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Introduction33

This is a rendering of the Supplementary Material for A Guide to Pre-processing High-34

Frequency Animal Tracking Data, and contains two fully worked out examples that35

could provide a useful template for structuring pre-processing pipelines for your36

own high-throughput tracking data.37

The code and data used here are available on Github at github.com/pratikunterwegs/atlas-38

best-practices, and on Zendo at zenodo/atlas-best-practices.39
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1 Validating the Residence Patch40

Method with Calibration Data41

Here we show how the residence patch method (Barraquand and Benhamou 2008;42

Bijleveld et al. 2016; Oudman et al. 2018) accurately estimates the duration of known43

stops in a track collected as part of a calibration exercise in the Wadden Sea. These44

data can be accessed from the data folder at this link: https://doi.org/10.5281/45

zenodo.4287462. These data are more fully reported in (Beardsworth et al. 2021).46

1.1 Outline of Cleaning Steps47

We begin by preparing the libraries we need, and installing atlastools from Github.48

After installing atlastools, we visualise the data to check for location errors, and49

find a single outlier position approx. 15km away from the study area (Fig. 1.1,50

1.2). This outlier is removed by filtering data by the X coordinate bounds using51

the function atl_filter_bounds; X coordinate bounds ≤ 645,000 in the UTM 31N52

coordinate reference system were removed (n = 1; remaining positions = 50,815; Fig.53

1.2). We then calculate the incoming and outgoing speed, as well as the turning54

angle at each position using the functions atl_get_speed and atl_turning_angle55

respectively, as a precursor to targeting large-scale location errors in the form of56

point outliers. We use the function atl_filter_covariates to remove positions57

with incoming and outgoing speeds ≥ the speed threshold of 15 m/s (n = 13,491,58

26.5%; remaining positions = 37,324, 73.5%; Fig. 1.3; main text Fig. 7.b). This speed59

threshold is chosen as the fastest boat speed during the experiment, 15 m/s. Finally,60

we target small-scale location errors by applying a median smoother with a moving61

window size K = 5 using the function atl_median_smooth (Fig. 1.4; main text Fig.62

7.c). Smoothing does not reduce the number of positions. We thin the data to a 3063

second interval leaving 1,803 positions (4.8% positions of the smoothed track)64

1.2 Install atlastools from Github65

atlastools is available from Github and is archived on Zenodo (Gupte 2020). It66

can be installed using remotes or devtools. Here we use the remotes function67

install_github.68

if (!require(remotes)) {
install.packages("remotes", repos = "http://cran.us.r-project.org")

}

# installation using remotes
if (!require(atlastools)) {
remotes::install_github("pratikunterwegs/atlastools", upgrade = FALSE)

}
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A Note on :=69

The atlastools package is based on data.table, to be fast and efficient (Dowle and70

Srinivasan 2020). A key feature is modification in place, where data is changed71

without making a copy. This is already implemented in R and will be familiar to72

many users as data_frame$column_name <- values.73

The data.table way of writing this assignment would be data_frame[,74

column_name := values]. We use this syntax throughout, as it provides75

many useful shortcuts, such as multiple assignment:76

data_frame[, c("col_a", "col_b") := list(values_a, values_b)]77

Users can use this special syntax, and will find it convenient with practice, but78

there are no cases where users must use the data.table syntax, and can simply79

treat the data as a regular data.frame. However, users are advised to convert their80

data.frame to a data.table using the function data.table::setDT().81

1.3 Prepare libraries82

First we prepare the libraries we need. Libraries can be installed from CRAN if83

necessary.84

# for data handling
library(data.table)
library(atlastools)
library(stringi)

# for recursion analysis
library(recurse)

# for plotting
library(ggplot2)
library(patchwork)

# making a colour palette
pal <- RColorBrewer::brewer.pal(5, "Set1")
pal[3] <- "seagreen"

1.4 Access data and preliminary visualisation85

First we access the data from a local file using the data.table package (Dowle and86

Srinivasan 2020).87

In all, we aim to keep three versions of the data: (1) data_raw, the entirely unpro-88

cessed data, (2) data, the working version, and (3) data_unproc, data that has been89

partially processed, but which is one step behind data. This allows us to better90

illustrate the pre-processing steps, and prevents us from irreversibly modifying our91

data — at best, we would have to re-run many pre-processing steps, and at worst,92

we might overwrite the original data on disk.93

We look at the first few rows, using head(). We then visualise the raw data.94
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# read and plot example data
data <- fread("data/atlas1060_allTrials_annotated.csv")
data_raw <- copy(data)

# see raw data
head(data_raw)
#> TAG TIME NBS VARX VARY COVXY SD Timestamp
#> 1: 31001001060 1598027365845 6 6.28 2.85 1.682 3.53 2020-08-21 17:29:25
#> 2: 31001001060 1598027366845 6 2.23 2.23 0.277 2.24 2020-08-21 17:29:26
#> 3: 31001001060 1598027367845 6 2.94 2.82 0.612 2.64 2020-08-21 17:29:27
#> 4: 31001001060 1598027368845 6 8.45 3.68 2.734 4.20 2020-08-21 17:29:28
#> 5: 31001001060 1598027369845 5 6.80 3.26 2.273 3.82 2020-08-21 17:29:29
#> 6: 31001001060 1598027370845 6 3.95 2.94 0.983 2.98 2020-08-21 17:29:30
#> id x y Long Lat UTCtime tID
#> 1: 2020-08-21 650083 5902624 5.25 53.3 2020-08-21 16:29:25 DELETE
#> 2: 2020-08-21 650083 5902624 5.25 53.3 2020-08-21 16:29:26 DELETE
#> 3: 2020-08-21 650073 5902622 5.25 53.3 2020-08-21 16:29:27 DELETE
#> 4: 2020-08-21 650079 5902625 5.25 53.3 2020-08-21 16:29:28 DELETE
#> 5: 2020-08-21 650067 5902621 5.25 53.3 2020-08-21 16:29:29 DELETE
#> 6: 2020-08-21 650071 5902621 5.25 53.3 2020-08-21 16:29:30 DELETE

Here we show how data can be easily visualised using the popular plotting package95

ggplot2. Note that we plot both the points (geom_point) and the inferred path96

between them (geom_path), and specify a geospatial coordinate system in metres,97

suitable for the Dutch Wadden Sea (UTM 31N; ESPG code:32631; coord_sf). We98

save the output to file for future reference.99

Since plot code can become very lengthy and complicated, we omit showing further100

plot code in versions of this document rendered as PDF or HTML; it can however101

be seen in the online .Rmd version.102

# plot data
fig_data_raw <-
ggplot(data) +
geom_path(aes(x, y),
col = "grey", alpha = 1, size = 0.2

) +
geom_point(aes(x, y),
col = "grey", alpha = 0.2, size = 0.2

) +
ggthemes::theme_few() +
theme(
axis.title = element_blank(),
axis.text = element_blank()

) +
coord_sf(crs = 32631)

# save figure
ggsave(fig_data_raw,
filename = "supplement/figures/fig_calibration_raw.png",
width = 185 / 25

)
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Figure 1.1: The raw data from a calibration exercise conducted around the island
of Griend in the Dutch Wadden Sea. A handheld WATLAS tag was
used to examine how ATLAS data compared to GPS tracks, and we use
the WATLAS data here to demonstrate the basics of the pre-processing
pipeline, as well as validate the residence patch method. It is immediately
clear from the figure that the track shows location errors, both in the form
of point outliers as well as small-scale errors around the true location.

1.5 Filter by bounding box103

We first save a copy of the data, so that we can plot the unprocessed data with the104

cleaned data plotted over it for comparison. Here, data_unproc, data, and data_raw105

are still the same, since no pre-processing steps have been applied yet.106

# make a copy using the data.table copy function
data_unproc <- copy(data)

We then filter by a bounding box in order to remove the point outlier to the far south107

east of the main track. We use the atl_filter_bounds functions using the x_range108

argument, to which we pass the limit in the UTM 31N coordinate reference system.109

This limit is used to exclude all points with an X coordinate < 645,000.110

We then plot the result of filtering, with the excluded point in black, and the points111

that are retained in green. After this stage, data is filtered and ‘ahead’ of data_raw112

and data_unproc, which are still the same. This pattern will repeat throughout this113

material.114

# remove inside must be set to falses
data <- atl_filter_bounds(
data = data,
x = "x", y = "y",
x_range = c(645000, max(data$x)),
remove_inside = FALSE

)
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Figure 1.2: Removal of a point outlier using the function atl_filter_bounds. The
point outlier (black point) is removed based on its X coordinate value,
with the data filtered to exclude positions with an X coordinate < 645,000
in the UTM 31N coordinate system. Positions that are retained are shown
in green.

1.6 Filter trajectories115

1.6.1 Handle time116

Time in ATLAS tracks is represented by 64-bit integers (type long) that specify117

time in milliseconds, starting from the beginning of 1970 (the UNIX epoch). This118

representation of time is called POSIX time and is usually specified in seconds, not119

milliseconds.120

Since about 1.6 billion seconds have passed since the beginning of 1970, current121

POSIX times in milliseconds cannot be represented by R’s built-in 32-bit integers.122

A naive conversion results in truncation of out-of-range numbers leading to huge123

errors (dates many thousands of years in the future).124

R does not natively support 64-bit integers. One option is to use the bit64 package,125

which adds 64-bit integer support to R.126

A simpler solution is to convert the times to R’s built in double data type (also called127

numeric), which uses a 64-bit floating point representation. This representation can128

represent integers with up to 16 digits without error; we only need 13 digits to129

represent the number of milliseconds since 1970, so the conversion is error free.130

We can also perform the conversion and then divide by 1000 so that times are131

represented in seconds, not milliseconds; this simplifies speed estimation.132

If second-resolution is accurate enough (it is for our purposes), the solution that we133

use is to divide times by 1000 to reduce the resolution from milliseconds to seconds134

and then to convert the time stamps to R integers. In the spirit of not destroying135

data, we create a second lower-case column called time to store this136

# divide by 1000, convert to integer
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data[, time := as.integer(
as.numeric(TIME) / 1000

)]

1.6.2 Add speed and turning angle137

# add incoming and outgoing speed
data[, `:=`(
speed_in = atl_get_speed(data,

x = "x",
y = "y",
time = "time"

),
speed_out = atl_get_speed(data, type = "out")

)]

# add turning angle
data[, angle := atl_turning_angle(data = data)]

Compare number of receivers and SD and speed.138

1.6.3 Get 90th percentile of speed and angle139

# use sapply
speed_angle_thresholds <-
sapply(data[, list(speed_in, speed_out, angle)],
quantile,
probs = 0.9, na.rm = T

)

1.6.4 Filter on speed140

Here we use a speed threshold of 15 m/s, the fastest known boat speed. We then141

plot the data with the extreme speeds shown in grey, and the positions retained142

shown in green.143

Here, data_unproc moves ‘ahead’ of data_raw, and holds the data filtered by a144

bounding box — data is also moving ahead, and will be filtered on speed.145

# make a copy
data_unproc <- copy(data)

# remove speed outliers
data <- atl_filter_covariates(
data = data,
filters = c("(speed_in < 15 & speed_out < 15)")

)

# recalculate speed and angle
data[, `:=`(
speed_in = atl_get_speed(data,

x = "x",
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y = "y",
time = "time"

),
speed_out = atl_get_speed(data, type = "out")

)]

# add turning angle
data[, angle := atl_turning_angle(data = data)]

Figure 1.3: Improving data quality by filtering out positions that would require un-
realistic movement. We removed positions with speeds ≥ 15 m/s, which
is the fastest possible speed in this calibration data, part of which was
collected in a moving boat around Griend. Grey positions are removed,
while green positions are retained. Rectangles indicate areas expanded
for visualisation in following figures.

1.7 Smoothing the trajectory146

We then apply a median smooth over a moving window (K = 5). This function147

modifies in place, and does not need to be assigned to a new variable. We create a148
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copy of the data before applying the smooth so that we can compare the data before149

and after smoothing.150

# apply a 5 point median smooth, first make a copy
data_unproc <- copy(data)

# now apply the smooth
atl_median_smooth(
data = data,
x = "x", y = "y", time = "time",
moving_window = 5

)

Figure 1.4: Reducing small-scale location error using a median smooth with a mov-
ing window K = 5. Median smoothed positions are shown in green, while
raw, unfiltered data is shown in grey. Median smoothing successfully
recovers the likely path of the track without a loss of data. The area
shown is the upper rectangle from Fig. 1.3.

1.8 Thinning the data151

Next we thin the data by aggregation to demonstrate thinning after median smooth-152

ing. Following this, we plot the median smooth and thinning by aggregation.153

# save a copy
data_unproc <- copy(data)

# remove columns we don't need
data <- data[, !c("tID", "Timestamp", "id", "TIME", "UTCtime")]

# thin to a 30s interval
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data_thin <- atl_thin_data(
data = data,
interval = 30,
method = "aggregate",
id_columns = "TAG"

)

Figure 1.5: Thinning by aggregation over a 30 second interval (down from 1 second)
preserves track structure while reducing the data volume for computa-
tion. Here, thinned positions are shown as purple squares, with the size
of the square indicating the number of positions within the 30 second
bin used to obtain the average position. Green points show the median
smoothed data from Fig. 1.4, while the raw data are shown in grey. The
area shown is the upper rectangle in Fig. 1.3.

1.9 Residence patches154

1.9.1 Get waypoint centroids155

We subset the annotated calibration data to select the waypoints and the positions156

around them which are supposed to be the locations of known stops. Since each157

stop was supposed to be 5 minutes long, there are multiple points in each known158

stop.159

data_res <- data_unproc[stri_detect(tID, regex = "(WP)")]

From this data, we get the centroid of known stops, and determine the time differ-160

ence between the first and last point within 50 metres, and within 10 minutes of the161

waypoint positions’ median time.162

Essentially, this means that the maximum duration of a stop can be 20 minutes, and163

stops above this duration are not expected.164
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# get centroid
data_res_summary <- data_res[, list(
nfixes_real = .N,
x_median = median(x),
y_median = median(y),
t_median = median(time)

),
by = "tID"
]

# now get times 10 mins before and after
data_res_summary[, c("t_min", "t_max") := list(

t_median - (10 * 60),
t_median + (10 * 60)

)]

# manually get the duration of the stops
wp_data <- mapply(function(l, u, mx, my) {

# first select all data whose timestamp is between
# the upper and lower bounds of the stop (l = lower, u = upper)
tmp_data <- data_unproc[inrange(time, l, u), ]

# calculate the distance between the positions selected above
# and the median X and Y coordinates of the stop (centroid)
tmp_data[, distance := sqrt((mx - x)^2 + (my - y)^2)]

# keep positions that are within 50m of the centroid
tmp_data <- tmp_data[distance <= 50, ]

# get the duration of the stop as the difference between
# the minimum and maximum times of the positions retained above
return(diff(range(tmp_data$time)))

}, data_res_summary$t_min, data_res_summary$t_max,
data_res_summary$x_median, data_res_summary$y_median,

# this specifies that a vector, rather than a list, is returned
SIMPLIFY = TRUE
)

# get waypoint summary --- rounding median coordinates to the nearest 100m
patch_summary_real <- data_res_summary[, list(
nfixes_real = nfixes_real,
x_median = round(median(x_median), digits = -2),
y_median = round(median(y_median), digits = -2)

),
by = "tID"
]

# add real duration
patch_summary_real[, duration_real := wp_data]
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# write to file
fwrite(patch_summary_real, "data/data_real_watlas_stops.csv")

1.9.2 Prepare data165

First, we filter data where we know the animal (or in this case, the human-carried166

tag) spent some time at or near a position, as this is the first step to identify residence167

patches. One way of doing this is by filtering out positions with speeds above which168

the tag (ideally on an animal) is likely to be in transit. Rather than filtering on169

instantaneous speed estimates, filtering on a median smoothed speed estimate is170

more reliable.171

1.9.3 Exclude transit points172

Here, we aim to remove locations where the tag is clearly moving, by filtering on173

smoothed speed, using a one-way median smooth with K = 5. The speeds between174

points must be recalculated here because the speed metrics now associated with the175

data refer to the raw data before median smoothing.176

# get 4 column data
data_for_patch <- copy(data_thin)

# recalculate speeds, removing speed out
data_for_patch[, c("speed_in", "speed_out") := list(
atl_get_speed(data_for_patch),
NULL

)]

# get smoothed speed
data_for_patch[, speed_smooth := runmed(speed_in, k = 5)]

# save recurse data
fwrite(data_for_patch, file = "data/data_calib_for_patch.csv")

1.9.4 Run residence patch method177

We subset data with a smoothed speed < 2 m/s in order to construct residence178

patches. From this subset, we construct residence patches using the parameters:179

buffer_radius = 5 metres, lim_spat_indep = 50 metres, lim_time_indep = 5 minutes,180

and min_fixes = 3.181

# assign id as tag
data_for_patch[, id := as.character(TAG)]

# on known residence points
patch_res_known <- atl_res_patch(

data = data_for_patch[speed_smooth < 2, ],
buffer_radius = 5,
lim_spat_indep = 50,
lim_time_indep = 5,

14



min_fixes = 3
)

A note on summary statistics182

Users specifying a summary_variable should make sure that the variable for which183

they want a summary statistic is present in the data. For instance, requesting mean184

speed by passing summary_variable = "speed" and summary_function = "mean" to185

atl_res_patch, should make sure that their data includes a column called speed.186

1.9.5 Get spatial and summary objects187

Having classified slow-moving or stationary behavioural bouts into residence188

patches, many animal ecologists would most probably wish to know something189

about the environment at or around these patches — more accurately, around the190

point locations classified into patches.191

How exactly this is done depends on the relative spatial scales of the residence192

patches and the resolution of the environmental data layer. For instance, a residence193

patch some 40m – 50m wide or long may be overlaid on an environmental raster194

layer with a resolution of 250m. In this case, sampling the layer at the centroid of195

the patch is as good as sampling at all the patch’s points – the mean is unlikely to196

differ (except at raster pixel boundaries).197

On the other hand, a raster with a 10m resolution (e.g. Sentinel 1 and 2 data) may198

be worthwhile to sample at all the locations comprising a residence patch, so as to199

calculate the mean and variance of environmental conditions.200

Furthermore, many (if not all) animals integrate cues from quite a distance (10m –201

100m) when making decisions on when to settle in an area, and when to leave. Thus202

it can also be useful to sample environmental layers not at point locations, but to203

extract the mean and variance from an area, or a buffer, around the animal’s point204

locations.205

We have provided a convenient function to get either (1) the points (classified206

into patches), or (2) a summary ouput of the residence patches (i.e., the median207

coordinates and their attributes), or finally (3) a spatial buffer around the points208

from (1). This function, atl_patch_summary implements these options using the209

which_data argument, where the options are (1) “points”, (2) “summary”, or (3)210

“spatial”.211

Here, we choose option (3), using a spatial buffer of 20m. The distance of the bufffer212

is passed to the argument buffer_radius.213

# for the known and unkniwn patches
patch_sf_data <- atl_patch_summary(patch_res_known,
which_data = "spatial",
buffer_radius = 20

)

# assign crs
sf::st_crs(patch_sf_data) <- 32631

# get summary data

15



patch_summary_data <- atl_patch_summary(patch_res_known,
which_data = "summary"

)

At this stage, users have successfully pre-processed their data from raw positions to214

residence patches. Residence patches are essentially sf objects and can be visualised215

using the sf method for plot; for instance plot(patch_sf_data). Further sections216

reproduce the analyses in the main manuscript.217

218

1.9.6 Prepare to plot data219

We read in the island’s shapefile to plot it as a background for the residence patch220

figure.221

# read griend and hut
griend <- sf::st_read("data/griend_polygon/griend_polygon.shp", quiet = TRUE)
hut <- sf::st_read("data/griend_hut.gpkg", quiet = TRUE)

1.10 Compare patch metrics222

We filter these data to exclude one exceedingly long outlier of about an hour (WP080).223

# round median coordinate for inferred patches
patch_summary_inferred <-
patch_summary_data[
,
c(
"x_median", "y_median",
"nfixes", "duration", "patch"

)
][, `:=`(
x_median = round(x_median, digits = -2),
y_median = round(y_median, digits = -2)

)]

We add data from the known patches, matching by X and Y median.224

# join with respatch summary
patch_summary_compare <-

merge(patch_summary_real,
patch_summary_inferred,
on = c("x_median", "y_median"),
all.x = TRUE, all.y = TRUE

)

# drop nas
patch_summary_compare <- na.omit(patch_summary_compare)

# drop patch around WP080
patch_summary_compare <- patch_summary_compare[tID != "WP080", ]

16



Figure 1.6: Classifying thinned data into residence patches yields robust estimates
of the duration of known stops. The island of Griend (53.25◦N, 5.25◦E) is
shown in beige. Residence patches (green polygons; function parameters
in text) correspond well to the locations of known stops (purple triangles).
However, the algorithm identified all areas with prolonged residence,
including those which were not intended stops (n = 12; green polygons
without triangles). The field station on Griend (red triangle) was not
intended to be a stop, but the tags were stored here before the trial,
and the method correctly picked up this prolonged stationary data as
a residence patch. The algorithm failed to find two stops of 6 and 15
seconds duration, since these were lost in the data thinning step (purple
triangle without green polygon shows one of these). The area shown is
the lower rectangle in Fig. 1.3.
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7 patches are identified where there are no waypoints, while 2 waypoints are not225

identified as patches. These waypoints consisted of 6 and 15 (WP098 and WP092)226

positions respectively, and were lost when the data were aggregated to 30 second227

intervals.228

1.10.1 Linear model durations229

We run a simple linear model.230

# get linear model
model_duration <- lm(duration_real ~ duration,
data = patch_summary_compare

)

# get R2
summary(model_duration)
#>
#> Call:
#> lm(formula = duration_real ~ duration, data = patch_summary_compare)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -105.07 -16.51 -4.26 9.54 91.66
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 102.4395 47.4097 2.16 0.046 *
#> duration 1.0225 0.0786 13.02 6.3e-10 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 50.2 on 16 degrees of freedom
#> Multiple R-squared: 0.914, Adjusted R-squared: 0.908
#> F-statistic: 169 on 1 and 16 DF, p-value: 6.29e-10

# write to file
writeLines(
text = capture.output(
summary(model_duration)

),
con = "data/model_output_residence_patch.txt"

)

1.10.2 Linear model summary231

cat(
readLines(
con = "data/model_output_residence_patch.txt",
encoding = "UTF-8"

),
sep = "\n"
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Figure 1.7: The inferred duration of residence patches corresponds very closely to
the real duration (grey circles, red line shows linear model fit), with an
underestimation of the true duration of around 2%. The dashed black
line represents y = x for reference.

)
#>
#> Call:
#> lm(formula = duration_real ~ duration, data = patch_summary_compare)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -105.07 -16.51 -4.26 9.54 91.66
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 102.4395 47.4097 2.16 0.046 *
#> duration 1.0225 0.0786 13.02 6.3e-10 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 50.2 on 16 degrees of freedom
#> Multiple R-squared: 0.914, Adjusted R-squared: 0.908
#> F-statistic: 169 on 1 and 16 DF, p-value: 6.29e-10

1.11 Main text Figure 7232

See main text for Figure 7. Plotting code is not shown in PDF and HTML form, see233

the .Rmd file.234
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2 Processing Egyptian Fruit Bat Tracks235

We show the pre-processing pipeline at work on the tracks of three Egyptian fruit236

bats (Rousettus aegyptiacus), and construct residence patches.237

2.1 Prepare libraries238

Install the required R libraries that are required from CRAN if not already installed.239

# libs for data
library(data.table)
library(RSQLite)
library(atlastools)

# libs for plotting
library(ggplot2)
library(patchwork)

# recursion analysis
library(recurse)

# prepare a palette
pal <- pals::kovesi.rainbow_bgyr_35_85_c73(3)

if (!require(remotes)) {
install.packages("remotes", repos = "http://cran.us.r-project.org")

}

# installation using remotes
if (!require(atlastools)) {
remotes::install_github("pratikunterwegs/atlastools", upgrade = FALSE)

}

2.2 Read bat data240

Read the bat data from an SQLite database local file and convert to a plain text csv241

file. This data can be found in the “data” folder.242

# prepare the connection
con <- dbConnect(
drv = SQLite(),
dbname = "data/Three_example_bats.sql"

)

# list the tables
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table_name <- dbListTables(con)

# prepare to query all tables
query <- sprintf('select * from \"%s\"', table_name)

# query the database
data <- dbGetQuery(conn = con, statement = query)

# disconnect from database
dbDisconnect(con)

Convert data to csv, and save a local copy in the folder “data”.243

# convert data to datatable
setDT(data)

# write data for QGIS
fwrite(data, file = "data/bat_data.csv")

2.3 Exploratory Data Analysis Panels: Main Text Figure 1244

Here, we make some basic figures for exploratory data analysis shown in Figure 1245

of the main text.246

Plot the bat data as a sanity check, and inspect it visually for errors. The plot code is247

hidden in the rendered copy (PDF) of this supplementary material, but is available248

in the Rmarkdown file “supplement/06_bat_data.Rmd”.249

2.3.1 Heatmap of Locations250

Here we demonstrate a basic heatmap of locations, aggregating over all individuals.251

In this one instance, the plotting code is also shown as a guide for readers, but in252

general, plotting code is hidden throughout this document.253

data_heatmap <- copy(data)
data_heatmap[, c("xround", "yround") := list(

plyr::round_any(X, 250),
plyr::round_any(Y, 250)

)]
data_heatmap <- data_heatmap[, .N, by = c("xround", "yround")]

fig_heatmap <-
ggplot(data_heatmap) +
geom_tile(
aes(
xround, yround,
fill = N

),
size = 0.1,
show.legend = F

) +
scale_fill_viridis_c(
option = "A",
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direction = -1,
trans = "log10"

) +
theme_void() +
coord_sf(crs = 2039)

ggsave(fig_heatmap,
filename = "supplement/figures/fig_bat_heatmap_raw.png",
dpi = 300,
width = 6, height = 4

)

2.3.2 Sampling Intervals254

Here, we create the histogram of sampling intervals shown in Figure 1 of the main255

text. The plotting code is hidden in the PDF version, but available in the source256

code.257

2.3.3 Localisation Error Measured by Systems258

Here, we create the histogram of location error (variance in X) (Weiser et al. 2016)259

shown in Figure 1 of the main text. The plotting code is hidden in the PDF version,260

but available in the source code.261

2.3.4 Plot paths from raw tracking data262

Here, we plot the paths of individual bats from the raw tracking data to visually263

inspect them for errors.264

# this figure for the panel in main text figure 1
fig_bat_focus_bad_speed <-
fig_bat_raw +
coord_sf(
crs = 2039,
xlim = c(253000, NA),
ylim = c(772000, NA)

)

# save to supplement figures
ggsave(fig_bat_focus_bad_speed,
filename = "supplement/figures/fig_bat_focus_bad_speed.png",
dpi = 300,
width = 4, height = 6

)

2.4 Prepare data for filtering265

Here we apply a series of simple filters. It is always safer to deal with one individual266

at a time, so we split the data.table into a list of data.tables to avoid mixups among267

individuals.268
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Figure 2.1: Movement data from three Egyptian fruit bats tracked using the ATLAS
system (Rousettus aegyptiacus; (Toledo et al. 2020; Shohami and Nathan
2020)). The bats were tracked in the Hula Valley, Israel (33.1◦N, 35.6◦E),
and we use three nights of tracking (5th, 6th, and 7th May, 2018), for
our demonstration, with an average of 13,370 positions (SD = 2,173;
range = 11,195 – 15,542; interval = 8 seconds) per individual. After
first plotting the individual tracks, we notice severe distortions, making
pre-processing necesary
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This is a very rudimentary demonstration of the principle behind batch processing269

— splitting data into smaller, independent subsets, and applying the same steps to270

each subset.271

2.4.1 Prepare data per individual272

# split bat data by tag
# first make a copy using the data.table function copy
# this prevents the orignal data from being modified by atlastools
# functions which DO MODIFY BY REFERENCE!
data_split <- copy(data)

# now split
data_split <- split(data_split, by = "TAG")

2.5 Filter by system-generated error attributes273

No natural bounds suggest themselves, so instead we proceed to filter by system-274

generated attributes of error, since point outliers are obviously visible.275

We use filter out positions with SD > 20 and positions calculated using only 3 base276

stations, using the function atl_filter_covariates.277

First we calculate the variable SD, which for ATLAS systems is calculated as:278

SD =
√

VARX + VARY + 2× COVXY

# get SD.
# since the data are data.tables, no assignment is necessary
invisible(
lapply(data_split, function(dt) {
dt[, SD := sqrt(VARX + VARY + (2 * COVXY))]

})
)

Then we pass the filters to atl_filter_covariates. We apply the filter to each279

individual’s data using an lapply – this separates the data from each individual into280

a separate data frame, lessening the chances of inter-individual mix-ups.281

This is another basic example of the principles behind batch-processing, and could be282

parallelised using the R package furrr (see https://CRAN.R-project.org/package=283

furrr).284

# filter for SD <= 20
# here, reassignment is necessary as rows are being removed
data_split <- lapply(data_split, function(dt) {
dt <- atl_filter_covariates(
data = dt,
filters = c(
"SD <= 20",
"NBS > 3"

)
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)
})

2.5.1 Sanity check: Plot filtered data285

We plot the data to check whether the filtering has improved the data (Fig. 2.2). The286

plot code is once again hidden in this rendering, but is available in the source code287

file.288

2.6 Filter by speed289

Some point outliers remain, and could be removed using a speed filter.290

First we calculate speeds, using atl_get_speed. We must assign the speed output to291

a new column in the data.table, which has a special syntax which modifies in place,292

and is shown below. This syntax is a feature of the data.table package, not strictly293

of atlastools (Dowle and Srinivasan 2020).294

# get speeds as with SD, no reassignment required for columns
invisible(
lapply(data_split, function(dt) {

# first process time to seconds
# assign to a new column
dt[, time := floor(TIME / 1000)]

dt[, `:=`(
speed_in = atl_get_speed(dt,
x = "X", y = "Y",
time = "time",
type = "in"

),
speed_out = atl_get_speed(dt,
x = "X", y = "Y",
time = "time",
type = "out"

)
)]

})
)

Now filter for speeds > 20 m/s (around 70 km/h), passing the predicate (a state-295

ment return TRUE or FALSE) to atl_filter_covariates. First, we remove positions296

which have NA for their speed_in (the first position) and their speed_out (last posi-297

tion).298

# filter speeds
# reassignment is required here
data_split <- lapply(data_split, function(dt) {
dt <- na.omit(dt, cols = c("speed_in", "speed_out"))

dt <- atl_filter_covariates(
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Figure 2.2: Bat data filtered for large location errors, removing observations with
standard deviation > 20. Grey crosses show data that were removed.
Since the number of base stations used in the location process is a good
indicator of error (Weiser et al. 2016), we also removed observations cal-
culated using fewer than four base stations. Both steps used the function
atl_filter_covariates. This filtering reduced the data to an average
of 10,447 positions per individual (78% of the raw data on average).
However, some point outliers remain.
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data = dt,
filters = c(
"speed_in <= 20",
"speed_out <= 20"

)
)

})

2.6.1 Sanity check: Plot speed filtered data299

The speed filtered data is now inspected for errors (Fig. 2.3). The plot code is once300

again hidden.301

2.7 Median smoothing302

The quality of the data is relatively high, and a median smooth is not strictly303

necessary. We demonstrate the application of a 5 point median smooth to the304

data nonetheless (Fig. 2.4).305

Since the median smoothing function atl_median_smooth modifies in place, we first306

make a copy of the data, using data.table’s copy function. No reassignment is307

required, in this case. The lapply function allows arguments to atl_median_smooth308

to be passed within lapply itself.309

In this case, the same moving window K is applied to all individuals, but modifying310

this code to use the multivariate version Map allows different K to be used for311

different individuals. This is a programming matter, and is not covered here further.312

# since the function modifies in place, we shall make a copy
data_smooth <- copy(data_split)

# split the data again
data_smooth <- split(data_smooth, by = "TAG")

# apply the median smooth to each list element
# no reassignment is required as THE FUNCTION MODIFIES IN PLACE!
invisible(

# the function arguments to atl_median_smooth
# can be passed directly in lapply

lapply(
X = data_smooth,
FUN = atl_median_smooth,
time = "time", moving_window = 5

)
)
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Figure 2.3: Bat data with unrealistic speeds removed. Notice, compared with the
previous figure, that spikes of unrealistic movement in all three tracks
have been removed. Grey crosses show data that were removed. We
calculated the incoming and outgoing speed of each position using
atl_get_speed, and filtered out positions with speeds > 20 m/s using
atl_filter_covariates, leaving 10,337 positions per individual on aver-
age (98% from the previous step).
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Figure 2.4: Bat data after applying a median smooth with a moving window K = 5.
Grey circles show data prior to smoothing. The smoothing step did not
discard any data.

29



2.7.1 Sanity check: Plot smoothed data313

2.8 Making residence patches314

2.8.1 Calculating residence time315

First, the data is put through the recurse package to get residence time (Bracis,316

Bildstein, and Mueller 2018).317

# split the data
data_smooth <- split(data_smooth, data_smooth$TAG)

We calculated residence time, but since bats may revisit the same features, we want318

to prevent confusion between frequent revisits and prolonged residence.319

For this, we stop summing residence times within Z metres of a location if the320

animal exited the area for one hour or more. The value of Z (radius, in recurse321

parameter terms) was chosen as 50m.322

This step is relatively complicated and is only required for individuals which fre-323

quently return to the same location, or pass over the same areas repeatedly, and324

for which revisits (cumulative time spent) may be confused for residence time in a325

single visit.326

While a simpler implementation using total residence time divided by the number327

of revisits is also possible, this does assume that each revisit had the same residence328

time.329

# get residence times
data_residence <- lapply(data_smooth, function(dt) {

# do basic recurse -- refer to Bracis et al. (2018) Ecography
dt_recurse <- getRecursions(
x = dt[, c("X", "Y", "time", "TAG")],
radius = 50,
timeunits = "mins"

)

# get revisit stats column provided as recurse output
dt_recurse <- setDT(
dt_recurse[["revisitStats"]]

)

# count long absences from the each position
dt_recurse[, timeSinceLastVisit :=
ifelse(is.na(timeSinceLastVisit), -Inf, timeSinceLastVisit)]

dt_recurse[, longAbsenceCounter := cumsum(timeSinceLastVisit > 5),
by = .(coordIdx)

]

# filter data to exclude revisits after the first long absence of 60 mins
dt_recurse <- dt_recurse[longAbsenceCounter < 1, ]

# calculate the residence time as the sum of times inside
# before the first 'long absence'
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# also calculate the First Passage Time and the number of revisits
dt_recurse <- dt_recurse[, list(
resTime = sum(timeInside),
fpt = first(timeInside),
revisits = max(visitIdx)

),
by = .(coordIdx, x, y)
]

# prepare to merge existing data with recursion data
dt[, coordIdx := seq(nrow(dt))]

# merge the revised recursion analysis data with the tracking data
dt <- merge(dt,

dt_recurse[, c("coordIdx", "resTime")],
by = c("coordIdx")

)

# ensure the data are ordered in ascending order of time
setorderv(dt, "time")

# print message when done
message(sprintf("TAG %s residence times done", unique(dt$TAG)))

# return the dataframe
dt

})

We bind the data together and assign a human readable timestamp column.330

# bind the list
data_residence <- rbindlist(data_residence)

# get time as human readable
data_residence[, ts := as.POSIXct(time, origin = "1970-01-01")]

# get hour of day to filter for nighttime
data_residence[, hour := data.table::hour(ts)]

2.8.2 Movements away from the roost331

To focus on night-time bat foraging around fruit trees, we shall filter data both on the332

timestamps, to select night-time positions, and on the locations, to select positions >333

1 km away from the roost-cave at Har Gershom (see main text Fig. 8).334

Combining these two filters allows us to exclude bat positions at the roost-cave that335

may be due to individual-differences in bats’ departure or return times to and from336

their foraging areas.337

# read in roosts and select the Har Gershom roost
roosts <- fread("data/Roosts.csv")
setnames(roosts, "Species", "roost_name")
roosts <- roosts[roost_name == "Har Gershom"]
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# define a simple distance function that is vectorised
get_distance_adhoc <- function(x1, y1, x2, y2) {
sqrt(((x2 - x1)^2) + ((y2 - y1)^2))

}

# calculate distance to roost cave at Har Gershom
data_residence[, distance_roost := get_distance_adhoc(
x1 = roosts$X,
x2 = data_residence$X,
y1 = roosts$Y,
y2 = data_residence$Y

)]

Users should plot the data to examine the effect of applying filters — this code is338

shown, but the figure is hidden for brevity.339

# plot for sanity check --- this plot is not shown
fig_roost_exclude <-
ggplot(data_residence) +
geom_point(
aes(X, Y, col = distance_roost)

) +
geom_point(
data = roosts,
aes(X, Y),
shape = 21, size = 4,
fill = "blue",
alpha = 0.5

) +
scale_colour_viridis_c(
option = "B", direction = -1,
trans = "log10",
breaks = c(1000, 2500, 5000),
labels = function(x) {
scales::comma(
x,
scale = 0.001, suffix = "km"

)
},
limits = c(1000, NA),
na.value = "lightblue"

) +
ggspatial::annotation_scale(location = "br") +
theme_test() +
theme(
axis.text = element_blank(),
axis.title = element_blank(),
legend.position = "top",
legend.key.height = unit(2, "mm"),
legend.title = element_text(vjust = 1)

) +
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coord_sf(
crs = 2039

) +
labs(
colour = "distance (km)"

)

We now filter the data to exclude both day-time data, as well as data that is < 1 km340

from the roost.341

# filter for hour between 8pm and 5am and distance > 1km
data_residence <- atl_filter_covariates(
data = data_residence,
filters = c(
"hour > 20 | hour < 5",
"distance_roost > 1000"

)
)

2.8.3 Split data by night-id342

We assign a night-id to each position, i.e., the night-time spanning two calendar343

days. We then filter for data with a residence time > 5 minutes, as we expect that a344

bat stopped at a location for more than 5 minutes is likely to be foraging.345

# split data into separate nights
data_residence[, night := 1 + c(0, cumsum(diff(hour) > 12)), by = "TAG"]

# filter for residence time > 5 minutes
data_residence <- data_residence[resTime > 5, ]

2.8.4 Constructing residence patches346

Some preparation is required. First, the function requires columns x, y, time, and id,347

which we assign using the data.table syntax. The time column is already present,348

but the other columns need to be renamed to lower case.349

# add an id column
data_residence[, `:=`(
id = TAG,
x = X, y = Y

)]

# get mean residence time per id
data_residence[, list(
mean_residence = mean(resTime),
sd_residence = sd(resTime)

), by = "TAG"]
#> TAG mean_residence sd_residence
#> 1: 972001004424 238.4 116.8
#> 2: 972001004449 52.8 33.5
#> 3: 972001004452 53.5 38.5
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# get mean residence time for all bats pooled
data_residence[, list(
mean_residence = mean(resTime),
sd_residence = sd(resTime)

)]
#> mean_residence sd_residence
#> 1: 133 123

# average positions per bat after removing transit points
data_residence[, list(.N), by = "TAG"][, list(mean_positions_ = mean(N))]
#> mean_positions_
#> 1: 5549

# split the data
data_residence <- split(data_residence, by = c("TAG", "night"))

We apply the residence patch method, using the default argument values350

(lim_spat_indep = 100 (metres), lim_time_indep = 30 (minutes)). We change the351

buffer_radius to 25 metres (twice the buffer radius is used, so points must be352

separated by 50m to be independent bouts), and min_fixes = 3.353

# segment into residence patches
data_patches <- lapply(data_residence, atl_res_patch,
buffer_radius = 25,
min_fixes = 3,
summary_variable = c("night", "distance_roost"),
summary_functions = c("mean", "sd")

)

2.8.5 Getting residence patch data354

We extract the residence patch data as spatial sf-MULTIPOLYGON objects. These are355

returned as a list and must be converted into a single sf object. These objects and356

the raw movement data are shown in Fig. 2.5.357

# get data spatials
data_spatials <- lapply(data_patches, atl_patch_summary,
which_data = "spatial",
buffer_radius = 25

)

# bind list
data_spatials <- rbindlist(data_spatials)

# convert to sf
library(sf)
data_spatials <- st_sf(data_spatials, sf_column_name = "polygons")

# assign a crs
st_crs(data_spatials) <- st_crs(2039)
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2.8.6 Write patch spatial representations358

st_write(data_spatials,
dsn = "data/data_bat_residence_patches.gpkg",
append = FALSE

)
#> Deleting layer `data_bat_residence_patches' using driver `GPKG'
#> Writing layer `data_bat_residence_patches' to data source
#> `data/data_bat_residence_patches.gpkg' using driver `GPKG'
#> Writing 45 features with 22 fields and geometry type Multi Polygon.

Write cleaned bat data.359

fwrite(rbindlist(data_smooth),
file = "data/data_bat_smooth.csv"

)

Write patch summary.360

# get summary
patch_summary <- lapply(data_patches, atl_patch_summary)

# bind summary
patch_summary <- rbindlist(patch_summary)

# write
fwrite(
patch_summary,
"data/data_bat_patch_summary.csv"

)

2.8.7 Duration at foraging sites361

We exclude the first and last patch of each day as being roosting related, and examine362

how much of the total foraging time (time between the remaining first and last patch)363

was spent at foraging sites. It follows that the remainder of the time must have been364

spent in transit, or otherwise not foraging.365

# make patch summary a datatable
setDT(patch_summary)

# get mean and sd of duration in patches
patch_summary[, list(
mean_duration = mean(duration / 60),
sd_duration = sd(duration / 60)

)]
#> mean_duration sd_duration
#> 1: 57 62.2

# assign night id
patch_summary[, c("hour", "day") := list(
data.table::hour(as.POSIXct(time_start, origin = "1970-01-01")),
data.table::mday(as.POSIXct(time_start, origin = "1970-01-01"))

)]

35



# get total foraging time
foraging_proportion <- patch_summary[, list(
time_total_forage = (max(time_end) - min(time_start)) / 60,
time_forage_site = sum(duration / 60)

),
by = c("id", "night_mean")
]

# get proporion of foraging that is at a foraging site
foraging_proportion[, list(
mean_foraging_prop = mean(time_forage_site / time_total_forage),
sd_foraging_prop = sd(time_forage_site / time_total_forage)

)]
#> mean_foraging_prop sd_foraging_prop
#> 1: 0.838 0.155

2.9 Main text Figure 8366

See Fig. 8 in the main text, made with QGIS.367
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Figure 2.5: A visual examination of plots of the bats’ residence patches and linear
approximations of paths between them showed that though all three bats
roosted at the same site, they used distinct areas of the study site over
the three nights (a). Bats tended to be resident near fruit trees, which are
their main food source, travelling repeatedly between previously visited
areas (b, c). However, bats also appeared to spend some time at locations
where no fruit trees were recorded, prompting questions about their use
of other food sources (b, c). When bats did occur close together, their
residence patches barely overlapped, and their paths to and from the
broad area of co-occurrence were not similar (c). Constructing residence
patches for multiple individuals over multiple activity periods suggests
interesting dynamics of within- and between-individual overlap (b, c).
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