	2.1490428	-0.1212971	0.7420031
С	2.7233864	0.0481158	2.0800539
Η	2.3493419	-0.7492335	2.7181950
Η	3.8104807	-0.0221796	2.0109009
Η	2.4405698	1.0273767	2.4693810
Si	3.3310647	0.0066844	-0.5380486
С	2.4624482	0.0572878	-2.1862303
С	4.4191815	-1.5039822	-0.3853736
С	4.2761100	1.5971960	-0.2601144
Η	3.2254587	0.3224683	-2.9303679
Η	2.0372257	-0.9058526	-2.4773787
Η	1.6793003	0.8183672	-2.2381804
Η	4.9533440	-1.5460931	0.5699766
Η	3.8287284	-2.4215447	-0.4880864
Η	5.1707598	-1.4972388	-1.1843899
Η	4.8328712	1.6121675	0.6822322
Η	5.0023747	1.7208373	-1.0732417
Η	3.6090164	2.4663490	-0.2784316
С	-0.2223303	-0.3662427	2.3246953
С	0.1989382	1.7300992	-0.0937057
С	0.1374116	-1.5803481	-0.5859691
Η	0.2543085	-1.2934712	2.6621598
Η	0.1203393	0.4557171	2.9619114
Η	-1.3000494	-0.4710274	2.4590503
Η	-0.1508489	1.8065618	-1.1268259
Η	-0.4823360	2.3287130	0.5184372
Η	1.2039214	2.1606333	-0.0211757
Η	-0.6159234	-2.2698137	-0.1927812
Η	-0.1473740	-1.3425251	-1.6136513
Η	1.1073338	-2.0897229	-0.5846402
Si	0.1283625	-0.0522584	0.5065396
Ι	-2.7773043	0.1137370	-0.0920847

 $\textbf{TS9}^{+}$: iodide transfer from LutHI to \textbf{G}^{+} 50

Energy = -1559.220457504

O 2.9947838 -0.1472545 -0.1146678 Si 4.0628017 -0.4404914 -1.4555878

Si	3.0247254	-0.6920401	1.5301372
С	3.9491417	-2.2643100	-1.8396201
С	5.7756857	0.1102408	-0.9579660
С	3.4310331	0.5994515	-2.8711116
С	1.6823077	-1.9876124	1.6749223
С	2.6947529	0.8129401	2.5830884
С	4.7013141	-1.4194806	1.9010329
Н	4.5910077	-2.5070547	-2.6950260
Н	4.2720553	-2.8855646	-0.9971070
Н	2.9241595	-2.5507446	-2.1028635
Н	6.2939903	-0.6162589	-0.3264730
Н	5.7464705	1.0715099	-0.4327606
Н	6.3748204	0.2484894	-1.8667784
Н	3.4442991	1.6694194	-2.6352048
Н	4.1020656	0.4458905	-3.7256535
Н	2.4221836	0 3268549	-3 1976957
Н	1 8415121	-2 8040776	0.9616219
н	1 6916978	-2 4183360	2 6829403
н	0.6816019	-1 5742700	1 5069189
Н	3 4028917	1 6142533	2 3451587
н	1 6810489	1 2120615	2.4689921
н	2 8260989	0 5527879	3 6402066
н	4 6526013	-1 8683621	2 9016250
н	4 9919504	-2 2111823	1 2033748
н	5 4879094	-0.6594164	1.2033710
C	1 3352112	0.0374104	-0 5560634
Н	0.9307825	0 5327415	0 4409418
Н	1 0300713	-0 3448161	-1 1819571
Н	1.6489103	1.3980995	-1.0171823
I	-1.2186483	1.4285730	-1.2133027
C	-4 6279281	-0.0863881	0.8922308
C	-5 6187625	-0.9114395	1 4083827
C	-5 5059261	-2.2942149	1 2720822
C	-4 4022403	-2.8503609	0.6274841
C	-3 4123605	-2.0173083	0.1229847
N	-3 5719587	-0.6790312	0 2780874
Н	-6 2824965	-2.9409109	1 6674741
Н	-6 4722471	-0 4641488	1 9039533
н	-4 3015167	-3 9232265	0 5104396
C	-4 6449869	1 4067136	0.9586676
Н	-5 5515892	1 7478979	1 4590940
Н	-3 7722551	1 7785990	1.457607
Н	-4 6062639	1 835389/	-0.0481124
C	-2 1705350	-2 4944540	-0 5614991
н	-1 9098636	-1 8389705	-1 3971635
н	-1.2020030	-1.0509705	0 1428303
ц	-1.5270540	-2.+070417	-0.0712771
ц	-2.3000333	-0.05//850	-0.9213271
11	-2.0392090	-0.05++050	-0.1519522

TS10 : TS for hydride transfer, to O(SiMe₃)₂ 66

Ene	ergy = -3144.	133521144	
0	3.7066274	0.0347915	1.0942857
С	1.9543350	0.2416419	0.6879423
Η	1.7185449	-0.8074861	0.6699566
Н	1.6779634	0.8086276	1.5626416
Н	2.0878335	0 7562109	-0.2501275
Si	4 6420959	1 4916416	1 2849579
C	6 1394035	1 3554745	0 1768498
C	5.0626541	1.6347725	3 0961410
C	3 5686386	2 9131770	0.7271270
н	6 7245712	2.7151770	0.7271270
ц	6 8013820	0.5231567	0.2030432
н Ц	5 8425004	1 2510105	0.4328291
п	5 7204629	1.2319193	-0.0730030
п	3.7394028	0.8455507	3.4320023
н	4.15/1255	1.5900528	3./120//0
H	5.5535585	2.59/8102	3.2832992
H	2.6616305	3.0415622	1.3254058
H	4.1608056	3.8310848	0.8338079
H	3.2775430	2.8381034	-0.3260298
С	2.8672992	-2.6997684	1.6556942
С	4.6378740	-1.9642938	-0.7778420
С	5.7351214	-1.7802756	2.1369069
Η	2.4244563	-2.2996729	2.5744907
Η	2.0683423	-2.8712681	0.9265440
Η	3.2944788	-3.6811388	1.8976956
Η	5.4381898	-1.3198003	-1.1558001
Η	4.9609310	-3.0057613	-0.8958184
Η	3.7519512	-1.8193972	-1.4065511
Η	6.0885774	-2.8175622	2.0744849
Η	6.5740640	-1.1332926	1.8661033
Η	5.4654875	-1.5857722	3.1803816
Si	4.2525324	-1.6187355	1.0133304
В	-0.8730028	0.1842908	-0.1440019
С	-1.7055361	1.4374191	0.4624100
С	-0.6601474	0.1898553	-1.7578053
С	-1.3025053	-1.2613928	0.4636380
С	-3.0088215	1.3755139	0.9541164
С	-1.1099639	2.6956932	0.5540541
Ċ	0.2828594	-0.6605845	-2.3387044
Č	-1.3257697	1.0110954	-2.6690955
C	-2 0318186	-2 2321057	-0.2235153
C	-0.9236239	-1 6299365	1 7545432
C	-3 6745087	2 4676019	1.7545452
F	-3 7126179	0.2171118	0.8910809
C	-1.730/317	3 81//623	1 0071/81
E E	0 1563772	2 8744184	0.08/320/
Г С	0.1303772	0.7027322	3 6065702
С Е	0.3730343	1 5200170	1 5501277
r C	1.0700710	1 0072071	1.03013//
U E	-1.0/09/19	1.00/30/1	-4.0377104
г С	-2.29331/4	1.0033092	-2.2337910
U	-2.3410411	-3.4020707	0.3002802

F	-2.4980691	-1.9801564	-1.4721326
С	-1.2029599	-2.8667075	2.3267366
F	-0.2357599	-0.7490067	2.5354161
С	-3.0299157	3.6976740	1.5816805
F	-4.9372791	2.3482224	1.9654857
F	-1.0945832	5.0031367	1.1599564
С	-0.1117069	0.1462928	-4.5602040
F	1.5053287	-1.5490230	-4.1833747
F	-1.7473719	1.8280204	-4.8685336

С	-1.9192425	-3.8056481	1.5918520
F	-3.0489503	-4.3810401	-0.4077216
F	-0.7892666	-3.1649518	3.5762872
F	-3.6555019	4.7636141	2.1132162
F	0.1495163	0.1313953	-5.8792634
F	-2.2052741	-5.0091085	2.1205917
Η	0.2832033	0.3732110	0.3039577

Computational References

1 *TURBOMOLE V7.4*, **2019**, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

- J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401.
- 3 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104-154119.
- 4 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456-1465.
- 5 F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, *Chem. Phys. Lett.*, 1998, **294**, 143-152.
- 6 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.
- 7 A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799-805.
- 8 K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, 1997, 97, 119-124.
- 9 F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057-1065.
- 10 P. Deglmann, K. May, F. Furche and R. Ahlrichs, *Chem. Phys. Lett.*, 2004, **384**, 103-107.
- 11 S. Grimme, *Chem. Eur. J.*, 2012, **18**, 9955-9964.
- 12 F. Eckert and A. Klamt, *AIChE J.*, 2002, **48**, 369-385.
- 13 F. Eckert and A. Klamt, COSMOtherm, Version C3.0, Release 16.01; COSMOlogic GmbH & Co.
- KG, Leverkusen, Germany 2015.
- 14 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656-5667.
- 15 F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys., 2003, 119, 12753-12762.

16 L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, *Phys. Chem. Chem. Phys.* 2017, *19*, 32184-32215.