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Section S1

General Setting for Molecular Dynamic Simulations.

We added explicit water and ions to neutralize the RNA charge, and to mimic the experimen-

tal concentration of 400 mM monovalent salt. We created two systems, one RNA in NaCl

aqueous solution and the other is in KCl with the same ionic strength. We kept the number

of atoms constant in each simulation to allow direct comparison of the extensive properties

of RNA in Na+ and K+. We added 771 Cl� and 822 (Na+/K+) to the simulation boxes by

replacing some of the water molecules. We used ↵99paramsbc0 force field to represent the

RNA,52 Smith and Dang parameters59 for ions, and TIP3P60 for water.

The energy of the solvated systems were minimized for about 5000 MD steps using the

steepest descent method. This process eliminated high energy contacts that may arise due

to random placement of water and ions. The minimized structures were then equilibrated

as explained below.

First, we employed a 2.5-ns long simulation in isothermal – isobaric ensemble (NPT) by

keeping the temperature at 300 K using the Berendsen thermostat.61 Parrinello-Rahman

barostat62 was used to maintain the pressure at 1 bar. The heavy atoms of the RNA were

restrained to their initial positions using harmonic restraints with a force constant of 1000

kJ/nm2 while ions and water were allowed to move freely. Periodic boundary conditions

were implemented in the three directions. Particle Mesh Ewald (PME) summation63 was

used to compute long-range electrostatic interactions. The real space distance cuto↵ (for

electrostatics and van der Waals energies) was set to 11Å. The grid for the Fourier space

summation in the PME was 1.6Å, and fourth order splines were used to interpolate the

charge density on the grid. A dispersion correction was made for the van der Waals cuto↵.

Covalent bonds in the water and RNA were constrained to their equilibrium geometries using

SETTLE64 and LINCS65 algorithms, respectively. The equations of motion were integrated

using the Leap-Frog scheme with a time step of 1 fs.



The dimensions and the positions of atoms at the last snapshot of the NPT simulation

were saved and used to initiate the solvent equilibration step. This procedure ensures that

ions and water molecules reach equilibrium before the production runs. For this purpose,

we used a further restrained, 60-ns long NVT run keeping all the settings from the previous

section the same except the barostats were turned, o↵ and Velocity scaling was employed.66



Supplementary Figures and Analysis
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Figure S1: Free energy at the unfolding transition where folded and unfolded populations of
RNA are equal. The e↵ect of force (f) on the landscape  Ff is given as Ff (x) = F0(x) � fx,
with x the displacement along the pulling direction. (A) is for K+, and (B) is for Na+.
Major intermediate states are represented by vertical lines that explained in Fig. 2. The
minimum at the midpoint force corresponds to I1 state where additional stabilization occurs
due to non-native contact formation explained in Figure S2.
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Figure S2: Average number of inter-residue hydrogen bond formation as a function of exten-
sion for HIV-1 TAR hairpin in NaCl. The average number of hydrogen bonds were computed
between segments 6U-14C and 21U-37C. Insets show representative structures at x ⇡10.1,
11.1, 13.1, and 15.1 nm. The residues that form hydrogen bonds are highlighted in blue.
Similar results obtained for RNA in KCl



Conformational entropy and radius of gyration analysis. To elucidate the mecha-

nism of cation size on RNA stability we compute the conformational entropy and the degree

of compaction as a function of extension. As the RNA unfolds the conformational entropy in-

creases (Fig. S3A). A linear increase in the entropy between x ⇡ (0�9nm) coincides with the

unzipping of the extended stem region. Interestingly, unzipping in the range x ⇡ (9�16 nm)

results in a smaller change in entropy because it involves disruption of 3-nt apical loop region,

which is structurally already disordered even in the folded state. The rupture of the base

pair 36U-18A (Inset in Fig. 2A-B) results in an abrupt increase in entropy. The rupture

coincides well with the transition state location (Fig. 2A-B). After the transition state, the

entropy change shows a linear increase with extension.

The change in the radius of gyration (Rg) of RNA on the other hand, is impervious to

increase in the extension at x ⇡ (0 � 8 nm), as is evident from the nearly flat region in

Fig. S3(B). After the rupture of the lower stem (Fig. 2A-B) the Rg ramps up. However,

neither entropy, nor radius of gyration show cation size related di↵erences.
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Figure S3: The change in the RNA conformational entropy and RNA compaction as RNA
undergoes unfolding transition with applied force. The RNA in the presence of KCl (orange)
or in NaCl (blue). A) The change in the RNA conformational entropy in (TS) as a function
of extension. B) The change in the radius of gyration during the unfolding process.
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Figure S4: Radial distribution function (RDF) of water molecules around the surface of HIV-1
TAR hairpin at the folded and unfolded states. Data for Na+ and K+ are given in blue and 
orange, respectively. A-B) RDF of water (W) with the RNA surface (s) at the folded and at
the unfolded states respectively. (C-D) Changes in the cumulative number of water molecules
around RNA as a function of extension. The number of surface-bound water molecules was
calculated based on equation 1. C) Directly binding water coordination (set by cut-o↵: 0.22
nm) and, D) in directly binding water coordination (cut-o↵: 0.36 nm).
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Figure S5: Radial distribution function (RDF) of cation–RNA, gX�S(r), for the unfolded 
state U .
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Figure S6: Solvent accessible surface area (SASA) computed along the unfolding pathway.
A) SASA of the major grooves and, B) SASA of the phosphate groups. Na+ (blue) and
K+ (orange)
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