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Fig. S1 Generation of met1 mutants in Arabidopsis using the CRISPR/Cas9 system. (a) 

Schematic representation of MET1 gene structure and the mutation sites. The sgRNA targeting 

sequences are highlighted in yellow and the PAM sites are underlined. The met1-10 mutation 

causes a five nucleotide deletion in the first exon (highlighted in red). The met1-11 mutation causes 

a ‘T’ insertion in the sixth exon (highlighted in red). Each of these mutations causes a shift in open 

reading frame. (b) Schematic diagram of mutant screening. The CRISPR constructs were 

transformed into the wild-type Col-0 or ddcc mutants (T0). The met1 chimera plants in T1 

generation were identified through DNA sequencing, and then backcrossed to Col-0 and ddcc, 

respectively, to obtain met1
+/-

 Cas9
-/- 

and ddcc met1
+/- 

Cas9
-/-

 plants in F1 generation. The met1
-/-

Cas9
-/- 

and
 
ddcc met1

+/- 
Cas9

-/- 
plants in F2 generation were finally identified for further 

experiments. The most important plant materials in each generation are highlighted by red circles. 
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Fig. S2 Loss of DNA methylation affects endosperm development and compromises 

transmission through the male gametophytes in Arabidopsis. (a) DNA sequencing results 

showing genotypes of late aborted embryos in ddcc met1-11
+/- 

siliques. Red box represents the 

location of sgRNA, and red arrow indicates the mutation site. (b) DIC microscopy of endosperm 

in ddcc met1-11
+/- 

siliques at 3 d after pollination (DAP; n=127). The percentages of seeds with 

each type of endosperm are indicated. Black arrow indicates endosperm nucleus. ccn, central cell 

nucleus; ecn, egg cell nucleus. Bars, 50 μm. (c) Seed set of hand-pollinated plants (6 DAP). Red 

and blue arrows indicate early- and late-aborted seeds, respectively. Bars, 1 mm. 
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Fig. S3 Loss of DNA methylation does not affect pollen viability in Arabidopsis. (a) Anther 

morphology of Col-0, met1-11, ddcc, ddcc met1-10
+/-

, and ddcc met1-11
+/- 

plants as observed using 

cryo-SEM. Bars, 100 μm. (b) Pollen activity of Col-0, met1-11
+/-

, met1-11, ddcc, ddcc met1-10
+/-

, 

and ddcc met1-11
+/- 

plants as determined by Alexander dye staining. Bars, 100 μm. (c) Percentages 

of normal and phenotypically abnormal pollens observed in Col-0, met1-11
+/-

, met1-11, ddcc, and 

ddcc met1
+/-

 mutant plants. For each genotype, at least 1000 pollen grains were examined. 
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Fig. S4 Loss of DNA methylation in Arabidopsis leads to the downregulation of some genes 

involved in pollen development and fertilization in mature pollens. (a) Transcript levels of 

genes that are significantly down-regulated in mature pollen of the ddcc met1
+/- 

plants. Data 

represent the mean ± SD of three biological replicates. Asterisks indicate significant differences 

between Col-0 and the indicated mutants (P < 0.05, two-tailed Student’s t-test). (b) Transcript 

levels of genes that have little change in mature pollens of the ddcc met1
+/- 

plants. DUO1, MGH3, 

DAU2, CDKA;1, FBL17, DOU3, TES, MSI1, and FAS1 are specifically expressed in the sperm cell; 

UBQ10, WIP1, and WIT1 are specifically expressed in the vegetative cell; ANX1, ANX2, RbohH, 

and MYB97 are genes that regulate pollen tube bursting. Data represent the mean ± SD of three 

biological replicates. Asterisks indicate significant differences between Col-0 and the indicated 

mutants (P < 0.05, two-tailed Student’s t-test). (c) Snapshot in the Integrated Genome Browser 

showing the levels of DNA methylation at loci DAA1, DAZ2, FAS2, PCR11, and HAP2 in the 

indicated genotypes. big: ddcc met1-11
+/-

-big; small: ddcc met1-11
+/-

-small. 
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Fig. S5 Loss of DNA methylation leads to global changes of gene expression in Arabidopsis 

seedlings. (a) Up- and down-regulated genes and transposable elements (TEs) in seedlings of 

different genotypes. (b) Overlap of up- and down-regulated genes and TEs between the ‘big’ and 

‘small’ plants of ddcc met1-11
+/-

. The overlap was tested using Fisher's exact test. 
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Fig. S6 The up-regulation of cell cycle-, DNA replication- and DNA repair-related genes in 

Arabidopsis ddcc met1-11
+/-

 seedlings is not due to loss of DNA methylation in the promoters 

of these genes. Plots of CG methylation levels in the promoter regions (2kb upstream of 

transcription start sites) of cell cycle-, DNA replication- and DNA repair-related genes in Col-0 

and the big and small plants of ddcc met1-11
+/-

. 
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Fig. S7. The Arabidopsis ddcc met1
+/-

 mutations specifically activate a group of TEs. (a) 

Overlap of up-regulated transposable elements (TEs) in ddcc met1-11
+/- 

(activated TEs in the ‘big’ 

and ‘small’ plants combined), met1-11, ddcc, and ddm1. (b) Classification of the activated TEs in 

ddcc, met1-11, ddm1 and TEs specifically activated in ddcc met1-11
+/-

 (536 TEs), The y axis 

represents the percentage of individual categories. (c) Proportions of different transposon 

superfamilies in activated TEs in ddcc, met1-11, ddm1 and TEs specifically activated in ddcc met1-

11
+/-

 (536 TEs). (d)-(g) Enrichment scores of TE families of activated TEs in ddcc (d), met1-11 (e), 

ddm1 (f), and TEs specifically activated in ddcc met1-11
+/-

 (g). Each enrichment score was 

calculated as the ratio of the percentage of a certain TE family in activated TEs to that in all TEs. 

Numbers in the bars indicate the absolute numbers of activated TEs in the corresponding family. 

The red dotted line marks the point of overrepresentation (enrichment score >1). (h) Genome 

browser representation of RNA-seq and WGBS data for AT1TE44535, AT2TE21060, and 

AT5TE38645, showing transcript and methylation levels of these TEs in Col-0, met1-11, ddcc, and 

ddcc met1-11
+/-

. big: ddcc met1-11
+/-

-big; small: ddcc met1-11
+/-

-small.  
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Fig. S8 CG and non-CG DNA methylation synergistically regulate chromocenter 

condensation in Arabidopsis. 

(a) DAPI (4′, 6-diamidino-2-phenylindole) staining patterns of different types of nuclei. Type I 

nuclei have six to ten conspicuous, round chromocenters. Type II nuclei have elongated 

chromocenters and irregularly shaped regions with strong DAPI staining. Type III nuclei have few 

and small chromocenters. Bars, 2 μm. 

(b) Percentages of three types of nuclei in the indicated plants. The error bars represent the SD of 

three independent experiments. Different letters indicate significant differences (P < 0.05, Fisher's 

Exact Test).  
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Table S1. Primers and sgRNAs used in this study. 

 

Primer name Sequence (5'-3') Purpose 

MET1-10-sg-F GATTCGCGTTACGGTTAACGGCTC CRISPR 

MET1-10-sg-R AAACGAGCCGTTAACCGTAACGCG 

MET1-11-sg-F  ATTGATTAGCAGCTAAACTAACTG 

MET1-11-sg-R  AAACCAGTTAGTTT AGCTGCTAAT 

Cas9-F1 GCTGTTTCTGCTCATTATCCTC 

Cas9-R1 ATTTCCAGTTTTACAAAGTGCG 

U6-26p-F TGTCCCAGGATTAGAATGATTAGGC 

U6-29p-R AGCCCTCTTCTTTCGATCCATCAAC 

U6-29p-F TTAATCCAAACTACTGCAGCCTGAC 

ACTIN2-F AACTCTCCCGCTATGTATGTCG Real-time 

PCR  

in pollen 
ACTIN2-R AACCCTCGTAGATTGGCACA 

ANX1-F GGTTTTAATCGGTGCCTTGTG 

ANX1-R TCCCTGAGATGGTTGATTTGG 

ANX2-F CTTCTGTGAATTCCAGCTTGC 

ANX2-R GATACCTTTCCCACCTGTCC 

CDKA;1-F GCCAAAAGCCCTTATTTCCTG 

CDKA;1-R GTCCGTTGGTTTCCATTTAGG 

DAA1-F GCGGATAAGATGGAGAAGGAG 

DAA1-R GCATCGAAGTGCTTCAAATGG 

DAU2-F TGGAGAAAACAGAGGAAAGCG 

DAU2-R TTTGGTGAACGAGAAGGTGG 

DAZ2-F CCGTTGCTTCATCCTCTAGTTC 

DAZ2-R CCAAGACCAAAACTTTCTGCC 

DUO1-F CTTCTCATCGACTCAAGGGC 

DUO1-R ACCTCTTCCTCAACCAAACC 

DUO3-F TGAGTTTGAGTGTGAAGAGATGG 

DUO3-R TCCTTGCCTAGTTCTTTGCC 

FAS1-F GCGCAAAACTCTGGACTTTC 

FAS1-R TGACTTTATGGTGCCTGATGG 

FAS2-F TCGAAGATTGTCATGGTCACC 

FAS2-R AGTGCAGGTCTTGAAAGGTC 

FBL17-F  CTGCATAAGTTCAAGTTCAAGTCC 

FBL17-R CCAAGTCCACATAAAACACCAG 

HAP2-F GTTTGATTGCTCCAAAGGCG 

HAP2-R GAGTCCTTGAGTATAGCTGTGC 

MGH3-F  AACTGCGAGGAAATCTACTGG 

MGH3-R  TTTGCGGATCTCACGAAGAG 

MSI1-F  GGAGTAAGTTCAAGCAGGGTC 



 

MSI1-R ACATCTTCCACAACCCCTTC 

MYB97-F ATCATACAACTCCACTCTCAGC 

MYB97-R CTCGTTATCTGTTCTGCCTGG 

MYB120-F GTAACAAATGGGCTCGCATG 

MYB120-R GGATGGAGTTGATGGTTAGGG 

PCR11-F AGCCCAATACAATCTCAAGGAG 

PCR11-R TCGTTCCATATTCCCATGCC 

RBOHH-F  AGCTTACGGTTCCTTGATCG 

RBOHH-R  ACTCCATTGTGTCTCCCATTC 

TES-F  CAGTCTCAGGGAAATAGCAGG 

TES-R  ACTACGGTTAATGTGGCTTCC 

UBQ10 –F  CCAAGATCCAAGACAAAGAGGG 

UBQ10–R  TGAGAACAAGATGAAGGGTGG 

WIP1-F  TTAACAGAGGCCATCAACGG 

WIP1-R TGAATTTGCTTCGCTGACTTG 

WIT1-F  AACCGCCAAAGATATCGGG 

WIT1-R  CACCATCAACACACAATTCTCTC 

ATR-F GGACTCCGCCATATTCTACAAG Real-time 

PCR ATR-R GGTCTTCAGCATCTCATACTCC 

BRCA1-F CCATGTATTTTGCAATGCGTG 

BRCA1-R TGTGGAGCACCTCGAATCTCT 

CDKB1;1-F TGGCATGTTTACCCTAAGTGG 

CDKB1;1-R TTCGGCTGGATTGTACTTGAG 

CDKB2;1-F AGAGTCTCCCTGAAAGATTGC 

CDKB2;1-R GTGCCACCCATTACTCTACAG 

CYCD3;3-F AGATTGGTATACAGCTTCGTCAC 

CYCD3;3-R TGGAGTTCTTGAGTAGATGTGAATC 

E2F3-F TTGGAAGGGAGTTGATGCG 

E2F3-R GGGCGAGGTTTTCAATTTCTG 

MCM2-F CAGTTACAAGGGAGTGGACG 

MCM2-R ATGGCTTCATGGATACTCACC 

MYB3R-4-F TGCTTCTGATTCGTGCTCATC 

MYB3R-4-R TCTTGACTGAACTGTGCCAG 

ORC3-F GGACTTCCTAACAGCCCAAA 

ORC3-R AAGGAACACTCTCAACTGGC 

PCNA1-F ACCGCTAACATTGTGCTCAG 

PCNA1-R CTGGCTCCTTCATCTCTATCAC 

RPA70C-F TTGGGTTCGGTTATAAGACTCAC 

RPA70C-R AGCTATGCCCAGGTTCTTTAG 

TCP15-F TTTGGCTTCTGGTTATGGAGG 

TCP15-R GTCACGGTTTTGCTGGTTG 



 

TOP3A-F GCACGACCACATAAAGAAACTC 

TOP3A-R AGGGCTCTGAGATTTGGTTTC 

WEEI-F AGAACACTGTTGGCGAAGAG 

WEE1-R GTCCCTTCCATCTTCCGAATC 

 
 


