Package ‘atlastools’

October 7, 2021

Title Tools for Pre-Processing High-Throughput Animal Tracking Data
Version 1.0.0000

Description Tools to pre-process high-throughput tracking data. Developed for use with AT-
LAS tracking systems, but suitable for use with nearly any XY-time animal tracking data.

License GPL-3
Encoding UTF-8
LazyData true

URL https://github.com/pratikunterwegs/atlastools

BugReports https://github.com/pratikunterwegs/atlastools/issues

Imports sf,
glue,
data.table,
stats,
assertthat,
stringr,
bit64

RoxygenNote 7.1.1
Roxygen list(markdown = TRUE)

Suggests testthat (>= 2.1.0),
ggplot2,
scales,
knitr,
rmarkdown

VignetteBuilder knitr

R topics documented:

atl_check data . . . . . . . . .. e
atl_filter bounds . . . . . . ... e
atl_filter_covariates . . . . . . . . . .. e
atl_get_speed . . . . ...


https://github.com/pratikunterwegs/atlastools
https://github.com/pratikunterwegs/atlastools/issues

2 atl _check data
atl_median_smooth . . . . . . . ... e 6
atl_patch_dist . . . . . ... e 7
atl_patch_summary . . . . . ... L e 8
atl_remove_reflections . . . . . . . ... 9
atl_res_patch . . . . . . 10
atl_simple_dist . . . . . . . e e e 12
atl_thin_data . . . . . . . . e 13
atl_turning_angle . . . . . ... 14
atl_within_polygon . . . . . . . . ... 15

Index 16

atl_check_data Check data has required columns.

Description

An internal function that checks that the data.table has the required columns. Used within most, if
not all, other atlastools functions.

Usage

atl_check_data(data, names_expected = c("x", "y", "time"))
Arguments
data The tracking data to check for required columns. Must be in the form of a
data.frame or similar, which can be handled by the function colnames.
names_expected The names expected as a character vector. By default, checks for the column
names X, Yy, time.

Value

None. Breaks if the data does not have required columns.

Author(s)

Pratik R. Gupte
Examples

# basic (and only) use
## Not run:
atl_check_data(

data = data,

names_expected = c("x",

)

"

yn, ntimeu)

## End(Not run)



atl_filter_bounds 3

atl_filter_bounds Filter positions by an area.

Description

Filters out positions lying inside or outside an area. The area can be defined in two ways, either by
its X and Y coordinate ranges, or by an sf-*POLYGON object. MULTIPOLYGON objects are supported
by the internal function atl_within_polygon.

Usage
atl_filter_bounds(
data,
x = "x",
y ="y",
x_range = NA,
y_range = NA,

sf_polygon = NULL,
remove_inside = TRUE

)
Arguments
data A dataframe or extension which contains X and Y coordinates.
X The X coordinate column.
y The Y coordinate column.
X_range The range of X coordinates.
y_range The range of Y coordinates.
sf_polygon sfc_*POLYGON object which must have a defined CRS. The polygon CRS is

assumed to be appropriate for the positions as well, and is assigned to the coor-
dinates when determining the intersection.

remove_inside Whether to remove points from within the range. Setting negate = TRUE re-
moves positions within the bounding box specified by the X and Y ranges.

Value

A data frame of tracking locations with attractor points removed.

Author(s)

Pratik R. Gupte



4 atl_filter_covariates

Examples

## Not run:

filtered_data <- atl_filter_bounds(
data = data,
x = "X", y ="y,
x_range = c(x_min, x_max),
y_range = c(y_min, y_max),
sf_polygon = your_polygon,
remove_inside = FALSE

)

## End(Not run)

atl_filter_covariates Filter data by position covariates.

Description

The atlastools function atl_filter_covariates allows convenient filtering of a dataset by any
number of logical filters. This function can be used to easily filter timestamps in a range, as well as
combine simple spatial and temporal filters. It accepts a character vector of R expressions that each
return a logical vector (i.e., TRUE or FALSE). Each filtering condition is interpreted in the context of
the dataset supplied, and used to filter for rows that satisfy each of the filter conditions. Users must
make sure that the filtering variables exist in their dataset in order to avoid errors.

Usage

atl_filter_covariates(data, filters = c())

Arguments
data A dataframe or similar containing the variables to be filtered.
filters A character vector of filter expressions. An example might be "speed < 20".
The filtering variables must be in the dataframe. The function will not explicitly
check whether the filtering variables are present; this makes it flexible, allowing
expressions such as "between(speed, 2,20) ", but also something to use at your
own risk. A missing filter variables will result in an empty data frame.
Value

A dataframe filtered using the filters specified.

Author(s)
Pratik R. Gupte



atl_get_speed 5

Examples

## Not run:
night_data <- atl_filter_covariates(
data = dataset,
filters = c("!inrange(hour, 6, 18)")
)

data_in_area <- atl_filter_covariates(
data = dataset,
filters = c(
"between(time, t_min, t_max)",
"between(x, x_min, x_max)"
)
)
filtered_data <- atl_filter_covariates(
data = data,
filters = c(
"NBS > 3",
"SD < 100",
"between(day, 5, 8)"
)
)

## End(Not run)

atl_get_speed Calculate instantaenous speed.

Description

Returns speed in metres per time interval. The time interval is dependent on the units of the column
specified in time. Users should apply this function to one individual at a time, ideally by splittng a
dataframe with multiple individuals into a list of dataframes.

Usage

ny,n no,n

atl_get_speed(data, x = "x", y = "y", time = "time", type = c("in"))

Arguments
data A dataframe or similar which must have the columns specified by x, y, and time.
X The x coordinate.
y The y coordinate.
time The timestamp in seconds since the UNIX epoch.
type The type of speed (incoming or outgoing) to return. Incoming speeds are speci-

fied by type = "in", and outgoing speeds by type = "out".



6 atl_median_smooth

Value

A vector of numerics representing speed. The first position is assigned a speed of NA.

Author(s)
Pratik R. Gupte

Examples

## Not run:

data$speed_in <- atl_get_speed(data,
X = "x", y ="y,
time = "time", type = c("in"

)

## End(Not run)

atl_median_smooth Apply a median smooth to coordinates.

Description

Applies a median smooth defined by a rolling window to the X and Y coordinates of the data. This
function modifies in place, i.e., the results need not be assigned to a new data.table.

Usage

atl_median_smooth(data, x = "X", y = "Y", time = "TIME", moving_window = 3)

Arguments

data A dataframe object returned by getData. Must contain the columns "X", "Y",
"SD", "NBS", "TAG", "TIME"; these are the X coordinate, Y coordinate, stan-
dard deviation in measurement, number of ATLAS towers that received the sig-
nal, the tag number, and the numeric time, in milliseconds from 1970-01-01.

X The X coordinate.

y The Y coordinate.

time The timestamp, ideally as an integer. median calculation.

moving_window The size of the moving window for the median smooth. Must be an odd number.

Value

A datatable class object (extends data.frame) which has the additional columns posID and ts, which
is TIME converted to human readable POSIXct format.



atl_patch_dist 7

Examples

## Not run:

atl_median_smooth(
data = track_data,
x ="x", y="y",
time = "time”,
moving_window = 5

)

## End(Not run)

atl_patch_dist Get the distance between patches.

Description

Gets the linear distance between the first point of patch i and the last point of the previous patch
patch i -1. Distance is returned in metres. This function is used internally by other functions, and
rarely on its own.

Usage
atl_patch_dist(
data,
x1 = "x_end",
x2 = "x_start",
yl = "y_end”,
y2 = "y_start”
)
Arguments
data A dataframe of or extending the class data.frame, such as a data.table. This
must contain two pairs of coordinates, the start and end X and Y coordinates of
a feature.
x1 The first X coordinate or longitude; for inter-patch distances, this is the last
coordinate (x_end) of a patch 4.
X2 The second X coordinate; for inter-patch distances, this is the first coordinate
(x_start) of a subsequent patch ¢ + 1.
y1 The first Y coordinate or latitude; for inter-patch distances, this is the last coor-
dinate (y_end) of a patch i.
y2 The second Y coordinate; for inter-patch distances, this is the first coordinate

(y_start) of a subsequent patch ¢ + 1.



8 atl_patch_summary

Value

A numeric vector of the length of the number of patches, or rows in the input dataframe. For single
patches, returns NA. The vector has as its elements NA, followed by n-1 distances, where n is the
number of rows.

Author(s)
Pratik R. Gupte

Examples

# basic usage of atl_patch_dist

## Not run:
atl_patch_dist(
data = data,
x1 = "x_end"”, x2 = "x_start",
yl = "y_end"”, y2 = "y_start”
)

## End(Not run)

atl_patch_summary Get residence patch data.

Description

The function atl_patch_summary can be used to extract patch-specific summary data such as the
median coordinates, the patch duration, the distance travelled within the patch, the displacement
within the patch, and the patch area.

Usage
atl_patch_summary(patch_data, which_data = "summary"”, buffer_radius = 10)
Arguments
patch_data A data.frame with a nested list column of the raw data underlying each patch.
Since data.frames don’t support nested columns, will actually be a data.table or
similar extension.
which_data Which data to return. May be the raw data underlying the patch (which_data =

"points"), or a spatial features (sf-MULTIPOLYGON) object with patch covari-
ates (which_data = "spatial”), or a data.table of the patch covariates without
the geometry column (which_data = "summary").

buffer_radius Spatial buffer radius (in metres) around points when requesting sf based poly-
gons.



atl_remove_reflections 9

Value

An object of type sf or data. table depending on which data is requested.

Author(s)
Pratik R. Gupte

Examples

## Not run:

patch_summary <- atl_patch_summary(
patch_data = patches,
which_data = "summary”,
buffer_radius = 10

)

## End(Not run)

atl_remove_reflections
Remove reflected positions.

Description

Remove reflections, or prolonged spikes from a movement track by identifying the bounds and re-
moving positions between them. The important function arguments here are point_angle_cutoff
($AS), reflection_speed_cutoff ($S$). If the prolonged spike ends before the last row of data,
the true end point is used as the outer bound of the spike. If the prolonged spike does not end within
the last row of data, all the data are retained and a message is printed.

Usage
atl_remove_reflections(
data,
X = HXIIy
y ="y",
time = "time",

point_angle_cutoff = 45,
reflection_speed_cutoff = 20

)

Arguments
data A dataframe or similar which has previously been cleaned.
X The name of the X coordinate column.

y The name of the Y coordinate column.



10 atl_res_patch

time The name of the timestamp column.

point_angle_cutoff
The turning angle (in degrees) above which high instantaneous speeds are con-
sidered an anomaly rather than fast transit.

reflection_speed_cutoff

The speed (in m/s) above which an anomaly is detected when combined with a
high turning angle.

Value

A dataframe with reflections removed.

Author(s)
Pratik R. Gupte

Examples

## Not run:

filtered_data <- atl_remove_reflections(
data = track_data,
x ="x", y="y", time = "time",
point_angle_cutoff = A,
reflection_speed_cutoff = S

)

## End(Not run)

atl_res_patch Construct residence patches from position data.

Description

A cleaned movement track can be classified into residence patches using the function atl_res_patch.
The function expects a specific organisation of the data: there should be at least the following
columns, X, y, time, and id, all named in lower case, and corresponding to the coordinates, times-
tamp in the UNIX format (seconds since 1970), and the identity of the tracked individual. The result
contains only the data that was classified as a residence patch and removes transit between them.
atl_res_patch requires only three parameters: (1) the distance threshold between positions (called
buffer_size), (2) the distance threshold between clusters of positions (called 1im_spat_indep),
and (3) the time interval between clusters (called 1im_time_indep). Clusters formed of fewer than
a minimum number of positions can be excluded. The exclusion of clusters with few positions
can help in removing bias due to short stops, but if such short stops are also of interest, they can
be included by reducing the min_fixes argument. Position covariates such as speed may also be
summarised patch-wise by passing covariate names and summary functions as character vectors to
the summary_variables and summary_functions arguments, respectively .



atl_res_patch

Usage

atl_res_patch(
data,

buffer_radius =

11

10,

lim_spat_indep = 100,
lim_time_indep = 30,
min_fixes = 3,

summary_variables

cQ),

summary_functions = c()

Arguments

data

buffer_radius

lim_spat_indep

lim_time_indep

min_fixes

A dataframe of values of any class that is or extends data.frame. The dataframe
must contain at least two spatial coordinates, x and y, and a temporal coordinate,
time. The names of columns specifying these can be passed as arguments below.
The column id indicating animal id is required.

A numeric value specifying the radius of the buffer to be considered around
each coordinate point. May be thought of as the distance that an individual can
access, assess, or otherwise cover when at a discrete point in space.

A numeric value of distance in metres of the spatial distance between two patches
for them to the considered independent.

A numeric value of time in minutes of the time difference between two patches
for them to be considered independent.

The minimum number of fixes for a group of spatially-proximate number of
ponts to be considered a preliminary residence patch.

summary_variables

Optional variables for which patch-wise summary values are required. To be
passed as a character vector.

summary_functions

Value

The functions with which to summarise the summary variables; must return only
a single value, such as median, mean etc. To be passed as a character vector.

A data.frame extension object. This dataframe has the added column patch and patchdata, indi-
cating the patch identity and the data used to construct the patch. In addition, there are columns
with patch summary variables.

Author(s)
Pratik R. Gupte

Examples

## Not run:

patches <- atl_res_patch(



12 atl_simple_dist

data = track_data,
buffer_radius = 10,
lim_spat_indep = 100,
lim_time_indep = 30,
min_fixes = 3,

summary_variables = c("speed"”),
summary_functions = c("mean”, "sd")
)
## End(Not run)
atl_simple_dist Calculate distances between successive points.

Description

Gets the euclidean distance between consecutive points in a coordinate reference system in metres,
i.e., UTM systems.

Usage

n,n

atl_simple_dist(data, x = "x", y = "y")

Arguments
data A dataframe object of or extending the class data.frame, which must contain two
coordinate columns for the X and Y coordinates.
X A column name in a data.frame object that contains the numeric X or longitude
coordinate for position data.
y A column name in a data.frame object that contains the numeric Y or latitude
coordinate for position data.
Value

Returns a vector of distances between consecutive points.



atl_thin_data 13

atl_thin_data Thin tracking data by resampling or aggregation.

Description

Uniformly reduce data volumes with either aggregation or resampling (specified by the method
argument) over an interval specified in seconds using the interval argument. Both options make
two important assumptions: (1) that timestamps are named time, and (2) all columns except the
identity columns can be averaged in R. While the subsample option returns a thinned dataset with
all columns from the input data, the aggregate option drops the column COVXY, since this cannot
be propagated to the averaged position. Both options handle the column time differently: while
subsample returns the actual timestamp (in UNIX time) of each sample, aggregate returns the
mean timestamp (also in UNIX time). In both cases, an extra column, time_agg, is added which
has a uniform difference between each element corresponding to the user-defined thinning interval.
The aggregate option only recognises errors named VARX and VARY, and standard deviation around
each position named SD. If all of these columns are not present together the function assumes there
is no measure of error, and drops those columns. If there is actually no measure of error, the function
simply returns the averaged position and covariates in each time interval. Grouping variables’ names
(such as animal identity) may be passed as a character vector to the id_columns argument.

Usage

atl_thin_data(
data,
interval = 60,
time = "time",
id_columns = NULL,
method = c(”"subsample”, "aggregate")

)
Arguments
data Cleaned data to aggregate. Must have a numeric column named time.
interval The interval in seconds over which to aggregate.
time The timestamp column name, ideally referring to a column with an integer type.
id_columns Column names for grouping columns.
method Should the data be thinned by subsampling or aggregation. If resampling (method
= "subsample"), the first position of each group is taken. If aggregation (method
= "aggregate”), the group positions’ mean is taken.
Value

A dataframe aggregated taking the mean over the interval.



14 atl_turning_angle

Examples

## Not run:

thinned_data <- atl_thin_data(data,
interval = 60,
id_columns = c("animal_id"),
method = "aggregate"

)

## End(Not run)

atl_turning_angle Get the turning angle between points.

Description

Gets the relative heading between two positions using the law of cosines. The turning angle is
returned in degrees. Users should apply this function to one individual at a time, ideally by splittng
a dataframe with multiple individuals into a list of dataframes.

Usage
atl_turning_angle(data, x = "x", y = "y", time = "time")
Arguments
data A dataframe or similar which must have the columns specified by x, y, and time.
X The x coordinate.
y The y coordinate.
time The timestamp in seconds since the UNIX epoch.
Value

A vector of turning angles in degrees. Negative degrees indicate ’left’ turns. There are two fewer
angles than the number of rows in the dataframe.

Author(s)
Pratik R. Gupte

Examples
## Not run:
datas$angle <- atl_turning_angle(data,
x = "x", y ="y, time = "time”
)

## End(Not run)



atl_within_polygon 15

atl_within_polygon Detect position intersections with a polygon.

Description

Detects which positions intersect a sfc_*POLYGON. Tested only for single polygon objects.

Usage

ny,n non

atl_within_polygon(data, x = "x", y = "y", polygon)

Arguments
data A dataframe or similar containg at least X and Y coordinates.
X The name of the X coordinate, assumed by default to be "x".
y The Y coordinate as above, default "y".
polygon An sfc_*POLYGON object which must have a defined CRS. The polygon CRS
is assumed to be appropriate for the positions as well, and is assigned to the
coordinates when determining the intersection.
Value

Row numbers of positions which are inside the polygon.



Index

atl_check_data, 2
atl_filter_bounds, 3
atl_filter_covariates,4
atl_get_speed, 5
atl_median_smooth, 6
atl_patch_dist, 7
atl_patch_summary, 8
atl_remove_reflections, 9
atl_res_patch, 10
atl_simple_dist, 12
atl_thin_data, 13
atl_turning_angle, 14
atl_within_polygon, 15

16



	atl_check_data
	atl_filter_bounds
	atl_filter_covariates
	atl_get_speed
	atl_median_smooth
	atl_patch_dist
	atl_patch_summary
	atl_remove_reflections
	atl_res_patch
	atl_simple_dist
	atl_thin_data
	atl_turning_angle
	atl_within_polygon
	Index

