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A Optimal control framework

The proposed framework is based on two disease transmission models, a full model and its
simplification used for control:
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• The full model is the COVID-19 model designed in [1, 2]. This model is based on ODEs, it
includes full connectivity fluxes among nodes which are estimated from mobility data, and it is
implemented in MATLAB using the explicit Runge-Kutta integration scheme of order 4 with
adaptive stepsize. Using data assimilation, we obtain the temporal variations of the regional
transmission parameters of this model.

• The simplified model used for optimal control is an approximation of the above model,
integrated using an explicit Runge-Kutta 4 method with fixed step size. We simplified the
problem by limiting the connectivity to the largest mobility fluxes (see Fig 1B of the main
manuscript) and optimizing only one realization of the posterior. This model is implemented
in Python with the CasADi algorithmic differentiation framework [3]. The details of the
simplifications are described below.

The simplifications introduced in the second model are necessary to solve the optimal control
problem in a reasonable time. To adapt our framework to another model/country, one would need to
update the “true” model to a suitable candidate (which could be a stochastic model, a Hidden
Markov model, or any other kind) and design a tractable approximation of this new model to be
solved by optimal control.

To evaluate the effectiveness of our approach, we first compute the optimal vaccination course
that minimizes the objective based on the simplified model. Then, we assess this strategy and the
alternative ones on the full model, for different posterior realizations. If the simplified model is
sufficiently accurate, the performance loss is small and the optimal solution outperforms any other
vaccination strategy on the full model, as shown in our results.

In the text below, we first detail the full COVID-19 model, then we describe the optimal control
framework and the simplifications we introduced to bring the problem to a tractable form.
Afterwards, we detail the data-assimilation procedure used to determine the model parameters, and
we describe the algorithms defining the alternative strategies. Finally, we provide additional results,
a sensitivity analysis, and an in-depth analysis of the optimal solution.

B COVID-19 transmission model

B.1 Model equations

The optimal control framework may be used with any compartmental SARS-CoV-2 transmission
model that can be approximated by ordinary differential equations. In this work, we consider a
complex epidemiological model developed in previous work to describe the first wave of COVID-19
infections in Italy [1, 2]. The model subdivides the Italian population into the 107 Italian provinces
and connects them on the basis of human mobility fluxes. In each province, the human population is
further subdivided according to its infection status into the epidemiological compartments of
susceptible S, exposed E, pre-symptomatic P (incubating infectious), symptomatic infectious I,
asymptomatic infectious A, quarantined Q, hospitalized H, recovered R, dead D, and vaccinated V .
The possible transitions between these compartments are shown in Fig 1A of the main manuscript.
Individuals in compartments P , A, and I are infectious and contribute differently to the force of
infection, driving susceptible S into exposed individuals E.
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Dynamics The COVID-19 transmission dynamics are described by the following set of ordinary
differential equations in each node i:

Ṡi = −λi(t)Si − rvi (t)Si

Ėi = λi(t)Si − (δE + rvi (t))Ei

Ṗi = δEEi − (δP + rvi (t))Pi

İi = σδPPi − (γI + η)Ii

Ȧi = (1− σ)δPPi − (γA + rvi (t))Ai

Q̇i = ζηIi − γQQ

Ḣi = (1− ζ)ηIi − (γH + αH)H

Ṙi = γIIi + γAAi + γHHi + γQQi − rvi (t)Ri

V̇i = rvi (t) · (Si + Ei + Pi +Ai +Ri).

(A)

Let Ni be the population of province i. Susceptible individuals get exposed to the pathogen at
rate λi(t), corresponding to the force of infection for community i, thus becoming latently infected
(but not infectious yet). Exposed individuals transition to the post-latent, infectious stage at rate δE .
Post-latent individuals progress to the next infectious classes at rate δP , developing an infection that
can be either symptomatic—with probability σ—or asymptomatic—with probability 1− σ.
Symptomatic infectious individuals recover from infection at rate γI and may seek treatment at
rate η. Asymptomatic individuals recover at rate γA. Infected individuals who sought treatment are
either hospitalized (rate 1− ζ) or quarantined (rate ζ) at home and are considered to be effectively
removed from the community, thus not contributing to disease transmission. Individuals who recover
from the infection are assumed to have long-lasting immunity to reinfection at the timescale studied,
but possible loss of immunity can be easily included in the model. Hospitalized individuals die at
rate αH and recover at rate γH .

Vaccination Individuals in compartments S,E, P,A,R might receive vaccine doses. If the chosen
strategy allocates vi(t) doses in node i at time t, the vaccination rate is:

rvi (t) =
vi(t)

Si(t) + Ei(t) + Pi(t) +Ai(t) +Ri(t)
. (B)

Vaccinated individuals are moved at rate rvi (t) from their original compartments to compartment V ,
where they do not contribute to the infection anymore.

Force of infection In addition to the province’s local dynamics, the force of infection also
considers that local susceptibles may enter in contact with infected individuals that are traveling,
and oppositely, susceptible commuters may become infected through contact with local infected. We
split the force of infection λi(t) as the sum of the local force of infection λL

i (t), from infected in node
i and a mobility-driven force of infection from the network λM

i (t), hence λi(t) = λL
i (t) + λM

i (t). The
local force of infection reads:

λL
i (t) = Ci,i(t)β0βi(t) ·

Ci,i(t) · (Pi + ϵAAi) + ϵIIi
Ci,i(t) · (Si + Ei + Pi +Ri +Ai + Vi) + Ii

, (C)

and the influence of other provinces on province i is written as:

λM
i (t) =

∑
m,m ̸=i

(
Ci,m(t) ·

∑
n,n̸=m [Cn,m(t) · β0βn(t)(Pn + ϵAAn)] + ϵIβ0βm(t)Im∑
l,l ̸=m [Cl,m(t) · (Sl + El + Pl +Rl +Al + Vl)] + Im

)
, (D)

where β0 is the baseline transmission rate, and the parameters ϵA and ϵI represent the reduction of
transmission respectively for asymptomatic and symptomatic individuals with respect to
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pre-symptomatic individual transmissions. Matrix C(t) accounts for mobility: each element Ci,j(t)
of the matrix (i ̸= j) represents the proportion of contacts among individuals moving from i to j,
while the diagonal elements Ci,i(t) are the proportions of contact for individuals in node i that do
not move:

Ci,j =

{
(1− pi) + (1− r)pi + rpiqij if i = j

rpiqij otherwise
(E)

where pi is the fraction of mobile people commuting from node i to the other nodes, qij is the fraction
of mobile people between nodes i and j, and r is an additional parameter describing the fraction of
time spent traveling (here set to half a day: r = 0.5 days). Fractions pi and qij were estimated from
the commuting mobility assessment of Italy performed in 2011 by the Italian National Institute of
Statistics (ISTAT, data available at https://www.istat.it/it/archivio/139381).

Force of infection, simplified model The force of infection of the optimal control model is
slightly simplified. We observe while simulating our model that λM

i (t) ≪ λL
i (t). This is exploited to

simplify the model for the optimal control: we update λM
i (t) from other nodes every day whereas

λL
i (t) is updated at each integration step (hundred of times per day), loosening the coupling between

nodes. This is a very important step in making the optimal control problem tractable.

Google mobility reports In this work, we assume that the initial local fraction of mobile
individuals pi, in the following indicated with pi0, changes during the simulation due to the mobility
restrictions imposed by the national and regional governments during the epidemic. We adopted the
mobility trends for places of work estimated in the Google COVID-19 Community Mobility
Reports [4] as a proxy for the reduction in mobile individuals in a province i and day t,

pi(t) = pi,0(1 + gi(t)/100)

where gi(t) is the percentage of change in mobility in province i and day t with respect to the
mobility at the beginning of February 2020, as reported by the Google COVID-19 Community
Mobility Report (shown in Fig G).

The model further exploits Google COVID-19 Community Mobility Report estimates of mobility
reduction as a proxy of changes in individual awareness and social distancing. This is represented in
parameter βi(t), a spatially distributed and time-varying parameter describing site- and time-specific
variations in transmission due to non-pharmaceutical interventions or other exogenous factors such
as variants. At a given day t, we pose

βi(t) = (1 + gi(t)/100)ϕi(t) (F)

where parameter ϕi(t) changes at the regional level and is calibrated in the data assimilation
procedure in order to fit the hospitalization data (see section Data assimilation and model
parameters, Fig G)

The objective for our model is to minimize the total incidence of infections, i.e.,
∫ tf
ti

∑
i λi(t)Si.

Note that for the present model, this is equivalent to minimizing the total deaths or hospital
admissions, as without risk classes the sizes of these two compartments are proportional to each
other.

B.2 Spatial set-up

The modeling tools described in the following sections are applied to the Italian COVID-19 epidemic
at the scale of second-level administrative divisions, i.e., provinces and metropolitan cities (currently,
as of 2021, 107 spatial units). Official data about the resident population at the provincial level is
produced yearly by the Italian National Institute of Statistics (Istituto Nazionale di Statistica,
ISTAT; data available at
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http://dati.istat.it/Index.aspx?QueryId=18460). The latest update (January 1, 2019)
has been used to inform the spatial distribution of the population.

The data to quantify nationwide human mobility come from ISTAT (specifically, from the 2011
national census; data available online at https://www.istat.it/it/archivio/139381). Mobility
fluxes, mostly reflecting commuting patterns related to work and study purposes, are provided at the
scale of third-level administrative units (municipalities) [5, 6]. These fluxes were upscaled to the
provincial level following the administrative divisions of 2019 and used to evaluate the fraction pi of
mobile people in each node i, as well as the fraction qij of mobile people who move between i and all
other administrative units j (see Supplementary Material in [1]).

C Optimal control of spatial epidemiological models

C.1 Optimal control method

We lump the epidemiological compartments of each node i in variable
xi(t) = (Si(t), Ei(t), Pi(t), Ii(t), Ai(t), Qi(t), Hi(t), Ri(t), Vi(t)) and we define vi(t) as our control
variable, representing the number of vaccines administered in node i at time t. We express the
dynamics of the epidemiological model (Eq (A)) as an ordinary differential equation in each province
i:

ẋi(t) = Fi(xi(t), vi(t),mi(t), t), (G)

where mi(t) carries the contribution of other provinces to the force of infection of node i (i.e.,
mi(t) = λM

i (t)). For simplicity, we drop the time dependence in the equations below, and we define
the state and control variables for the full system as:

x = (x1, . . . , xn), v = (v1, . . . , vn),

where n is the number of spatial node considered (n = 107). The global dynamics for all provinces
are denoted:

F (x, v) = (F1(x1, v1,m1), . . . , Fn(xn, vn,mn)).

The coupled force of infection in node i is denoted λi. We define the running cost as the sum of total
incidence of infections (transitions Si −→ Ei) for every node i, i.e.,

L(x, v) =

n∑
i=1

λiSi.

For the sake of generality, we also introduce the terminal cost M , which can in principle be used to
ensure that the system is in a proper state at the end of the prediction horizon, instead of optimizing
only the short-term gain. Since properly designing the terminal cost would require a long analysis,
for simplicity we do not use it in this work, hence M(·) = 0.

Given states x, controls v, and dynamics F , the optimal control problem is:

min
v(·)

∫ T

0

L(x(t), v(t)) dt+M(x(T )) (Ha)

s.t. x(0) = x̂0, (Hb)

ẋ(t) = F (x(t), v(t)), ∀ t ∈ [0, T ], (Hc)

H(x(t), v(t)) ≤ 0, ∀ t ∈ [0, T ], (Hd)

where we aim at minimizing the cost function over the prediction horizon T , while enforcing the
modeled SARS-CoV-2 transmission dynamics (Eq (Hb) and Eq (Hc)). Moreover, constraints on
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vaccine availability and maximum vaccination rate are lumped in function H, which reads:

vi(t) ≥ 0, i ∈ In1 , (Ia)∫ td+1

td

vi(t) dt ≤ vmax
i ∝ Ni, i ∈ In1 , td ∈ IT0 , (Ib)∫ t

0

n∑
i=1

vi(t) dt ≤ D(t), ∀ t ∈ [0, T ], (Ic)

where time is measured in days, and Iba is the set of all integers a ≤ k ≤ b. Eq (Ia) enforces that one
can only distribute a non-negative amount of vaccine doses. Eq (Ib) states the logistic constraints,
which limit the amount of individuals that can be vaccinated each day in each node to vmax

i ; here td
is the time at which each day starts. We assume that the daily capacity of each province is
proportional to the population size of each node Ni, because we assume a fair distribution of the
sanitary infrastructure among provinces with regard to population, as shown in Fig A. The stockpile
is materialized by Eq (Ic), which ensures that the total vaccine allocation across every node does not
exceed the total availability D(t). The stockpile is replenished every Monday by the delivery of new
vaccines, hence D(t) is a staircase function.

We convert our problem formulation in Eq (H) to a nonlinear programming problem using direct
multiple shooting. Standard multiple shooting splits the time horizon [0, T ] using a time grid
t0, . . . , tN , with N + 1 points and t0 = 0, tN = T . The control function is parameterized using basis
functions with local support. Common choices are a uniform time grid, i.e., tk+1 = tk + δt and a
piecewise constant control function, i.e., v(t) = vk, t ∈ [tk, tk+1]. The system dynamics are then
discretized to obtain a discrete-time system:

xk+1 = f(xk, vk),

satisfying xk = x(tk) for all k = 0, . . . , N . Moreover, the cost function is also discretized, to obtain

l(xk, vk) =

∫ tk+1

tk

L(x(t), v(t)).

We perform the discretization using numerical integration techniques (such as a fourth-order
Runge-Kutta scheme, with 50 steps per days) to obtain a good approximation of the true trajectory
and cost. Finally, the path constraints H are relaxed and imposed at a finite amount of time
instants, here coinciding with the time grid t0, . . . , tN . We ought to observe that, since in our case
the constraints only involve the controls, we are not introducing any approximation by enforcing
these constraints only on this uniform grid. The optimal control problem in Eq (H) is then
approximated by the nonlinear programming problem:

min
x,v

M(xN ) +

N−1∑
k=0

l(xk, vk) (Ja)

s.t. x0 = x̂0 (Jb)

xk+1 = f(xk, vk), k ∈ IN−1
0 , (Jc)

H(xk, vk), k ∈ IN−1
0 . (Jd)

In Eq (J), both the states x = (x0, . . . , xN ) and the controls v = (v0, . . . , vN−1) are defined as
optimization variables, which is a distinguishing trait of multiple shooting as opposed to single
shooting.

C.2 Simplifications

The main difficulty in solving Eq (J) in the context of this paper is the large dimension of the
system and the nonlinearity of the model, which can pose severe issues to the numerical solvers. In
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Fig A. Local maximum vaccination rate vmax
i for each province. This logistic constraint bounds the

maximum number of vaccines to 0.5M of doses per day, with a local rate that is proportional to the node population.
Here we show the maximum vaccination rate for each province (the constraint the solution has to comply with), in red,
and the maximum rate prescribed by the optimal solution while simulating the pessimistic scenario with a stockpile
delivery of 479’700 doses, in black. The optimal solution uses the maximal capacity of the logistic network, while
respecting the constraint.

the following, we will thus introduce a few simplifications, and we will verify through numerical
simulations that these simplifications do not result in large errors in the optimal control solution (see
Fig B).

We discretize the optimal control problem using a uniform grid with sampling time δt = 1 day.
We assume that (a) vaccinations are administered instantaneously at the beginning of each day,
rather than with a constant rate over the whole day; (b) the force of infection associated with
mobility is constant over each day; and (c) the weakest mobility links can be pruned. Thus, each
node dynamics can be made independent of the other nodes dynamics by introducing an auxiliary
control variable z that is constrained to match the force of infection due to the other nodes at the
beginning of each time interval. Then, the dynamics of the decoupled system in each node can be
written as:

ẋi(t) = Fi(xi(t), zi,k), t ∈ [tk, tk+1]

xi(tk) = xi,k + gi(vi,k), zi,k = ei(x),

where ei(x) = λM
i (tk), i.e., the mobility part of the force of infection at the start of the interval.

Discussion on Simplification (a). We ought to remark that, realistically, vaccinations will occur
over approximately eight hours per day. Our assumption, justified as a computationally convenient
approximation of reality, is not a priori worse than assuming that vaccine administration takes place
over the whole day. More refined approximations, while in principle possible, can pose severe issues
because of the nature of the system dynamics. While for most initial values the system dynamics
can be easily simulated with continuous-time vaccinations, the system becomes stiff by construction
once almost the entire population has been vaccinated. In this case, numerical integration errors can
drive the size of some compartments to be negative, which violates the model assumptions and
makes the result of the numerical integration meaningless. The main issue in this case is that the
optimizer will exploit these inaccuracies in order to reduce the cost. Therefore, this issue is much
more evident when solving optimal control problems than when simply simulating the system
dynamics. We have investigated some simple approaches to tackle this issue, but no technique
yielded satisfactory performances. It is our impression that ad-hoc integration strategies will be
required in order to reliably simulate and optimize dynamics with continuous vaccination rates.
While this will be the subject of future research, the results obtained with the current approximation
have yielded sufficient accuracy.

Discussion on Simplification (b). This simplification has been proposed in [7] as an approach
to solve distributed optimal control problems by means of multiple shooting. In the original version,
the coupling variable z is not necessarily piecewise constant, but rather piecewise polynomial. We
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Fig B. Comparison between the incidence in the exposed compartment E (per 1’000 people) as
evaluated by the model simplified for the optimal control (red) and the full epidemiological model
(black). Results for the pessimistic scenario without vaccination. The exposed compartment is very
sensitive and exhibits the largest error among all compartments. In spite of this, the error is very
small, justifying the simplifications undertaken.
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Fig C. Simplification of the mobility matrix to obtain a sparse and tractable problem for the
optimal control framework. Note that, after computing the optimal vaccination strategy, we assess
its effectiveness of on the full epidemiological model. Base map layer from the Istituto Nazionale di
Statistica; Istat, istat.it, CC-BY 3.0.

have observed in simulations that, for this problem, the piecewise constant parametrization yielded
sufficient accuracy. We discretize the dynamics of each node using an explicit Runge-Kutta
integrator of order four, with 50 integration steps per day. Our choice is motivated as a good
compromise between efficiency and accuracy, evaluated in simulations comparing it to other methods
such as explicit Euler and implicit Runge-Kutta integrators.

Discussion on Simplification (c). We sparsify the mobility matrix by pruning element below a
threshold (see Fig C). This operation reduces the number of connection between nodes. Also in this
case, we verified through numerical simulations that the introduced simplification had a small
impact on the prediction and control accuracy.

As seen in Fig B, these approximations yield a very small error, but make the problem
considerably easier to optimize.

Possible further improvements Applying optimal control in open loop, i.e., solving the
optimization problem once and applying the control input over the whole time interval, may lead to
poor performance due to model inaccuracy and external perturbations. A common remedy consists
in closing the loop by repeatedly solving the optimal control problem using the most updated
information on the initial states. This is the principle behind Model Predictive Control (MPC) [8].
In this context, the state would be estimated on a daily, weekly, or monthly basis so as to solve again
the optimal control problem and correct the optimal strategy.

C.3 Implementation of the optimal control framework

We implement the optimal control framework using the automatic differentiation framework
CasADi [9], the interior-point solver Ipopt [10], and the HSL ma86 large sparse symmetric indefinite
solver [11]. The full framework along with the optimization results and the analysis notebooks is
available on GitHub: https://github.com/jcblemai/COVID-19_italy-vaccination-oc, and
this manuscript’s specific version is deposited on Zenodo with DOI: 10.5281/zenodo.6621051.
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Solving this optimal control problem is both CPU and RAM intensive. For numerical
computations, we used the Helvetios cluster the EPFL HPC facility (one problem per computing
node, each equipped with 36 2.3 GHz cores and 192 GB RAM). On this cluster, it takes
approximately four days to solve the large-scale optimal control problem just presented. It should be
possible to solve even larger problems with more RAM available.

D Data assimilation and model parameters

D.1 Age structure

For the assessment of the distribution of cases per ages, a post-processing algorithm subdivides the
modelled number of daily new exposed individuals, Ei(t), into five age classes: a1 = 0− 19,
a2 = 20− 39,a3 = 30− 59,a4 = 60− 79;a5 = 80+.

Let S
(j)
i (t) and E

(j)
i (t) be the number of susceptible and new exposed individuals in node i

(i = 1, . . . , n) and age class j (j = 1, . . . , 5), at time t, with the property that
∑

j S
(j)
i (t) = Si(t) and∑

j S
(j)
i (t) = Ei(t).

The new exposed individuals per age class are a fraction p
(j)
i (t) of the total new exposed:

E
(j)
i (t) = p

(j)
i (t)Ei(t) (K)

where
∑

j p
(j)
i (t) = 1. This fraction takes into account the possible different exposure, susceptibility,

and number of contacts that characterizes the age class, indicated with c
(j)
i , and also the number of

susceptible individuals still present in the node for that age class, S
(j)
i (t):

p
(j)
i (t) = c

(j)
i

S
(j)
i (t)

Si(t)
(L)

We estimate the coefficients c
(j)
i on the basis of epidemiological data. Before the beginning of the

vaccination campaign (December 2020, see [12]) the total reported cases of COVID-19 in Italy where
subdivided as in the following: p(1) = 12.13%, p(2) = 24.23%, p(2) = 33.92%, p(2) = 19.58%,
p(2) = 10.14%.

Assuming that the depletion of susceptibles and reporting issues have a negligible impact on

these cumulative statistics, we compute the coefficients c
(j)
i as follows:

c
(j)
i = p(j)

Ni

N
(j)
i

where N
(j)
i is the population in node i and age class j (data from [13]).

The post-processing algorithm is initialized with S
(j)
i (0) = N

(j)
i . In a day t, assuming to know

S
(j)
i (t), the algorithm follows these steps:

• Eq (L) evaluates the probabilities p
(j)
i (t), which are normalized if needed;

• the new exposed E
(j)
i (t) are subdivided per age class using Eq (K);

• the number susceptibles are updated by removing the new exposed and the vaccinated
susceptibles in that node and age class:

S
(j)
i (t+ 1) = S

(j)
i (t)− E

(j)
i (t)− V

(j)
i (t)
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• The number of deaths D
(j)
i (t+ τ) per age class are computed from the exposures through an

age-class specific case fatality rate µj (equal per each node):

D
(j)
i (t+ τ) = µjE

(j)
i (t+ τ)

where τ = 14 days is the average time between exposure and death (see [14]), and µ1 = 0.01%,
µ2 = 0.04% µ3 = 0.43%, µ4 = 6.06%, µ5 = 20.83% (data from [12])
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Fig D. Age-stratified outputs. Results of the post-processing algorithm for the computation of susceptibles
(panel A), exposed (panel B) and deaths (panel C) among the five considered age classes. The algorithm provides
results at the province level, which are here aggregated at the national level (see the section on age structure).

D.2 Data assimilation methods

The local transmission rates, computed as β0βi(t) = β0(1 + gi(t)/100)ϕi(t), i.e., Eq(F), are the main
parameters governing the force of infection of the model and, thus, the daily exposed individuals. To
better track possible changes in the transmission rates, we adopt a data assimilation strategy based
on an iterative particle filter [15] on a moving window to assess the values of the coefficients ϕi(t).

We initialize the model state variables and parameters using the results of a previous calibration
effort [2] which fits the initial conditions, the baseline transmission β0, as well as the coefficients ϵE
and ϵI using a Bayesian framework for the period February 24 – May 1, 2020, on the basis of the
official epidemiological bulletins released daily by Dipartimento della Protezione Civile [16] (data
available online at https://github.com/pcm-dpc/COVID-19) and the bulletins of Epicentro, at
Istituto Superiore di Sanità [17, 18]. Bertuzzo et al. [2] presents three possible model calibrations
based on three values of the symptomatic/asymptomatic infectious ratio (σ = 0.5, 0.25, 0.10). For
our study we select the calibration results based on the central scenario, σ = 0.25.
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Fig 2A in the main text. The optimistic and pessimistic transmission scenarios are represented in
green and yellow, respectively.
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In the data assimilation approach, the filter starts considering Nr = 100 model realizations at

time t0 (February 21st, 2020), whose state variables are x
(j)
0 , j = 1, . . . , Nr, where the superscript (j)

is the realization index and the subscript is the temporal index. Each realization is associated with a
parameter combination that is randomly sampled from the posterior distribution evaluated in [2].

Note that all the epidemiological parameters estimated in [2], including the transmission rates,
were spatially homogeneous, while possible temporal variations were imposed on fixed dates. Here,
instead, temporal variations in the nodes’ transmission rates are obtained by iteratively fitting

coefficients ϕ
(j)
k,i against the regional hospitalization data on a moving window of τ = 14 days. At

time t0, the coefficients ϕ
(j)
0,i are initialized by sampling from a truncated normal distribution (mean

µ0 = 1, standard deviation 0.2, bounds 0.01-2). Knowing the state variables x
(j)
k and the coefficients

ϕ
(j)
k,i at time tk, the latter having an ensemble mean µk,i, we run the model for τ days by sampling

new regional coefficients ϕ
(j)
k+1,i from the truncated normal distributions (mean µk,i, standard

deviation 0.2, bounds 0.01–2.0) assuming that the regional coefficients remain constant. The
regional likelihood of each realization is then evaluated during the moving window assuming that the
daily hospitalizations follow a gamma distribution (as in [2]). A resampling step (systematic

resampling, see, e.g., [19]) selects and duplicates the coefficients ϕ̃
(j)
k+1,i associated with the largest

likelihood values. These coefficients are then used to update the mean value µk+1,i. This procedure
is iterated four times on the same temporal window by sampling from a normal distribution with
updated mean value µk+1,i and decreasing standard deviation to 0.05. This set of coefficients is used
to compute state variables and parameters at time tk+1.

The assimilation is then repeated by moving the estimation time window by one day, up to
January 4, 2021 to produce the projections used in the main text. These projections are shown in
Fig H, which displays the incidence for each province for the two scenarios. This view highlights the
different trajectories between the optimistic and pessimistic scenarios and the spacial heterogeneity
based on which the optimal control framework optimizes the vaccination strategy.

E Alternative vaccination strategies

We designed alternative vaccination strategies to establish a baseline for comparison of the efficacy
of the optimal solutions. Each strategy uses a decision variable, Vi, as a basis for ranking the
provinces and, thus, prioritize the allocation of vaccines. The decision variable is one among:

• modelled future incidence: the modelled total future incidence. This variable is updated
daily during the projection reflecting the projected incidence taking into account the effects of
the already allocated vaccines as projected by the full model.

• modelled initial susceptibility: the modelled number of susceptibles in each province at the
start of the vaccination campaign;

• the aforementioned decision variables values are taken either as absolute values or relative to
population, e.g., one decision variable is incidence and another one is incidence per
inhabitant, and the same holds for susceptibility.

• the provinces’ population.

• equal for all provinces.

Once a decision variable is selected, there are two ways in which the doses are distributed:
focused and proportional.

• Focused Every day we allocate K = 1/7th of the weekly stockpile delivery as follows: every
province is sorted (higher on top) according to its decision variable Vi. We then allocate the
maximum local rate vmax

i to every province starting from the top of the list until the stockpile
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Fig H. Projected incidence into the exposed compartment E (per 1’000 people) for the pessimistic
(red) and optimistic (blue) scenarios.
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is empty. In other words, we find the province index i that satisfies maxi Vi, and we assign to
province i Mi = min(vmax

i ,K) vaccines. Then, we find the province j that satisfy maxj,j ̸=i Vj

and we assign it Mj = min(vmax
j ,K −Mi). We iterate this procedure until no vaccine remains

for allocation at the given day. This strategy will concentrate the allocation on nodes with the
highest values of the considered decision variable.

• Proportional In this case, assuming that on a given day there is a quantity of vaccine K in
the stockpile, we assign to each province i an amount Mi = min(vmax

i ,K · Vi∑
j Vj

). This

approach vaccinates each node proportionally to the value of its decision variable Vi. Moreover,
it exhibits very fast allocation as all vaccines that can be allocated in a day according to the
logistic constraint are allocated the day following the stockpile delivery.

An additional strategy, proposed in [20] is developed in our benchmark. Named Greedy, it
approximately optimizes the current projected impact of the allocation according to the following
heuristic. For every week in the control horizon, after a delivery, we perform the following steps:

1. create 107 one-week strategies, i.e., one per province. In each strategy one province receive as
many vaccines as possible, solely limited by the remaining susceptibles, the stockpile and the
local logistic rate constraint for the seven days of the week.

2. Evaluate each of these strategies using the model, and compute the objective to minimize
(number of infections).

3. Select the strategy that generates the highest reduction in the objective and keep it fixed in
the next iterations.

4. redo steps 1.–3. until no vaccines remain in the stockpile. At every iteration, all already
selected strategies are kept and thus taken into account

The rationale behind this strategy is that it optimizes visible gains without requiring the full optimal
control framework to be run.

F Additional results against alternative strategies

We present the number of averted infections for each proposed vaccination strategies and additional
scenarios in Tables A–B, and we show them side-by-side in Fig I. The optimal strategy outperforms
all the others strategies. In fact, for every given posterior realization, the optimal control solution
always has the largest number of averted infections.

G Detailed optimal allocation analysis

To further investigate the features of the optimal solution, we present a linear scatter plot of the
optimal proportion of vaccinated individuals per province (used as sorting variable for ordering the
provinces) side by side with the province population, the projected incidence without vaccination,
and the proportion of susceptible individuals at the start of the simulation. We present these results
for the optimistic scenario in Fig J and for the pessimistic scenario in Fig K. We find no clear visual
pattern associating these covariates to the proportion of vaccinated individuals by the optimal
strategy, highlighting again that the optimal allocation uses the epidemiological variables in a
non-straightforward way, different from every alternative strategy we considered.

When the weekly stockpile delivery is increased, we observe in Fig L that the pattern in main
text Fig 6A shifts to the right while remaining qualitatively consistent. Hence, the optimal
allocation strategy is robust with respect to the overall vaccine availability constraint, and the same
nodes are prioritized.
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Vaccination Averted infections Averted infections
strategy (Millions) per dose

Scenario Optimistic Pessimistic Optimistic Pessimistic

125’000 Optimal 0.146 0.672 0.0897 0.413
Incidence per inhab.

(focused)
0.137 0.626 0.0850 0.389

Incidence per inhab.
(proportional)

0.106 0.509 0.0653 0.313

Incidence
(proportional)

0.103 0.494 0.0631 0.304

Greedy 0.0951 0.388 0.0592 0.242
Equal

(proportional)
0.0749 0.395 0.0461 0.243

Susceptible per inhab.
(proportional)

0.0740 0.393 0.0456 0.242

Population
(proportional)

0.0691 0.387 0.0425 0.238

Susceptible
(proportional)

0.068 0.384 0.0419 0.236

Incidence
(focused)

0.0596 0.315 0.0371 0.196

Susceptible per inhab.
(focused)

0.0328 0.213 0.0204 0.133

Susceptible
(focused)

0.0299 0.185 0.0186 0.115

Population
(focused)

0.0288 0.176 0.0179 0.109

Equal
(focused)

0.0259 0.157 0.0161 0.0977

250’000 Optimal 0.228 1.100 0.0701 0.340
Incidence per inhab.

(focused)
0.214 1.030 0.0666 0.321

Incidence per inhab.
(proportional)

0.180 0.893 0.0554 0.275

Incidence
(proportional)

0.174 0.896 0.0535 0.276

Equal
(proportional)

0.141 0.739 0.0433 0.227

Susceptible per inhab.
(proportional)

0.139 0.734 0.0428 0.226

Population
(proportional)

0.132 0.735 0.0407 0.226

Susceptible
(proportional)

0.130 0.729 0.0401 0.224

Greedy 0.117 0.653 0.0365 0.203
Incidence
(focused)

0.116 0.581 0.0359 0.181

Susceptible per inhab.
(focused)

0.0719 0.449 0.0224 0.140

Equal
(focused)

0.0708 0.369 0.0220 0.115

Susceptible
(focused)

0.0530 0.335 0.0165 0.104

Population
(focused)

0.0393 0.232 0.0122 0.0723

479’700 Optimal 0.334 1.700 0.0535 0.272
Incidence per inhab.

(focused)
0.318 1.600 0.0515 0.259

Incidence per inhab.
(proportional)

0.282 1.450 0.0452 0.232

Incidence
(proportional)

0.274 1.440 0.0440 0.231

Equal
(proportional)

0.241 1.280 0.0387 0.205

Susceptible per inhab.
(proportional)

0.240 1.280 0.0384 0.205

Population
(proportional)

0.232 1.290 0.0373 0.206

Susceptible
(proportional)

0.229 1.280 0.0368 0.205

Incidence
(focused)

0.203 1.050 0.0329 0.170

Greedy 0.203 1.140 0.0329 0.186
Susceptible per inhab.

(focused)
0.138 0.869 0.0225 0.141

Equal
(focused)

0.126 0.635 0.0204 0.103

Susceptible
(focused)

0.0885 0.56 0.0143 0.0907

Population
(focused)

0.0863 0.536 0.0140 0.0869

Table A. Absolute number of averted infections for the scenarios with the lower weekly stockpile delivery.

Finally, to highlight the temporal dimension of the prioritization strategy for the deployment of
vaccine doses, we present a stackplot of the proportion of vaccine dose allocated in each province
according to the optimal solution (Fig M) and a heatmap (Fig N) where the spatio-temporal pattern
is compared for the different scenarios. From left to right, as we go to scenarios with higher
deliveries, the optimal solution makes use of the new doses by both further re-enforcing the
vaccination in already prioritized provinces (like a focused strategy) and by vaccinating new
provinces (like a proportional strategy).
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Vaccination Averted infections Averted infections
strategy (Millions) per dose

Scenario Optimistic Pessimistic Optimistic Pessimistic

1M Optimal 0.484 2.540 0.0372 0.196
Incidence per inhab.

(focused)
0.467 2.440 0.0363 0.190

Incidence per inhab.
(proportional)

0.437 2.310 0.0336 0.177

Incidence
(proportional)

0.431 2.300 0.0332 0.177

Equal
(proportional)

0.402 2.150 0.0310 0.165

Susceptible per inhab.
(proportional)

0.401 2.150 0.0309 0.165

Population
(proportional)

0.399 2.180 0.0307 0.168

Susceptible
(proportional)

0.397 2.180 0.0306 0.167

Incidence
(focused)

0.369 1.940 0.0287 0.151

Greedy 0.354 1.880 0.0275 0.146
Susceptible per inhab.

(focused)
0.287 1.590 0.0223 0.123

Equal
(focused)

0.212 1.120 0.0165 0.0872

Susceptible
(focused)

0.171 1.060 0.0133 0.0823

Population
(focused)

0.166 0.996 0.0129 0.0775

1.5M Optimal 0.572 3.030 0.0293 0.156
Incidence per inhab.

(focused)
0.557 2.940 0.0289 0.153

Incidence per inhab.
(proportional)

0.536 2.850 0.0275 0.146

Incidence
(proportional)

0.531 2.840 0.0272 0.146

Population
(proportional)

0.507 2.750 0.026 0.141

Equal
(proportional)

0.507 2.710 0.026 0.139

Susceptible per inhab.
(proportional)

0.507 2.710 0.026 0.139

Susceptible
(proportional)

0.506 2.740 0.026 0.141

Incidence
(focused)

0.492 2.600 0.0255 0.135

Greedy 0.451 2.380 0.0234 0.124
Susceptible per inhab.

(focused)
0.402 2.150 0.0209 0.112

Equal
(focused)

0.296 1.620 0.0154 0.084

Susceptible
(focused)

0.269 1.580 0.0140 0.0821

Population
(focused)

0.245 1.460 0.0127 0.0755

2M Optimal 0.632 3.350 0.0243 0.129
Incidence per inhab.

(focused)
0.620 3.290 0.0241 0.128

Incidence per inhab.
(proportional)

0.606 3.220 0.0232 0.123

Incidence
(proportional)

0.602 3.210 0.0231 0.123

Population
(proportional)

0.583 3.140 0.0224 0.121

Susceptible per inhab.
(proportional)

0.583 3.120 0.0223 0.119

Susceptible
(proportional)

0.583 3.140 0.0224 0.121

Equal
(proportional)

0.582 3.110 0.0222 0.118

Incidence
(focused)

0.580 3.070 0.0225 0.120

Greedy 0.538 2.770 0.0209 0.108
Susceptible per inhab.

(focused)
0.493 2.630 0.0192 0.102

Equal
(focused)

0.438 2.360 0.0170 0.0919

Susceptible
(focused)

0.366 2.110 0.0142 0.0819

Population
(focused)

0.350 2.020 0.0136 0.0785

Table B. Absolute number of averted infections for the scenarios with the largest weekly stockpile deliveries.

H Sensitivity analysis

As detailed in the Discussion, the optimal allocation is complex and highly specific: it uses every
feature of the model and fully accounts for the current epidemiological state to gain efficacy over
other strategies. This raises the concern that the optimal allocation might be unstable: if there are
errors in model projections, one might be worried to have a significantly worse perform than with less
specific strategies. In order to verify whether that is not the case, we perform a sensitivity analysis
of the optimal allocation. Instead of evaluating the performance on other posterior realizations (as
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B Optimistic Scenario

Allocation strategy

Greedy

Susceptible per pop. (focused)

Susceptible (focused)

Susceptible per pop. (proportional)

Susceptible (proportional)
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Fig I. Comparison of different allocation strategies. Percentages of averted infections per vaccine dose from
January 4, 2021 to April 4, 2021 using different vaccine distribution strategies for the pessimistic (panel A) and the
optimistic (panel B) scenario based on: the optimal solution, the spatial distribution of the population, the amount of
susceptible individuals at the beginning of the vaccination campaign, and the projected disease incidence in the
absence of control. We optimize a median realization of the modeled posterior (diamonds), and assess the performance
on the whole posterior (box plots). The results are normalized by the number of averted infections in the optimized
solution (see Tables A–B for absolute values).

we did to generate Fig I), we evaluate it on completely different projections. These 100 projections
are obtained by randomly shuffling the provinces projected dynamics (shown in Fig H). The results
are shown in Fig O. As expected, we observe a strong degradation in performance for all strategies,
but the optimal control strategy does not show a particular fragility under these conditions.
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Fig J. Control and covariates for the optimistic scenario with a stockpile delivery of 479’700 vaccine
doses.
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Fig K. Control and covariates for the pessimistic scenario with a stockpile delivery of 479’700 vaccine
doses.
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Fig L. Vaccinated population according to the optimal strategy against the projected incidence without vaccination,
both normalized by province population. Each dot represents a province, and the dot size is proportional to the
population, while each symbol represents a weekly stockpile replenishment scenario. This corresponds to main text Fig
6A, but considering all four scenarios of weekly stockpile replenishment.
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Fig M. Time allocation for the pessimistic scenario with a stockpile delivery of 479’700. We see for each week,
how the 479’700 doses are spread across the provinces, as a percentage. This view unravels the temporal pattern in
the allocation.
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Fig N. Heatmap showing the allocation in space and time for different weekly delivery scenarios (left to right) and
different transmission scenarios (Optimistic at the top, Pessimistic at the bottom). The x-axis represents time (one
square per day) and the y-axis space (one square per province, in alphabetical order), and the color represents the
proportion of individuals vaccinated on every day in each province by the optimal solution, with black displaying the
maximum logistic rate per inhabitant, which is equal for all provinces.
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Fig O. Sensitivity analysis of different allocation strategies. Percentages of averted infections per vaccine
dose from January 4, 2021 to April 4, 2021 using different vaccine distribution strategies for the pessimistic (panel A)
and the optimistic (panel B) scenario for all alternative strategies. Here the median realization of the modeled
posterior is optimized (diamonds), and the comparison is done on shuffled dynamics (random allocation of each
province’s dynamics to another province, box plots). The results are normalized by the number of averted infections in
the optimized solution (see Table A–B for absolute values).
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